2020-21 Onwards (MR-20)	MALLA REDDY ENGINEERING COLLEGE (Autonomous)	B.Tech. I Semester		
Code: A0B03	Linear Algebra and Applied Calculus (Common For ECE \& EEE)	L	T	P
Credits: 4		3	1	-

Prerequisites: Matrices, Differentiation and Integration.

Course Objectives:

1. To learn types of matrices, Concept of rank of a matrix and applying the concept of rank to know the consistency of linear equations and to find all possible solutions, if exist.
2. To learn concept of Eigen values and Eigen vectors of a matrix, diagonalization of a matrix, Cayley Hamilton theorem and reduce a quadratic form into a canonical form through a linear transformation.
3. To learn methods of solving differential equations and its applications to basic engineering problems.
4. To learn series solution of the given differential equations.
5. To learn the concept of the mean value theorems, partial differentiation and maxima and minima.

MODULE I: Matrix algebra
[12 Periods]
Vector Space, basis, linear dependence and independence (Only Definitions)
Matrices: Types of Matrices, Symmetric; Hermitian; Skew-symmetric; Skew- Hermitian; orthogonal matrices; Unitary Matrices; Rank of a matrix by Echelon form and Normal form, Inverse of Non-singular matrices by Gauss-Jordan method; solving system of Homogeneous and Non-Homogeneous linear equations, LU - Decomposition Method.

MODULE II: Eigen Values and Eigen Vectors
[12 Periods]
Eigen values, Eigen vectors and their properties; Diagonalization of a matrix; Cayley-Hamilton Theorem (without proof); Finding inverse and power of a matrix by Cayley-Hamilton Theorem; Singular Value Decomposition.
Quadratic forms: Nature, rank, index and signature of the Quadratic Form, Linear Transformation and Orthogonal Transformation, Reduction of Quadratic form to canonical forms by Orthogonal Transformation Method.

Module -III: Ordinary Differential Equations
[12 Periods]
First Order and First Degree ODE:Orthogonal trajectories, Newton's law of cooling, Law of natural growth and decay.

Second and Higher Order ODE with Constant Coefficients: Introduction-Rules for finding complementary function and particular integral. Solution of Homogenous, non-homogeneous differential equations, Non-Homogeneous terms of the type $e^{a x}, \sin (a x), \cos (a x)$, polynomials in $x, e^{a x} V(x), x V(x)$, Method of variation of parameters.

Module - IV: Series Solutions to the Differential Equations

[12 Periods]
Motivation for series solution, Ordinary point and regular singular point of a differential equation, series solution to differential equation around zero, Frobenius Method about zero.

Module -V: Differential Calculus

[12 Periods]
Mean value theorems: Rolle's theorem, Lagrange's Mean value theorem with their Geometrical Interpretation and applications, Cauchy's Mean value Theorem. Taylor's Series.
Limits, Continuity, Partial differentiation, partial derivatives of first and second order, Jacobian, Taylor's theorem of two variables (without proof). Maxima and Minima of two variables, Lagrange's method of undetermined Multipliers.

Text Books:

1. B.S. Grewal, Higher Engineering Mathematics, Khanna Publishers, 36th Edition, 2010.
2. R K Jain Srk Iyengar ,Advanced engineering mathematics, Narosa publications.
3. Erwin Kreyszig, Advanced Engineering Mathematics, Wiley publications.

References Books:

1. G.B. Thomas and R.L. Finney, Calculus and Analytic geometry, 9th Edition, Pearson, Reprint,2002.
2. N.P. Bali and Manish Goyal, A text book of Engineering Mathematics, Laxmi Publications, Reprint, 2008.
3. V. Krishnamurthy, V.P. Mainra and J.L. Arora, An introduction to Linear Algebra, AffiliatedEast-West press, Reprint 2005.
4. Ramana B.V., Higher Engineering Mathematics, Tata McGraw Hill New Delhi, 11th Reprint,2010.

E - RESOURCES:

1. https://www.youtube.com/watch? $\mathrm{v}=\mathrm{sSjB} 7 \mathrm{ccnM}$ I (Matrices - System of linear Equations)
2. https://www.youtube.com/watch?v=h5urBuE4Xhg (Eigen values and Eigen vectors)
3. https://www.youtube.com/watch?v=9y HcckJ960 (Quadratic forms)
4. http://www.math.cmu.edu/~wn0g/noll/2ch6a.pdf(Differential Calculus)
5. https://www.intmath.com/differential-equations/1-solving-des.php(Differential Equations)

NPTEL:

1. https://www.youtube.com/watch?v=NEpvTe3pFIk\&list=PLLy 2iUCG87BLK18eISe4fH KdE2 j2B T\&index=5 (Matrices - System of linear Equations)
2. https://www.youtube.com/watch?v=wrSJ5re0TAw (Eigen values and Eigen vectors)
3. https://www.youtube.com/watch?v=yuE86XeGhEA (Quadratic forms)

Course Outcomes:

1. The student will be able to find rank of a matrix and analyze solutions of system of linear equations.
2. The student will be able to find Eigen values and Eigen vectors of a matrix, diagonalization a matrix, verification of Cayley Hamilton theorem and reduce a quadratic form into a canonical form through a linear transformation.
3. Formulate and solve the problems of first and higher order differential equations
4. The student will be able to Solve series solution of given differential equation.
5. The student will be able to verify mean value theorems nad maxima and minima of function of two variables.

CO- PO Mapping

CO- PO, PSO Mapping (3/2/1 indicates strength of correlation) 3-Strong, 2-Medium, 1-Weak												
COS	Programme Outcomes(POs)											
	$\mathbf{P O}$	$\begin{gathered} \mathbf{P O} \\ 2 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ \mathbf{3} \end{gathered}$	$\begin{gathered} \mathbf{P O} \\ 4 \end{gathered}$	$\begin{gathered} \text { PO } \\ 5 \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 6 \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 7 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ \mathbf{8} \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ \mathbf{9} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { PO } \\ 10 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 11 \\ \hline \end{gathered}$	$\begin{gathered} \hline \mathbf{P O} \\ 12 \\ \hline \end{gathered}$
CO1	3	2	2	3	3				2			3
CO2	3	2	2	3	2				2			3
CO3	3	2	2	3	2				2			2
CO4	3	2	2	3	3				2			2
CO5	3	2	2	3	3				2			2

MODULE -I

MATRIX ALGEBRA

Matrix :
An arrangement of $m n$ numbers (real or complex) in a rectangular array having m rows (Horizontal lines) and n columns (vertical lines), the numbers being enclosed by brackets [] or () is called an $m \times n$ matrix (read as m by n matrix)
Here $m \times n$ is called as the order or type of, a matrix and each of $m n$ numbers is called as an element of matrix. Generally matrices are denoted by capital letters A, B, C, \ldots. and its elements are denoted by small letters a, b, c, \ldots

An $m \times n$ matrix can be expressed as

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\cdots & & \cdots & \cdots & \cdots \\
a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n}
\end{array}\right]_{m \times n}
$$

It is briefly written as $A=\left[a_{i j}\right]_{m \times n}$
Where $i=1,2,3 \ldots m$ stands for rows
$j=1,2,3 \ldots n$ stands for columns.
Eg:- $\left[\begin{array}{lll}1 & -2 & 0 \\ 8 & -3 & 1\end{array}\right]$ is a matrix of order 2×3
$\left[\begin{array}{ll}1 & 8 \\ 3 & 27\end{array}\right]$ is a matrix of order 2×2

Types of Matrices
Row Matrix:-
A matrix having only one row and any number of columns is said to be a sow matrix. It is of order $1 \times n$.

Eg:- $\left[\begin{array}{llll}-1 & 0 & 1 & 2\end{array}\right]$ is a row matrix of order 1×4 Column Matrix:-
A matrix having only one column and any number of rows is said to be a column matrix. It is of order $n \times 1$.

Eg:- $\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 4\end{array}\right]$ is a column matrix of order 4×1
Rectangular Matrix:-
A matrix having rows and columns are not equal is said to be a rectangular matrix. It is of order $m \times n$.
Eg:- $\left[\begin{array}{lll}1 & 2 & 7 \\ 4 & 5 & 9\end{array}\right]$ is a rectangular matrix of order 2×3
Square Matrix:-
A matrix having rows and columns are equal is said to be a square matrix. It is of order $n \times n$ or square matrix of order. n.
Eg:- $\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ is a square matrix of order 2.

Principal diagonal of a square matrix.
In a matrix $A=\left[a_{i j}\right]_{n \times n}$, the diagonal which carries from the first row first element to last rows last element is called the principal diagonal of A.
The elements $a_{i j}$ of A for which $i=j$ le $a_{11}, a_{22}, a_{33}, \ldots a_{n n}$ are called the elements of the principal diagonal of A.

Trace of a square matrix:
Let $A=\left[a_{1 j}\right]_{n \times n}$
The sum of the elements of the principal diagonal elements is called the Trace of A, and is denoted by Ex A.

$$
\therefore \operatorname{tr} A=\sum_{i=1}^{n} a_{i i}=a_{11}+a_{22}+a_{33}+\cdots+a_{n n}
$$

Properties:
If A and B are square matrices of coder n and λ is any scalar then
(i) $+\gamma(\lambda A)=\lambda+\gamma(A)$
(ii) $\operatorname{t\gamma }(A+B)=+\gamma A+\operatorname{tr} B$.
(iii) $+\gamma(A B)=+\gamma(B A)$.

Diagonal Matrix:
A square matrix in which all the elements except in the principal diagonal are zero is called a diagonal matrix.
Eg:- $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7\end{array}\right]$ is a square matrix of order 3 .

Eg:- If $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right]_{2 \times 3}$ then $A^{\top}=\left[\begin{array}{ll}1 & 4 \\ 2 & 5 \\ 3 & 6\end{array}\right]_{3 \times 2}$
Properties:- If A^{T} and \mathbb{P}^{\prime} ans thatranposes a respect - Lively then
(i) $\left(A^{\top}\right)^{\top}=A$
(ii) $(A+B)^{\top}=A^{\top}+B^{\top}$ where A and B are of the same order.
(iii) $(k A)^{T}=k A^{\top}$, where k is a scalar.
(iv) $(A B)^{\top}=B^{\top} A^{\top}$ Where A and B are conformable fort multiplication

Symmetric Matrix:
A square matrix $A=\left[a_{i j}\right]$ is said to be symmetric if $a_{i j}=a_{j i}$ for every i and j
Thus the necessary and sufficient. condition tor a square matrix A to be symmetric that $A^{\top}=A$
$\left[\begin{array}{lll}a & h & g \\ h & b & f \\ g & f & c\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 7\end{array}\right]$ are symmetric matrices of order 3.
Skew Symmetric Matrix:
A square matrix $A=\left[a_{i j}\right]$ is said to be skew symmetric if $a_{i j}=-a_{j i}$ for every; and $;$
Thus A is skew symmetric matrix if $A^{\top}=-A$
Thus all the diagonal elements of a skew symmetric matrix are zero. Eg: $\left[\begin{array}{ccc}0 & h & -9 \\ -h & 0 & f \\ -g & -f & 0\end{array}\right]\left[\begin{array}{ccc}0 & 2 & -3 \\ -2 & 0 & 5 \\ 3 & -5 & 0\end{array}\right]$ are skew symmetric matrices of order 3 .

Note:- (i) A is symmetric $\Rightarrow K A$ is symmetric.
(ii) A is skew symmetric $\Rightarrow K A$ is skew symmetric.

Properties:-
(i) Inverse of a non singular symmetric matrix A is symmetric.
(ii) If A is a symmetric matrix then $\operatorname{adj} A$ is also symmetric.
(iii) If A is a $m \times n$ matrix and B is a $n \times p$ matrix then $(A B)^{\top}=B^{\top} A^{\top}$.

Theorem:- Every square matrix can be expressed as the sum of a symmetric and skew symmetric matrices in one and only way [OR] show that any square matrix $A=B+C$ where. B is symmetric and C is skew symmetric matrices.

Prot:- Let A be any square matrix.
We can write $A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right)$

$$
A=P+Q \text { say. }
$$

$$
\text { where } P=\frac{1}{2}\left(A+A^{\top}\right)
$$

we have.

$$
\begin{aligned}
P & =\frac{1}{2}\left(A+A^{\top}\right) \\
P^{\top} & =\left[\frac{1}{2}\left(A+A^{\top}\right)\right]^{\top} \\
& =\frac{1}{2}\left(A+A^{\top}\right)^{\top} \\
& =\frac{1}{2}\left(A^{\top}+\left(A^{\top}\right)^{\top}\right) \\
P^{\top} & =\frac{1}{2}\left(A^{\top}+A\right) \\
P^{\top} & =P
\end{aligned}
$$

$\therefore P$ is symmetric matrix.
we have

$$
\begin{aligned}
Q & =\frac{1}{2}\left(A-A^{\top}\right) \\
Q^{\top} & =\left[\frac{1}{2}\left(A-A^{\top}\right)\right]^{\top} \\
& =\frac{1}{2}\left(A-A^{\top}\right)^{\top}
\end{aligned}
$$

$$
\begin{array}{r}
\because=\frac{1}{2} A+\frac{1}{2} A \\
A=\frac{1}{2} A+\frac{1}{2} A^{\top}-\frac{1}{2} A^{\top} \\
\quad+\frac{1}{2} A \\
A=\frac{1}{2}\left(A+A^{\top}\right)+\frac{1}{2}\left(A-A^{\top}\right.
\end{array}
$$

$$
Q=\frac{1}{2}\left(A-A^{\top}\right)
$$

$$
\begin{aligned}
Q^{\top} & =\frac{1}{2}\left(A-A^{\top}\right)^{\top} \\
& =\frac{1}{2}\left(A^{\top}-\left(A^{\top}\right)^{\top}\right) \\
& =\frac{1}{2}\left(A^{\top}-A\right) \\
& =-\frac{1}{2}\left(A-A^{\top}\right) \\
Q^{\top} & =-Q
\end{aligned}
$$

$\therefore Q$ is skew symmetric matrix.
Thus, square matrix $=$ symmetric + skew symmetric
Thus, A is a sum of symmetric matrix and a skew symmetric. matrix.
To Prove that the sum is unique:-
If possible, let $A=R+S$ be another such representation of A Where R is a symmetric and S is a skew symmetric matrix.

$$
\therefore \quad R^{T}=R \quad \text { and } S^{T}=-S
$$

Now $\quad A^{T}=(R+S)^{T}=R^{T}+S^{T}=R-S$

$$
\begin{aligned}
P & =\frac{1}{2}\left(A+A^{\top}\right)=\frac{1}{2}(R+S+R \cdot S)=R \\
Q & =\frac{1}{2}\left(A-A^{\top}\right)=\frac{1}{2}(R+S-R+S)=S \\
& \Rightarrow R=P \text { and } S=Q
\end{aligned}
$$

Thus, the representation is unique.

Express the matrix $A=\left[\begin{array}{ccc}4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7\end{array}\right]$ as the sum of a symmetric and a skew symmetric matrices.
Sol:- Given that $A=\left[\begin{array}{ccc}4 & 2 & -3 \\ 1 & 3 & -6 \\ -5 & 0 & -7\end{array}\right]$
We know that symmetric part matrix A is $P=\frac{1}{2}\left(A+A^{T}\right)$ and skew symmetric part of matrix A is $Q=\frac{1}{2}\left(A-A^{\prime}\right)$

$$
\begin{aligned}
& A^{\top}=\left[\begin{array}{ccc}
4 & 1 & -5 \\
2 & 3 & 0 \\
-3 & -6 & -7
\end{array}\right] \\
& A+A^{\top}=\left[\begin{array}{ccc}
4 & 2 & -3 \\
1 & 3 & -6 \\
-5 & 0 & -7
\end{array}\right]+\left[\begin{array}{ccc}
4 & 1 & -5 \\
2 & 3 & 0 \\
-3 & -6 & -7
\end{array}\right]=\left[\begin{array}{ccc}
8 & 3 & -8 \\
3 & 6 & -6 \\
-8 & -6 & -14
\end{array}\right] \\
& P=\frac{1}{2}\left(A+A^{\top}\right)=\frac{1}{2}\left[\begin{array}{ccc}
8 & 3 & -8 \\
3 & 6 & -6 \\
-8 & -6 & -14
\end{array}\right]
\end{aligned}
$$

$$
p^{T}=p
$$

$\therefore \quad P$ is symmetric.

$$
\begin{gathered}
A-A^{\top}=\left[\begin{array}{ccc}
A & 2 & -3 \\
1 & 3 & -6 \\
-5 & 0 & -7
\end{array}\right]-\left[\begin{array}{ccc}
4 & 1 & -5 \\
2 & 3 & 0 \\
-3 & -6 & -7
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -6 \\
-2 & 6 & 0
\end{array}\right] \\
Q=\frac{1}{2}\left(A-A^{\top}\right)=\frac{1}{2}\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -6 \\
-2 & 6 & 0
\end{array}\right] \\
Q^{\top}=-Q
\end{gathered}
$$

$\therefore Q$ is skew symmetric.

$$
A=P+Q=\frac{1}{2}\left[\begin{array}{ccc}
8 & 3 & -8 \\
3 & 6 & -6 \\
-8 & -6 & -14
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
0 & 1 & 2 \\
-1 & 0 & -6 \\
-2 & 6 & 0
\end{array}\right]
$$

Properties:-
(i) The inverse of a non singular symmetric matrix A is symmetric.
(ii) If A and B are symmetric matrices then $A B$ is symmetric if and only if $A B=B A$.
(iii) If A is any matrix then $A A^{\top}$ and $A^{\top} A$ are both symmetric.
(iv) The matrix $B^{\top} A B$ is symmetric or skew symmetric according as A is symmetric or stew symmetric.
(v) All positive integral powers of a symmetric matrix are symmetric
(Vi) Positive odd integral powers of a speed symmetric matrix are skew symmetric where as positive even integral powers are symmetric.

Orthogonal Matrix: --
A square matrix A is called an orthogonal matrix it $A A^{\top}=A^{\top} A=I$.
(1). Determine the values of a, b, c such that $A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is an orthogonal matrix
Sol:- Given that $A=\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$
By det. A is an orthogonal $\Rightarrow A A^{\top}=A^{\top} A=I$.

$$
\left.\begin{array}{rl}
A A^{T}=I \Rightarrow
\end{array} \Rightarrow\left[\begin{array}{ccc}
0 & 8 b & c \\
a & b & -c \\
a & -b & c
\end{array}\right]\left[\begin{array}{ccc}
0 & a & a \\
2 b & b & -b \\
c & -c & c
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { orthogonal } \Rightarrow\left[\begin{array}{ccc}
4 b^{2}+c^{2} & 2 b^{2}-c^{2} & -2 b^{2}+c^{2} \\
2 b^{2}-c^{2} & a^{2}+b^{2}+c^{2} & a^{2}-b^{2}-c^{2} \\
-2 b^{2}+c^{2} & a^{2}-b^{2}-c^{2} & a^{2}+b^{2}+c^{2}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right] .
$$

Equating the elements of corresponding positions, we get

$$
\begin{align*}
& 4 b^{2}+c^{2}=1 \quad 2 b^{2}-c^{2}=0-12 \\
& a^{2}+b^{2}+c^{2}=1=(3) \tag{2}
\end{align*}
$$

$$
(1)+(2) \Rightarrow b b^{2}=1 \Rightarrow b= \pm \frac{1}{\sqrt{b}}
$$

$$
(3)+(4) \Rightarrow \quad 2 a^{2}=1 \Rightarrow a= \pm \frac{1}{\sqrt{2}}
$$

tram (2), $c^{2}=2 b^{2}$

$$
\begin{aligned}
& c^{2}=2 \frac{1}{6}=\frac{1}{3} \\
& c= \pm \frac{1}{\sqrt{3}}
\end{aligned}
$$

$\therefore a= \pm \frac{1}{\sqrt{2}}, b= \pm \frac{1}{\sqrt{b}} c=\frac{ \pm 1}{\sqrt{3}}$ are required values.
(2) Show that $A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \sin \theta & \cos \theta \\ 0 & -\cos \theta & \sin \theta\end{array}\right]$ is an orthogonal.
(3) Show that $A=\left[\begin{array}{ccc}0 & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & -\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]$ is orthogonal.
(4) sit. $A=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$ is orthogonal.
15) $\operatorname{sit} A=\left[\begin{array}{ccc}\cos \phi & 0 & \sin \phi \\ \sin \theta \sin \phi & \cos \theta & -\sin \theta \cos \phi \\ -\cos \theta \sin \phi & \sin \theta & \cos \theta \cos \phi\end{array}\right]$ is orthogonal.
(6) Find a +re integer a° such that $\frac{1}{a}\left[\begin{array}{ccc}1 & -2 & 2 \\ -2 & 1 & 2 \\ -2 & -2 & -1\end{array}\right]$ is orthogonal

Properties:-
ii) If A is orthogonal matrix then $|A|= \pm 1$
ii) The inverse of an orthogonal matrix is orthogonal.
(iii) The transpose of an orthogonal matrix is orthogonal.
(iv) If A, B be orthogonal matrices, $A B$ and $B A$ are also. orthogonal.
) Reduce the matrix $\left[\begin{array}{rrrr}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$ to echelon form and find its

Sol: Let

$$
A=\left[\begin{array}{rrrr}
-1 & -3 & 3 & -1 \\
1 & 1 & -1 & 0 \\
2 & -5 & 2 & -3 \\
-1 & 1 & 0 & 1
\end{array}\right]_{4 \times 4}
$$

Now we reduce the matrix A into echelon form by applying row operations only.

$$
\begin{aligned}
\text { ans only } & {\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 2 & -1 \\
0 & -11 & 8 & -5 \\
0 & 4 & -3 & 2
\end{array}\right], R_{2}+R_{1} \rightarrow R_{3}+2 R_{1} R_{4} \rightarrow R_{4}-R_{1} } \\
& \sim\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 2 & -1 \\
0 & 0 & -6 & 1 \\
0 & 0 & -1 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{lll}
R_{3} & -11 R_{3} & -1
\end{array}\right] R_{4}+R R_{2} \\
R_{4} & \rightarrow 6 R_{4}+R_{3} \\
0 & \sim\left[\begin{array}{cccc}
-1 & -3 & 3 & -1 \\
0 & -2 & 2 & -1 \\
0 & 0 & -6 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

Which is in echelon form
$\therefore P(A)=$ No. of non zero rows of the last equivalent to A $=4$.

$$
\therefore P(A)=4
$$

-....: Apply elementary transformations to find the rank of

$$
A=\left[\begin{array}{cccc}
1 & -7 & 3 & -3 \\
7 & 20 & -2 & 25 \\
5 & -2 & 4 & 7
\end{array}\right]
$$

Now we reduce the matrix A into echelon form by applying row operations only.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-7 R_{1}, R_{3} \rightarrow R_{3}-5 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & -7 & 3 & -3 \\
0 & 69 & -23 & 46 \\
0 & 33 & -11 & 22
\end{array}\right] \\
& R_{2} \rightarrow R_{2}\left(\frac{1}{23}\right) \quad R_{3} \rightarrow R_{3}\left(\frac{1}{11}\right) \\
& -\left[\begin{array}{cccc}
1 & -7 & 3 & -3 \\
0 & -3 & -1 & 2 \\
0 & -33 & -1 & 2
\end{array}\right] . \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& \sim\left[\begin{array}{rrrr}
1 & -1 & 3 & -3 \\
0 & 3 & -1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which is in echelon form.
$\therefore P(A)=$ The no. of non zero rows of the last equivalent

$$
\begin{aligned}
\quad o t & =2 \\
\therefore \quad & \quad P(A)=2
\end{aligned}
$$

\rightarrow Find the constants d and n suchthat the rank of the matrix

$$
A=\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
2 & 1 & -1 & 2 \\
6 & -2 & 1 & m
\end{array}\right]
$$

(i) 3
(ii) 2

Now we reduce the matrix A into echelon form by applying row operations only.

$$
\begin{aligned}
R_{2} & \rightarrow R_{2}-2 R_{1}, \quad R_{3} \rightarrow R_{3}-6 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
0 & -5 & -7 & 0 \\
0 & 10 & 1-18 & m-6
\end{array}\right] \\
& \sim\left[\begin{array}{cccc}
1 & -2 & 3 & 1 \\
0 & 5 & -7 & 0 \\
0 & 0 & 1-4 & m-b
\end{array}\right]
\end{aligned}
$$

Which is in echelantorm
(i) $P(A)=3$ it $d \neq 4$ or $m \neq 6$
(ii) $P(A)=2$ if $l=4$ and $m=6$.

For what value of k the matrix $A=\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3\end{array}\right]$ has rank 3 .
Sot

$$
\begin{aligned}
& \text { Given that } A=\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
1 & 1 & -1 & 0 \\
k & 2 & 2 & 2 \\
9 & 9 & k & 3
\end{array}\right] \\
& R_{2} \rightarrow 4 R_{2}-R_{1}, R_{3} \rightarrow 4 R_{3}-k R_{1}, R_{4} \rightarrow 4 R_{4}-9 R_{1} \\
& \sim\left[\begin{array}{cccc}
4 & 4 & -3 & 1 \\
0 & 0 & -1 & -1 \\
0 & 8-4 k & 8+3 k & 8-k \\
0 & 0 & 4 k+27 & 3
\end{array}\right]
\end{aligned}
$$

The given matrix is of coder 4×4. If its rank is 3 , then we must have $|A|=0$

$$
\begin{gathered}
\Rightarrow 4\left|\begin{array}{ccc}
0 & -1 & -1 \\
8-4 k & 8+3 k & 8-k \\
0 & 4 k+27 & 3
\end{array}\right|=0 \\
1[(8-4 k) 3]-1[(8-4 k)(4 k+27)]=0 \\
(8-4 k)[3-4 k-27]=0 \\
(8-4 k)(-24-4 k)=0 . \\
\therefore k=2 \text { co } k=-6 .
\end{gathered}
$$

ECHELON FORM.

1 Define Echelon form of a matrix.
2. Find the rank of matrix $A=\left[\begin{array}{cccc}0 & 1 & -3 & -1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0\end{array}\right]$ by reducing it into echelon form Ans:- 2. $\quad\left[\begin{array}{llll}1 & 1 & -2 & 0\end{array}\right]$
3: Find the rank of matrix $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ 3 & -1 & 1 \\ 4 & -1 & 2 \\ -1 & 1 & -1\end{array}\right]$ by reducing it into. echelon form Ans:- $3 \quad\left[\begin{array}{ccc}4 & -1 & 2 \\ -1 & 1 & -1\end{array}\right]$ 4 Find the value of k so that the rank of the matrix $A=\left[\begin{array}{cccc}4 & 4 & -3 & 1 \\ 1 & 1 & -1 & 0 \\ k & 2 & 2 & 2 \\ 9 & 9 & k & 3\end{array}\right]$
is three. Ans:- $k=2$ or $k=-6$.

6 Find the rank of matrix $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ -2 & -3 & 1 & 2 \\ -3 & -4 & 5 & 8 \\ 1 & 3 & 10 & 14\end{array}\right]$ by reducing in into echelon form Ans:. 2. $\left[\begin{array}{cccc}3 & -4 & 8 \\ 1 & 3 & 10 & 14\end{array}\right]$
7 Find the rank of the matrix. $A=\left[\begin{array}{cccc}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3\end{array}\right]$ by reducing it into echelon form Ans:-4. $\left[\begin{array}{cccc}2 & -5 & 2 & -3 \\ -1 & 1 & 0 & 1\end{array}\right]$
8 Find the rank of the matrix $A=\left[\begin{array}{cccc}3 & 2 & -1 & 5 \\ 5 & 1 & 4 & -2 \\ 1 & -4 & 11 & -19\end{array}\right]$ by reducing it into echelon form. Ans:-2 $\left[\begin{array}{llll}1 & -4 & 11 & -19\end{array}\right]$

Normal form or Canonical form of a matrix:-
If an $m \times n$ matrix can be reduced to the form $\left[\begin{array}{cc}I_{\gamma} & 0 \\ 0 & 0\end{array}\right]$ by using a finite chain of elementary operations. Where Ir is the unit matrix of corder x and ' O ' is the null matrix then the above form is called "The normal form" or "The tirst canonical form of a matrix". Here γ indicates the rank of a matrix. The various normal forms are $I_{\gamma},\left[\begin{array}{ll}I_{\gamma} & 0\end{array}\right],\left[\begin{array}{c}I_{\gamma} \\ 0\end{array}\right]$ and $\left[\begin{array}{cc}I_{\gamma} & 0 \\ 0 & 0\end{array}\right]$ Working procedure to reduce a matrix to the canonical form:-

$$
\text { consider the matrix } A=\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
a_{21} & a_{22} & a_{23} & a_{24} \\
a_{31} & a_{32} & a_{33} & a_{34}
\end{array}\right]
$$

Step (i):- If $a_{11} \neq 0$, by using a_{11} position make a_{21} and a_{31} positions as zero. Here we use row operations.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & a_{24}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & a_{34}^{\prime}
\end{array}\right]
$$

step (ii):- By using a_{11} position make a_{12}, a_{15} and a_{14} positions as zero. Here we use column operations

$$
\sim\left[\begin{array}{cccc}
a_{11} & 0 & 0 & a \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} & a_{24}^{\prime \prime} \\
0 & a_{32}^{\prime \prime} & a_{33}^{\prime \prime} & a_{34}^{\prime \prime}
\end{array}\right]
$$

step (iii) :- It $a_{22}^{\prime \prime} \neq 0$, by using $a_{22}^{\prime \prime}$ position make $a_{32}^{\prime \prime}$ position a) zero Here we use row operation.

$$
\sim\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22}^{11} & a_{23}^{\prime \prime} & a_{24}^{\prime \prime} \\
0 & 0 & a_{33}^{11} & a_{34}^{11}
\end{array}\right]
$$

Step (iv): - By using $a_{22}^{\prime \prime}$ position make $a_{23}^{\prime \prime}$ and $a_{24}^{\prime \prime}$ positions as zero. Here we use column operations.

$$
\sim\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 & 0 \\
0 & 0 & a_{33} & a_{34}
\end{array}\right]
$$

step (v): If $a_{33}^{w} \neq 0$, by using a_{33}^{w} position make a_{34}^{w} position as zero. Here we use column operation.

$$
\sim\left[\begin{array}{cccc}
a_{11} & 0 & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 & 0 \\
0 & 0 & a_{33}^{21} & 0
\end{array}\right]
$$

Step (vi) :- By using suitable elementary operations make, a_{11}, a_{22}^{11} and a_{33}^{1} positions as one. Now which is of the form

$$
\begin{aligned}
& \sim\left[\begin{array}{lll|l}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& A \sim\left[\begin{array}{ll}
I & 0
\end{array}\right] \\
& \therefore \quad P(A)=3
\end{aligned}
$$

5. Find the rank of a matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \\ 4 & 5 & 6 & 7\end{array}\right]$ by canonical form

Sot Given that

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
2 & 3 & 4 & 5 \\
3 & 4 & 5 & 6 \\
4 & 5 & 6 & 7
\end{array}\right]
$$

Now we reduce the matrix A into normal form by applying row and column operations.

$$
\begin{aligned}
R_{2} & \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1} R_{4} \rightarrow R_{4}-4 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & -1 \\
0 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right] \\
C_{2} & \rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & -2 & -3 \\
0 & -2 & -4 & -6 \\
0 & -3 & -6 & -9
\end{array}\right] \\
R_{3} & \rightarrow R_{3}-2 R_{2} \quad R_{4} \rightarrow c_{3}-3 c_{4} \quad c_{4} \rightarrow c_{4}-4 c_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & -2 & -3 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & -1 & -0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{gathered}
R_{2} \rightarrow k_{2}(-1) \\
A \sim\left[\begin{array}{cc:cc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
\hdashline 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Which is of the form $A \sim\left[\begin{array}{cc}I_{2} & 0 \\ 0 & 0\end{array}\right]$
Which is in normal form.

$$
\therefore \quad P(A)=2
$$

\Rightarrow Find the rank of the matrix $A=\left[\begin{array}{cccc}1 & 2 & -1 & 3 \\ 4 & 1 & 2 & 1 \\ 3 & -1 & 1 & 2 \\ 1 & 2 & 0 & k\end{array}\right]$ by reducing it to
the canonical form.
Sol:- Given that

$$
A=\left[\begin{array}{cccc}
1 & 2 & -1 & 3 \\
4 & 1 & 2 & 1 \\
3 & -1 & 1 & 2 \\
1 & 2 & 0 & k
\end{array}\right]
$$

Now we reduce the matrix A into normal form by applying elementary row and column operations.

$$
\left.\left.\begin{array}{l}
R_{2} \rightarrow R_{2}-4 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1} \quad R_{4} \rightarrow R_{4}-R_{1} \\
\sim\left[\begin{array}{cccc}
1 & -7 & 5 & -11 \\
0 & -7 & 4 & -7 \\
0 & 0 & 1 & k-3
\end{array}\right] \\
c_{2} \rightarrow c_{2}-2 c_{1} \\
c_{3} \rightarrow c_{3}+c_{1} \\
c_{4} \rightarrow c_{4}-3 c_{1} \\
0 \\
0
\end{array}\right]-7 \begin{array}{ccc}
1 & 0 & 0 \\
0 & 4 & -7 \\
0 & 1 & k-3
\end{array}\right] .
$$

Which is in normal form

$$
P(A)=3 \text { if } 14 k-14=0 \text { ie } k=1
$$

$$
P(A)=3 \text { if } 14 k-14 \neq 0 \text { i.e } k \neq 1
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -7 & 6 & -11 \\
0 & 0 & -2 & 4 \\
0 & 0 & 1 & k-3
\end{array}\right] \\
& c_{3} \rightarrow 7 c_{3}+6 c_{2} \quad c_{4} \rightarrow 7 c_{4}-\| c_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -7 & 0 & 0 \\
0 & 0 & -14 & 28 \\
0 & 0 & 17 & 7 k-21
\end{array}\right] \\
& R_{4} \rightarrow 2 R_{4}+R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -7 & 0 & 0 \\
0 & 0 & -14 & 28 \\
0 & 0 & 0 & 14 K-14
\end{array}\right] \\
& c_{4} \rightarrow c_{4}+2 c_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -7 & 0 & 0 \\
0 & 0 & -14 & 0 \\
0 & 0 & 0 & 14 k-14
\end{array}\right] \\
& R_{3} \rightarrow R_{3}\left(\frac{-1}{7}\right) R_{4} \rightarrow R_{4}\left(\frac{-1}{14}\right) \\
& A \sim\left[\begin{array}{lllc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 14 k-14
\end{array}\right]
\end{aligned}
$$

-

\rightarrow Reduce the matrix $\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$ the normal tom and hance find
Sol Let $A=\left[\begin{array}{cccc}0 & 1 & 2 & -2 \\ 4 & 0 & 2 & 6 \\ 2 & 1 & 3 & 1\end{array}\right]$
Reduce the matrix A into normal form by applying row and column operations.

$$
\begin{aligned}
& C_{1} \longleftrightarrow C_{2} \\
& \cdots\left[\begin{array}{rrrr}
1 & 0 & 2 & -2 \\
0 & 4 & 2 & 6 \\
1 & 2 & 3 & 1
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-R_{1} \\
& \sim\left[\begin{array}{rrrr}
1 & 0 & 2 & -2 \\
0 & 4 & 2 & 6 \\
0 & 2 & 1 & 3
\end{array}\right] \\
& C_{3} \rightarrow C_{3}-2 C_{1} \quad C_{4} \rightarrow C_{4}+2 C_{1} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 2 & 6 \\
0 & 2 & 1 & 3
\end{array}\right] \\
& R_{3} \rightarrow 2 R_{3}-R_{2} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 2 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& C_{3} \rightarrow 2 C_{3}-C_{2}, C_{4} \rightarrow 2 C_{4}-3 C_{2} \\
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& R_{2} \rightarrow R_{2}\left(\frac{1}{4}\right) \\
& \rightarrow\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$$
A \sim\left[\begin{array}{cc}
I_{2} & 0 \\
0 & 0
\end{array}\right]
$$

Which is in normal form

$$
\therefore P(A)=2 .
$$

\rightarrow By reducing the matrix $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$ into normal form, find
sol: Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 2 & 1 & 4 & 3 \\ 3 & 0 & 5 & -10\end{array}\right]$
Reduce the matrix A into normal from by applying elementary now and column operations.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
0 & -3 & -2 & -5 \\
0 & -6 & -4 & -12
\end{array}\right] \\
& c_{2} \rightarrow C_{2}-2 C_{1} \quad C_{3} \rightarrow C_{3}-3 C_{1} \quad C_{4} \rightarrow C_{4}-4 C_{1} \\
& \sim\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & -2 & -5 \\
0 & -6 & -4 & -22
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-2 R_{2} \\
& \omega\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & -2 & -5 \\
0 & 0 & 0 & -12
\end{array}\right] \\
& C_{3} \rightarrow 3 C_{3}-2 C_{2}, C_{4} \rightarrow 3 C_{4}-5 C_{2} \\
& \omega\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -3 & 0 & 0 \\
0 & 0 & 0 & -36
\end{array}\right] \\
& R_{2} \rightarrow R_{2}\left(-\frac{1}{3}\right) \quad R_{3} \rightarrow R_{3}\left(-\frac{1}{36}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& A \sim\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& A \sim\left[\begin{array}{ll}
I_{3} & 0
\end{array}\right]
\end{aligned}
$$

Which is in normal form

$$
\therefore \quad P(A)=3
$$

Elementary Matrix:-
It is a matrix obtained from a unit matrix by a single elemen try transformation.

$$
\text { Eq:- } I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

$\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right],\left[\begin{array}{lll}3 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right],\left[\begin{array}{lll}1 & 3 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$ are the elementary matrices obtained from I_{3} by applying the elementary operations $F_{1} \leftrightarrow C_{3}, R_{1} \rightarrow R_{1}(3)$ and $R_{1} \rightarrow R_{1}+3 R_{2}$. respectively

Theorem:-
Every elementary row (column) transturmation of a matrix can be obtained by pre multiplication (post-multiplication) with corresponding elementary matrix.

This B is same as the matrix obtained by pore multiplying A with the matrix E_{13} obtained from unit -matrix by interchanging $1^{\text {it }}$ and $3^{\text {rd }}$ rows in it.
verification :-

$$
\begin{aligned}
& E_{13}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& E_{13} A=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 3 & 9 \\
-2 & 5 & 6
\end{array}\right]=\left[\begin{array}{ccc}
-2 & 5 & 6 \\
2 & 3 & 9 \\
1 & 3 & 5
\end{array}\right]
\end{aligned}
$$

$$
A=\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 3 & 9 \\
-2 & 5 & 6
\end{array}\right]
$$

Let us interchange, $1^{\text {st }}$ and $3^{\text {rd }}$ columns, we get $B=\left[\begin{array}{ccc}5 & 3 & 1 \\ 9 & 3 & 2 \\ 6 & 5 & -2\end{array}\right]$
This B is same as the matrix obtained by post multiplying A with the matrix F_{13}^{-1} obtained from unit matrix by inter - Changing $1^{s t}$ and $3^{\text {rd }}$ columns in it.

Verification :-

$$
\begin{aligned}
& \therefore E_{13}^{1}=\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right] \\
& A E_{13}^{1}=\left[\begin{array}{ccc}
1 & 3 & 5 \\
2 & 3 & 9 \\
-2 & 5 & 6
\end{array}\right]\left[\begin{array}{lll}
0 & 0 & 1 \\
0 & 1 & 0 \\
1 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
5 & 3 & 1 \\
9 & 3 & 2 \\
6 & 5 & -2
\end{array}\right]
\end{aligned}
$$

PAQ form of a Matrix:-
If A be an $m \times n$ matrix of rank r, then there exists two non singular matrices P and Q such that $P A Q=\left[\begin{array}{ll}I_{\gamma} & 0 \\ 0 & 0\end{array}\right]$ is called PAQ form of a matrix A.

Working procedure:-

$$
\text { Consider the matrix } \begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& \text { We can write } \begin{aligned}
A_{3 \times 3} & =I_{3} A I_{3} \\
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] } & =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
\end{aligned}
$$

Now we have to reduce the matrix A on the L.H.S to the normal form by applying elementary transtormations.
Each row transformation will be applied to the pre factor I_{3} and each column transformation will be applied to the post factor I_{3} on the R.H.S of equation (1).
Step (i): - If $a_{11} \neq 0$, by using a_{11} position make a_{21} and a_{31} positions as zero. Here we apply row operations. The same row operations apply pretactor of A on R.H.S of (1).

$$
\begin{aligned}
& \text { A on R.H.S of (1) } \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]=\left[\begin{array}{c}
x \\
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

step (ii) :- By using a_{11} position make a_{12} and a_{13} positions as zero. Here we apply column operations. The same column opera - Hons apply posttactor of A.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & b & a_{32}^{\prime \prime}
\end{array} a_{33}^{\prime \prime}\right]=\left[\begin{array}{l}
\\
\end{array}\right]
$$

step(iii) :- It $a_{22}^{11} \neq 0$, by using $a_{22}^{\prime \prime}$ position make $a_{32}^{\prime \prime}$ position as zero. Here we apply row operation. The same row operation. apply on pretactor of A.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{11} & a_{23}^{11} \\
0 & 0 & a_{33}^{\prime 11}
\end{array}\right]=\left[\begin{array}{l}
x
\end{array}\right]
$$

Step (iv) :- By using $a_{2,2}^{\prime \prime}$ position make $a_{2-3}^{\prime \prime}$ position as zero. Here we apply column operation. The same column operation apply on post tactiso of A.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 \\
0 & 0 & a_{33}^{2}
\end{array}\right]=[] A[]
$$

Step (v): By using elementary transtromations reduce the matrix on L.H.S to an identity matrix. The same operations apply on pretactor or post factor on R.H.S.

The resultant is of the form $\left[\begin{array}{cc}I_{\gamma} & 0 \\ 0 & 0\end{array}\right]=P A Q$
Where P and Q non singular matrices.
Note: - Here the non singular matrices P and Q are not unique.
\cdots obtain the non singular matrices P and Q. such that $P A Q$ is in the form $\left[\begin{array}{cc}I_{\gamma} & 0 \\ 0 & 0\end{array}\right]$ where $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1\end{array}\right]$ Also find the rank of the A. Sol: Given that $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -1 \\ 3 & 1 & 1\end{array}\right]_{3 \times 3}$.

We can write, $A=I_{3} A I_{3}=$ (1)

$$
\begin{aligned}
& \text { write } A=I_{3} A I_{3} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & -1 & 1 \\
3 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Now we have to reduce the matrix A an the L.H.S to the normal form by applying elementasy transturmations
Each elementary row transformation will be applied to the prefactu I_{3} and each elementary column transtormation will be applied to the post factor I_{3} of the R.H.S of equation (1).

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1} \quad R_{3} \rightarrow R_{3}-3 R_{1} \\
& {\left[\begin{array}{ccc}
1 & 1 \\
0 & -2 & -2 \\
0 & -2 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& c_{2} \rightarrow c_{2}-c_{1} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{3} \rightarrow c_{3}-c_{1} & -2 \\
0 & -2 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -2 & -2 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 0 & R_{3} \\
0 & -2 & 0 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-1 & 1 & 0 \\
-2 & -1 & 1
\end{array}\right] A\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

$$
\begin{aligned}
& C_{2} \rightarrow C_{2}-C_{1} \quad C_{3} \rightarrow C_{3}-C_{4} \quad c_{4} \rightarrow C_{4}-2 C_{1} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & -1 & -2 \\
0 & -1 & -5 & -10
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
1 & 0 & -2
\end{array}\right] A\left[\begin{array}{cccc}
1 & -1 & -1 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& R_{3} \longrightarrow 5 R_{3}-R_{2} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & -1 & -2 \\
0 & 0 & -24 & -48
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
5 & -1 & -8
\end{array}\right] A\left[\begin{array}{cccc}
1 & -1 & -1 & -2 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]} \\
& c_{3} \rightarrow 5 c_{3}-c_{2}, c_{4} \rightarrow 5 c_{4}-2 c_{2} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -120 & -240
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
5 & -1 & -8
\end{array}\right] A\left[\begin{array}{cccc}
1 & -1 & -4 & -8 \\
0 & 1 & -1 & -2 \\
0 & 0 & 5 & 0 \\
0 & 0 & 0 & 5
\end{array}\right]} \\
& c_{4} \rightarrow c_{4}-2 c_{3} \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -5 & 0 & 0 \\
0 & 0 & -120 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & 1 & -2 \\
5 & -1 & -8
\end{array}\right] A\left[\begin{array}{cccc}
1 & -1 & -4 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 5 & -10 \\
0 & 0 & 0 & 5
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}\left(-\frac{1}{5}\right), R_{3} \longrightarrow R_{3}\left(-\frac{1}{120}\right) \\
& {\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 1 \\
0 & -1 / 5 & 2 / 5 \\
\frac{-1}{24} & \frac{1}{120} & \frac{1}{15}
\end{array}\right] A\left[\begin{array}{cccc}
1 & -1 & -4 & 0 \\
0 & 4 & -1 & 0 \\
0 & 0 & 5 & -10 \\
0 & 0 & 0 & 5
\end{array}\right]}
\end{aligned}
$$

This is of the form $\left[\begin{array}{ll}I_{3} & 0\end{array}\right]=P A Q$
Where $P=\left[\begin{array}{ccc}0 & 0 & 1 \\ 0 & -1 / 5 & 2 / 5 \\ \frac{1}{24} & \frac{1}{120} & \frac{1}{15}\end{array}\right] \quad Q=\left[\begin{array}{cccc}1 & -1 & -4 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 5 & -10 \\ 0 & 0 & 0 & 5\end{array}\right]$ Here P and Q are non singular matrices.

$$
\therefore f(A)=3 .
$$

PAQ Form of a Matrix

1 Find the matrices P and Q such that $P A Q$ is in the normal form.

$$
A=\left[\begin{array}{rrr}
1 & 1 & 2 \\
1 & 2 & 3 \\
0 & -1 & -1
\end{array}\right] \quad \text { Ans } \because 2
$$

Hence find the rank of A.
2. Find the matrices P and Q such that $P A Q$ is in the normal form $A=\left[\begin{array}{cccc}2 & 3 & 5 & 4 \\ 0 & 2 & 3 & 4 \\ 4 & 8 & 13 & 12\end{array}\right]$ Ans:- 2. Hence find the rank of A.

3 Find the non singular matrices P and Q such that $P A Q$ is in the normal form. Hence find the rank of A.

$$
A=\left[\begin{array}{cccc}
1 & 3 & 6 & -1 \\
1 & 4 & 5 & 1 \\
1 & 5 & 4 & 3
\end{array}\right] \text { Ans :-2 }
$$

4 Find the non singular matrices P and Q suchthat $P A Q$ is in the. normal form Hence find the rank of A.

$$
A=\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
e & 1 & 4 & 3 \\
3 & 0 & 5 & -10
\end{array}\right] \quad \text { Ans:- } 3
$$

5 Find the non singular matrices P and Q such that $P A Q$ is in the normal form Hence find the rank of A.

$$
A=\left[\begin{array}{ccc}
4 & -3 & 1 \\
1 & -1 & 0 \\
2 & 2 & 2
\end{array}\right] \quad \text { Ans:- } 3
$$

6 Find the non singular matrices P and Q such that $P A Q$ is in the normal form. Hence find the rank of A.

$$
A=\left[\begin{array}{ccc}
1 & 2 & 1 \\
-1 & 0 & 2 \\
2 & 1 & -3
\end{array}\right] \text { Ans: } 3
$$

........
!

The Inverse of a Non singular Matrix by Elementary Transformations:
(Gauss Jordan method):-
We can find the inverse of a non singular matrix by using element tarry row operations only. This method is known as Gauss Jordan Method.
If a non singular matrix A of codes n is reduced to the unitmatrix In by sequence of E-row transtermations only, then the same sequence of E - row transtormations applied to the unit matrix In gives the inverse of A ie A^{-1}.
Working procedure to find inverse of non singular matrix by using row operations:-
suppose A is a non singular matrix of order 3 .
Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
We write $A_{3 x_{3}}=I_{3} A$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A
$$

Now we reduce the matrix A on the L.H.S to be identity matrix I_{3} by applying E-row transformations only. Each E-row transformation will be applied to the pretactor I_{3} of the R.H.S ot eqn (1).
stepli):- If $a_{11} \neq 0$, by using a_{11} position make a_{21} and a_{31} positions as zero. Here we apply row operations. The same operations apply on prefartor of A on R.H.S of (1)

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]=[] A
$$

step (ii):- If $a_{22}^{\prime} \neq 0$, by using a_{22}^{\prime} position make a_{12} and a_{32}^{\prime} positions as zero. Here we apply row operations. The same opera - Lions ${ }^{2}$ on pretactor of A. apply

$$
\left[\begin{array}{ccc}
a_{11}^{\prime} & 0 & a_{13}^{\prime} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]=[\quad A
$$

Step (iii): - If $a_{33}^{\prime \prime} \neq 0$, by using $a_{33}^{\prime \prime}$ position make a_{23}^{\prime} and a_{13}^{\prime} positions as zero. Here we apply row operations. The same operations apply on pretactor of A.

$$
\left[\begin{array}{ccc}
a_{11}^{\prime \prime} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]=[\quad] A
$$

Step (iv) :-

$$
\begin{gathered}
R_{1} \rightarrow R_{1}\left(\frac{1}{a_{11}^{11}}\right), R_{2} \rightarrow R_{2}\left(\frac{1}{a_{22}^{11}}\right), R_{3} \rightarrow R_{3}\left(\frac{1}{a_{33}^{11}}\right) \\
\therefore\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=B A \\
I=B A
\end{gathered}
$$

$\therefore B$ is called inverse of A.

Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$ verify using $A A^{-1}=I$
elementary transtiomations.

$$
\text { Sol:- Let } A=\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]
$$

We can write $A=I_{3}, A$-(i)

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A
$$

Now reduce the matrix A on L.H.S to the Identity matrix I_{3} by using E-row transtormations only. Each row tramstormation will be applied to the pretactor I_{3} of the R.H.S of equation (1).

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & -1 & 3 \\
1 & -1 & 1
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right] A} \\
& R_{2} \rightarrow R_{2}-2 R_{1} \quad R_{3} \rightarrow R_{3}-R_{1} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & -3 & 1 \\
0 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & -2 & 0 \\
0 & -1 & 1
\end{array}\right] A} \\
& R_{1} \rightarrow 3 R_{1}+R_{2} \quad R_{3} \rightarrow 3 R_{3}-2 R_{2} \\
& {\left[\begin{array}{ccc}
3 & 0 & 4 \\
0 & -3 & 1 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 0 \\
1 & -2 & 0 \\
-2 & 1 & 3
\end{array}\right] A} \\
& R_{1} \rightarrow R_{1}+2 R_{3} \\
& R_{2}-2 R_{2}+R_{3} \\
& {\left[\begin{array}{ccc}
3 & 0 & 0 \\
0 & -6 & 0 \\
0 & 0 & -2
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 3 & 6 \\
0 & -3 & 3 \\
-2 & 1 & 3
\end{array}\right] A}
\end{aligned}
$$

$$
\begin{aligned}
& R_{1} \rightarrow R_{1}\left(\frac{1}{3}\right) \quad R_{2} \rightarrow R_{2}\left(-\frac{1}{6}\right) \quad R_{3} \rightarrow R_{3}\left(-\frac{1}{2}\right) \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right] A}
\end{aligned}
$$

Which is of the form $I_{3} F B A$
Here. B is called inverse of $A \cdot[\because B y$ deft. $]$

$$
\therefore B=A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right]
$$

verification:-

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\therefore A A^{-1} & =I .
\end{aligned}
$$

Working Procedure to find Inverse of non singular matrix by using column operations:-

Suppose A is a non singular matrix of order 3 .
Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
We write $A_{3 \times 3}=A I_{3}$

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now we reduce the matrix A on the L.H.S to be identity matrix I_{3} by applying E-Column + ranstormations only. Each E-column transformation will be applied to the post factor I_{3} of the R.H.S of eqn (1).
Step (i): If $a_{11} \neq 0$, by using a_{11} position make a_{12} and a_{13} positions as zero. Here we apply column operations. The same operations apply on post factor of A an R.H.S of (1).

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
a_{21}^{1} & a_{22}^{1} & a_{23}^{1} \\
a_{31} & a_{32}^{1} & a_{33}^{1}
\end{array}\right]=A[]
$$

step (ii): - If $a_{22}^{\prime} \neq 0$ by using a_{22}^{\prime} position make a_{21} and a_{23}^{\prime} positions as zero. Here we apply column operations. The same operations apply on post factor of A

$$
\left[\begin{array}{ccc}
a_{11}^{1} & 0 & 0 \\
0 & a_{22}^{1} & 0 \\
a_{31}^{1} & a_{32}^{1} & a_{33}^{\prime \prime}
\end{array}\right]=A[]
$$

step(iii):- If $a_{33}^{\prime \prime} \neq 0$, by using $a_{33}^{\prime \prime}$ position make a_{31}^{\prime}, d_{32} positions as zero. Here we apply column operations. The same. operations apply on prostactor of A

$$
\left[\begin{array}{ccc}
a_{11}^{\prime \prime} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]=A[]
$$

Step(iv):- $c_{1} \rightarrow c_{1}\left(\frac{1}{a_{11}^{11}}\right) \quad c_{2} \rightarrow c_{2}\left(\frac{1}{a_{22}^{11}}\right) \quad c_{3} \rightarrow c_{3}\left(\frac{1}{d_{33}^{1}}\right)$

$$
\begin{gathered}
{\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=A B} \\
I=B A
\end{gathered}
$$

$\therefore B$ is called inverse of A.

Find the inverse of the matrix $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$ by using elementary column +ranstormations. $\left[\begin{array}{lll}1 & -1 & 1\end{array}\right]$. verify $A A^{-1}=I$.
Sol:- Given that $A=\left[\begin{array}{ccc}2 & -1 & 3 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$
We can write $A=A I_{3}$

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]=A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Now we reduce the matrix A on L.H.S to the Identity matrix I_{3} by using E-column transtormations only. Each column trans formation will be applied to the post factor I_{3} of the R.H.S of equation (1).

$$
\begin{aligned}
& c_{2} {\left[2 c_{2}+c_{1} \quad c_{3} \rightarrow 2 c_{3}-3 c_{1}\right.} \\
& {\left[\begin{array}{ccc}
2 & 0 & 0 \\
1 & 3 & -1 \\
1 & -1 & -1
\end{array}\right]=A\left[\begin{array}{ccc}
1 & 1 & -3 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] } \\
& c_{1} \rightarrow 3 c_{1}-c_{2}, c_{3} \rightarrow 3 c_{3}+c_{2} \\
& {\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 3 & 0 \\
4 & -1 & -4
\end{array}\right]=A\left[\begin{array}{ccc}
2 & 1 & -8 \\
-2 & 2 & 2 \\
0 & 0 & 6
\end{array}\right] } \\
& c_{1} \rightarrow c_{1}+c_{3} \\
& {\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 12 & 0 \\
0 & 0 & -4
\end{array}\right]=A\left[\begin{array}{ccc}
-6 & 12 & -8 \\
0 & 6 & 2 \\
6 & -6 & 6
\end{array}\right] }
\end{aligned}
$$

$$
\begin{aligned}
& c_{1} \rightarrow c_{1}\left(\frac{1}{6}\right), c_{2} \\
& {\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=c_{2}\left(\frac{1}{12}\right), c_{3} \rightarrow c_{3}\left(-\frac{1}{4}\right) } \\
& 0\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right]
\end{aligned}
$$

which is of the form $I_{3}=A B$.
Here B is called inverse of $A .[\because B y d e t]$

$$
\therefore B=A^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right]
$$

Verification:-

$$
\begin{aligned}
A A^{-1} & =\left[\begin{array}{ccc}
2 & -1 & 3 \\
1 & 1 & 1 \\
1 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & 2 \\
0 & 1 / 2 & -1 / 2 \\
1 & -1 / 2 & -3 / 2
\end{array}\right] \\
& =\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& \therefore A A^{-1}=I
\end{aligned}
$$

INVERSE OF MATRIX
1 Define Inverse of matrix
2: Employing elementary row transtormations, find the inverse of the matrix $A=\left[\begin{array}{ccc}1 & 1 & 3 \\ 1 & 3 & -3 \\ -2 & -4 & -4\end{array}\right] \quad$ Ans: $\quad A=\frac{1}{4}\left[\begin{array}{ccc}12 & 4 & 6 \\ -5 & -1 & -3 \\ -1 & -1 & -1\end{array}\right]$

3 Employing elementary column transtormations, find the inverse of the matrix $A=\left[\begin{array}{llll}0 & 1 & 2 & 2 \\ 1 & 1 & 2 & 3 \\ 2 & 2 & 2 & 3 \\ 2 & 3 & 3 & 3\end{array}\right] \quad$ Ans: $A^{\prime}=\left[\begin{array}{cccc}-3 & 3 & -3 & 2 \\ 3 & -4 & 4 & -2 \\ -3 & 4 & -5 & 3 \\ 2 & -2 & 3 & -2\end{array}\right]$
4 Find the inverse of the matrix $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ by relementasy column transtormations. Ans: $A^{-1}=\left[\begin{array}{ccc}1 & -1 & 0 \\ -2 & 3 & -4 \\ -2 & 3 & -3\end{array}\right]$

5 Employing elementary row transformations find the inverse of the matrix $A=\left[\begin{array}{cccc}-1 & -3 & 3 & -1 \\ 1 & 1 & -1 & 0 \\ 2 & -5 & 2 & -3 \\ 1 & 1 & 0 & 1\end{array}\right] \quad$ Ans: $A^{-1}=\left[\begin{array}{cccc}0 & 2 & 1 & 3 \\ 1 & 1 & -1 & -2 \\ 1 & 2 & 0 & 1 \\ 1 & 1 & 2 & 6\end{array}\right]$
6 Find the inverse of matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 1 & 3 & 3 & 2 \\ 2 & 4 & 3 & 3 \\ 1 & 1 & 1 & 1\end{array}\right]$ by using elementary
Ans:- $A^{-1}=\left[\begin{array}{cccc}1 & -2 & 1 & 0 \\ 1 & -2 & 2 & -3 \\ 0 & 1 & -1 & 1 \\ -2 & 3 & -2 & 3\end{array}\right]$
7 Find the inverse of matrix $A=\left[\begin{array}{lll}2 & 3 & 4 \\ 4 & 3 & 1 \\ 1 & 2 & 4\end{array}\right]$ by using elementary column transformations.

$$
\left[\begin{array}{ccc}
-2 & 4 / 5 & 9 / 5 \\
3 & -4 / 5 & -14 / 5 \\
-1 & 1 / 5 & 6 / 5
\end{array}\right]
$$

System of simultaneous linear non-homogereous equations

A system of m simultaneous non homogeneous linear equations in n unknowns $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ is of the form.

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=b_{2} \\
+\cdots+a_{m n} x_{n}=b_{m}
\end{array}\right\}
$$

We can write the above system of equations (1) in the form of matrix equation given by $A x=B$

$$
\begin{align*}
& \text { ie }\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\
\cdots & \cdots & \cdots & & - \\
a_{m 1} & \text { amen } & a_{m 3} & \cdots & \cdots m i n
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{n}
\end{array}\right] \tag{2}
\end{align*}
$$

Where. $A=\left[\begin{array}{lllll}a_{11} & a_{12} & a_{13} & \cdots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} \\ a_{21} & a_{22} & a_{2} & \ldots & \cdots\end{array}\right]$ called the coefficient matrix of the system of equations (1)
$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]_{n \times 1}$ is the matrix of un known and.
$B=\left[\begin{array}{c}b_{1} \\ b_{2} \\ b_{3} \\ b_{n}\end{array}\right]$ be the constant matrix of the system of equations (1)

The set of values $x_{1}, x_{2}, x_{3}, \ldots x_{n}$ which satisty the system (1) is called the solution of the system.

Augmented Matrix:
The matrix $[A \mid B]=\left[\begin{array}{ccccc:c}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} & b_{1} \\ a_{21} & a_{22} & a_{23} & \cdots & a_{2 n} & b_{2} \\ \hdashline & \ddots & \ddots & \ddots & \vdots & \vdots \\ a_{m 1} & a_{m 2} & a_{m 3} & \cdots & a_{m n} & b_{m n}\end{array}\right]$ said to be the
augmented matrix of the given system of non homogeneous equations Consistency and In consistency:
Any system of equations which contains one or more solutions is sold to be consistent otherwise it is said to be inconsistent i.e the inconsistent system does not contain any solution.

Condition tor consistency (Rank Test):-
The necessary and sufficient condition for a system of non homogeneous equations $A X=B$ is said to be consistent is that the rank of the co efficient matrix A is same as the rank of the augmented matrix $[A \mid B]$, Then the system of equations $A x=B$ is consistent

$$
\Leftrightarrow P(A)=P([A \mid B])
$$

Note: - If $P(A) \neq P \cdot([A \mid B])$ then the given system $A X=B$ is inconsistent Working Procedure.
Suppose we have m equations in n int noons.
The matrix equation of the given system of equations is $A X=B$. Then the co efficient matrix A is of order $m \times n$. Now write the augmented matrix $[A \mid B]$
Step 1:- First reduce the augmented matrix $[A \mid B]$ to echolon form by applying E-row operations only. With this we get the ranks of the augmented matrix [A|B] and the co efficient matrix A.

Step 2:-
Case (i):- When $P(A) \neq P([A \mid B])$
In this case the given system of equations ie $A X=B$ is inconsistent ie it has no solution.

Case (ii):- when $P(A)=P([A \mid B])=r$ say
In this case the given system of equations i.e $A X=B$ is consistent i.e it contains a solution.

Now we have to verity the following points.
(a) If $r=n$ i.e the no. of unknowns then the given system has a unique solution.
(b) If $\gamma<n$ ie the no. of unknowns, the given system. contains an infinite no. of solutions. To determine these. solutions we have to assign an arbitrary value tor $(n-r)$ variables and the remaining are depending upon them.
(c). If $m<n$ ie the no. of equations less than the no. of unknowns then since $r \leq m<n$, the given system possesses an intinitinite no. of solutions.

Properties :
Symmetric and skew symmetric matrices:-
Theorem: A necessary and sufficient condition tor a matrix A to be symmetric is that $A^{\top}=A$. (OR) A is symmetric $\Longleftrightarrow A^{\top}=A$.

Proof:- A is symmetric $\Rightarrow A^{\top}=A$.
Let $A=\left[a_{i j}\right]$ be an n-row square matrix so that $a_{i j}=a_{j i}$
Also A^{\top} is also an n-rowed square matrix and the $(i, j)^{\text {th }}$ element of $A^{\top}=$ the $(j, i)^{\text {th }}$ element of A.

$$
\begin{aligned}
& =a_{j i} \\
& =a_{i j}=(i, j)^{\text {th }} \text { element of } A .
\end{aligned}
$$

Hence $A^{\top}=A$
Converse: $A^{\top}=A \Rightarrow A$ is symmetric.

$$
\text { Now }(1, j)^{\text {th }} \text { element of } A=(1, j)^{\text {th }} \text { element of } A^{\top}\left(\text { Given } A^{\top}=A\right)
$$

$$
=(j, i)^{\text {th }} \text { element it } A \text {. }
$$

Hence A is gymmetric matrix.
Theorem: A necessary and sutficient condition for a matrix A to be skew symmetric matrix is that $A^{\top}=-A$ (OR) A is skew symmetric $\Rightarrow A=-A$ Proof:- A is skew symmetric $\Rightarrow A^{\top}=-A$.

Let A be an n-rowed skew symmetric matrix.
So that $a_{i j}=-a_{j i}$
Now A^{\top} is also n-rowed square matrix $(i, j)^{\text {th }}$ element of A^{\top} $=(j, i)^{\text {th }}$ element of A.
$a_{j i}=-a_{i j}:$ the $(i, j)^{\text {th }}$ element of $-A$.
Hence $A^{T}=-A$.

Converse : $A^{\top}=-A \Longrightarrow A$ is skew symmetric
Now $(i, j)^{\text {th }}$ element of $A=$ the negative of $(i, j)^{\text {th }}$ element of A^{\top}

$$
=\text { the negative of }(j, i)^{\text {th }} \text { element it } A
$$

A is a skew symmetric matrix.
Theorem: - The inverse of a non singular matrix A is symmetric
Proof: : A is non singular matrix $\Rightarrow A^{-1}$ exists $\Rightarrow A^{\top}=A$.
Now $\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}=A^{-1}$
$\left(A^{-1}\right)^{\top}=A^{-1} \Rightarrow A^{-1}$ is symmetric.
Theorem: - If A and B are symmetric matrices then $A B$ is symmetric. if and only if $A B=B A$.
Proof:- Given A and B are symmetric $\Rightarrow A=A$ and $B^{\top}=B$.
suppose $A B=B A$
consider $(A B)^{\top}=B^{\top} A^{\top}=B A=A B$.
$(A B)^{\top}=A B \Rightarrow A B$ is symmetric.
Conversely, suppose $A B$ is symmetric.

$$
\begin{aligned}
& \Rightarrow \quad A B=(A B)^{\top}=B^{\top} A=B A . \\
& \Rightarrow \quad A B=B A .
\end{aligned}
$$

Hence $A B$ is symmetric it and only it $A B=B A$.
Theorem: - If A be any matrix then $A A^{\top}$ and $A^{\top} A$ are both symmetric matrices
Prot:- Let A be any matrix.
Now $\left(A A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top} A^{\top}=A A \Rightarrow A A^{\top}$ is symmetric.
Also $\left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{\top} A \Rightarrow A^{\top} A$ is symmetric.

Theorem: - The matrix $B^{T} A B$ is symmetric or skew symmetric according as A is symmetric or skew symmetric.

Proof: - (i) Let A be symmetric matrix $\Rightarrow A^{\top}=A$
Now $\left(B^{\top} A B\right)^{\top}=B^{\top} A^{\top}\left(B^{T}\right)^{\top}=B^{\top} A B$
$\Rightarrow B^{\top} A B$ is symmetric.
(ii) Let A he skew symmetric matrix $\Rightarrow A^{T}=-A$.

Now $\left(B^{T} A B\right)^{T}=B^{T} A^{T}\left(B^{T}\right)^{T}=B^{T}(-A) B=-B^{T} A B$.

$$
\therefore \quad\left(B^{\top} A B\right)^{T}=-B^{\top} A B
$$

$\Rightarrow \vec{B}^{\top} A B$ is skew symmetric.
Theorem:- All positive integral powers of a symmetric matrix are symmetric.
Proof:- Let A be symmetric matrix.
Now $A=A \cdot A \cdot A \cdots A$ unto n times where n is a tee integer.

$$
\begin{aligned}
\left(A^{n}\right)^{\top} & =(A \cdot A \cdot A \cdots A \text { uplo } n \text { times })^{\top} \\
& =A A^{\top} A \cdot A^{\top} \text { upto } n \text { times. } \\
& =A A A \cdots A \text { upton } n \text { timed. } \\
& =A^{n}
\end{aligned}
$$

$\therefore\left(A^{n}\right)^{T}=A \Rightarrow A$ is symmetric.
Theorem:- Positive odd integral powers ot a skew symmetric matrix are skew symmetric where as positive even integral powers are symmetric.
Proof: Let A be a skew symmetric matrix $\Rightarrow A^{\top}=-A$

$$
\begin{aligned}
\text { Now }\left(A^{n}\right)^{\top} & =(A \cdot A \cdot A \ldots A n \text { times })^{\top}=A^{\top} A^{\top} A^{\top} \ldots A^{\top} n \text { times } \\
& =(-A)(-A)(-A) \ldots(-A) n \text { times. }
\end{aligned}
$$

$=(-1)^{n} A^{n}$ where n is a +ie integer
$=-A$ or A according as n is odd or even.
If n is an odd + ie integer, then $\left(A^{n}\right)^{\top}=-A^{n} \Rightarrow A^{n}$ is skew symmetric.
If n is an even tee interper then $\left(A^{n}\right)^{T}=A^{n} \Rightarrow A^{n}$ is symmetric.

Properties of orthogonal matrix:-
Theorem: - If A is orthogonal matrix, then $|A|= \pm$!
Proof: - Given A is orthogonal matrix $\Rightarrow A^{\top} A=I$.

$$
\begin{aligned}
\Rightarrow & \left|A^{\top} A\right|=|I| \\
\Rightarrow & \left|A^{\top}\right||A|=1 \\
& |A||A|=1 \quad\left[\because\left|A^{\top}\right|=|A|\right] . \\
& |A|^{2}=1 \\
& |A|= \pm 1 .
\end{aligned}
$$

Since $|A| \neq 0, A$ is invertible.
Now $A^{\top} A=I \Rightarrow A^{\top}\left(A A^{-1}\right)=I A^{-1}$

$$
\begin{aligned}
A^{\top} I & =A^{-1} \\
A^{\top} & =A^{-1}
\end{aligned}
$$

Nate:- A is crthegonal $\Rightarrow A A^{\top}=I=A^{\top} A$.
A is orthegonel $\Rightarrow A^{\top}=\vec{A}$.
Theorem: If A, B be orthogonal matrices. $A B$ and $B A$ are also orthogonal.
Proof:- Let A and B are n-rowed square matrices.

$$
|A B|=|A||B| \Rightarrow|A B| \neq 0 \text { since }|A| \neq 0 \text { and }|B| \neq 0 \text {. }
$$

$$
\begin{aligned}
(A B)^{\top} & =B^{\top} A^{\top} \\
(A B)^{\top}(A B) & =\left(B^{\top} A^{\top}\right)(A B) \\
& =B^{\top}\left(A^{\top} A\right) B \\
& =B^{\top} I B \\
& =B^{T} B \\
& =I \\
(A B)^{\top}(A B) & =I
\end{aligned}
$$

$[\because A$ is orthogonal

$$
A A^{\top}=A^{\top} A=1
$$

B is orthogonal

$$
B B^{\top}=B^{\top} B=I
$$

$\Longrightarrow A B$ is orthogonal.
similarly $(A B)(A B)^{\top}=I$
$\Rightarrow A B$ is ootlingenal.

$$
\begin{aligned}
(B A)(B A)^{\top} & =(B A)\left(A^{\top} B^{\top}\right) \\
= & B\left(A A^{\top}\right) B^{\top} \\
& =B I B^{\top} \\
& =B B^{\top} \\
(B A)(B A)^{\top} & =I
\end{aligned}
$$

$\Rightarrow B A$ is orthogonal
Similarly $(B A)^{\top}(B A)=\left(A^{\top} B^{\top}\right)(B A)$

$$
\begin{aligned}
= & A^{\top}\left(B^{\top} B\right) A \\
& =A^{\top} I A \\
& =A^{\top} A \\
(B A)^{\top}(B A) & =I
\end{aligned}
$$

$\Longrightarrow B A$ is orthogonal.
Verify that the determinant of an orthogonal matrix $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is ± 1
Sol. Given that $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

$$
\begin{gathered}
|A|=\left|\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right| \\
|A|=\cos ^{2} \theta+\sin ^{2} \theta=1 \\
|A|=1
\end{gathered}
$$

If $A=\frac{1}{3}\left[\begin{array}{ccc}1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}\cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta\end{array}\right]$ are orthogonal matrices
then prove that $A B$ and $B A$ are orthergonal.
soli- Given that

$$
\begin{aligned}
& A=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 1 & -1
\end{array}\right] \quad B=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& A B=\frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \\
& A B=\frac{1}{3}\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 & \sin \theta+2 \cos \theta \\
2 \cos \theta+2 \sin \theta & 1 & 2 \sin \theta-2 \cos \theta \\
-2 \cos \theta+\sin \theta & 2 & -2 \sin \theta-\cos \theta
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& (A B)^{\top}=\frac{1}{3}\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 \cos \theta+2 \sin \theta & -2 \cos \theta+\sin \theta \\
2 & 1 & 2 \\
\sin \theta+2 \cos \theta & 2 \sin \theta-2 \cos \theta & -2 \sin \theta-\cos \theta
\end{array}\right] \\
& (A B)(A B)^{\top}=\frac{1}{9}\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 & \sin \theta+2 \cos \theta \\
2 \cos \theta+2 \sin \theta & 1 & 2 \sin \theta-2 \cos \theta \\
-2 \cos \theta+\sin \theta & 1 & -2 \sin \theta-\cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 \cos \theta+2 \sin \theta & -2 \cos \theta+\sin \theta \\
2 & 1 & 2 \\
\sin \theta+2 \cos \theta & 2 \sin \theta-2 \cos \theta & -2 \sin \theta-\cos \theta
\end{array}\right] \\
& (A B)(A B)^{\top}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=I . \quad \therefore B \text { is an orthogonal matrix. } \\
& B A=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \frac{1}{3}\left[\begin{array}{ccc}
1 & 2 & 2 \\
2 & 1 & -2 \\
-2 & 2 & -1
\end{array}\right] \\
& B A=\frac{1}{3}\left[\begin{array}{ccl}
\cos \theta-2 \sin \theta & 2 \cos \theta+2 \sin \theta & 2 \cos \theta-\sin \theta \\
2 & 1 & -2 \\
-\sin \theta-2 \cos \theta & -2 \sin \theta+2 \cos \theta & -2 \sin \theta-\cos \theta
\end{array}\right] \\
& (B A)^{\top}=\frac{1}{3}\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 & -\sin \theta-2 \cos \theta \\
2 \cos \theta+2 \sin \theta & 1 & -2 \sin \theta+2 \cos \theta \\
2 \cos \theta-\sin \theta & -2 & -2 \sin \theta-\cos \theta
\end{array}\right] \\
& (B A)(B A)^{\top}=\frac{1}{9}\left[\begin{array}{ccc}
\cos \theta-2 \sin \theta & 2 \cos \theta+2 \sin \theta & 2 \cos \theta-\sin \theta \\
2 & 1 & -2 \\
-\sin \theta-2 \cos \theta & -2 \sin \theta+\cos \theta & -2 \sin \theta-\cos \theta
\end{array}\right]\left[\begin{array}{lll}
\cos \theta-2 \sin \theta & 2 & -\sin \theta-2 \cos \theta \\
2 \cos \theta+2 \sin \theta & 1 & -2 \sin \theta+\cos \theta \\
2 \cos \theta-\sin \theta & -2 & -2 \sin \theta-\cos \theta
\end{array}\right] \\
& (B A)(B A)^{\top}=I .
\end{aligned}
$$

$B A$ is an orthogonal matrix.

Theorem:- The inverse of an orthogonal matrix is orthogonal.
Proof:- Let A be an orthogonal matrix $\Rightarrow A A^{\top}=I=A^{\top} A$
Taking inverse $\Rightarrow\left(A A^{\top}\right)^{-1}=I^{-1}=\left(A^{\top} A\right)^{-1}$

$$
\begin{aligned}
& \left(A^{\top}\right)^{-1} A^{-1}=I=A^{-1}\left(A^{\top}\right)^{1} \\
& \left(A^{-1}\right)^{\top} A^{-1}=I=\left(A^{-1}\right)\left(A^{-1}\right)^{\top}
\end{aligned}
$$

$\Rightarrow A^{-1}$ is an orthogonal
Theorem: - The transpose of an orthogonal matrix is orthogonal.
proof: - Let A be an orthogonal matrix $\Rightarrow A A^{\top}=I=A^{\top} A$.
Taking transpose $\Rightarrow\left(A A^{\top}\right)^{\top}=I^{\top}=\left(A^{\top} A\right)^{\top}$

$$
\left(A^{\top}\right)^{\top} A^{\top}=I=A^{\top}\left(A^{\top}\right)^{\top}
$$

$\Rightarrow A^{\top}$ is orthogonal.
E9:- Prove that inverse of an orthogonal matrix $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is orthogo -nal.
Sol. Given that $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$

$$
\begin{aligned}
& |A|=\cos ^{2} \theta+\sin ^{2} \theta=1 \neq 0 \\
& A^{-1}=\frac{1}{|A|} \operatorname{Adj} A \\
& A^{-1}=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \left(A^{-1}\right)^{\top}=\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& \left(A^{-1}\right)\left(A^{-1}\right)^{\top}=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{ll}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& \left(A^{-1}\right)\left(A^{-1}\right)^{\top}=I
\end{aligned}
$$

$\therefore A^{-1}$ is an orthogonal.

Eg:- Prove that transpose of an orthognal matrix $A=\left[\begin{array}{ll}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
sol: Given that

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& A^{\top}=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] \\
& \left(A^{\top}\right)\left(A^{\top}\right)^{\top}=\left[\begin{array}{ll}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \\
& \left(A^{\top}\right)\left(A^{\top}\right)^{\top}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
\end{aligned}
$$

$\therefore A^{\top}$ is an cothegonal.

Idempotent Matrix
A Square matrix A is said to be Idempotent if $A=A$.
Eg:-

$$
\begin{gathered}
A=\left[\begin{array}{rrr}
-1 & 1 & -1 \\
3 & -3 & 3 \\
5 & -5 & 5
\end{array}\right] \\
A=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
3 & -3 & 3 \\
5 & -5 & 5
\end{array}\right]\left[\begin{array}{ccc}
-1 & 1 & -1 \\
3 & -3 & 3 \\
5 & -5 & 5
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & -1 \\
3 & -3 & 3 \\
5 & -5 & 5
\end{array}\right]=A . \\
A=A
\end{gathered}
$$

$\therefore A$ is an idempotent matrix.
11) Show that the matrix $\left[\begin{array}{ccc}2 & -2 & -4 \\ -1 & 3 & 4 \\ 1 & -2 & -3\end{array}\right]$ is idempotent.

Nilpotent Matrix:
It A is a square matrix such that $A=0$ where m is a least positive integer then A is called nilpotent.
If m is least + re integer such that $A=0$ then A is called nilpotent of index m.

Eg: -

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right] \\
& A^{2}=\left[\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right]=\left[\begin{array}{ccc}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right] \\
& A^{3}=\left[\begin{array}{ccc}
0 & 0 & 0 \\
3 & 3 & 9 \\
-1 & -1 & -3
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{array}\right]=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& A^{3}=0
\end{aligned}
$$

\therefore A is a nilpotent matrix of index 3 .
(1) St for any real values of a and b the matrix $\left[\begin{array}{cc}a b & b^{2} \\ -a^{2} & -a b\end{array}\right]$ is nilpotent of index 2 .
(2) Sit bur $a \neq 0, b \neq 0$ the matrix $\left[\begin{array}{ccc}a & -b & -(a+b) \\ -a & b & a+b \\ a & -b & -(a+b)\end{array}\right]$ is a nilpotent matrix $\begin{aligned} & \text { index } 2 .\end{aligned}$

Involutary Matrix :-
If A is a square matrix such that $A=I$ (I is unit matrix of order same as that of A) then A is said to be Involutasy

Eg:

$$
\begin{gathered}
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right] \\
A=\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
A=1
\end{gathered}
$$

$\Rightarrow A$ is involutary.
(1) S1T $A=\left[\begin{array}{cc}6 & 5 \\ -7 & -6\end{array}\right]$ is involutary.

Periodic Matrices:
If A is a square matrix such that $A^{n+1}=A$ whore n is a + we integer then A is called a periodic matrix.

If n is the least tee integer satisfying the relation $A^{n+1}=A$ then n is called the period of A.

Eq:-

$$
\begin{gathered}
A=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
A=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{2} & -\frac{1}{2} \\
-\frac{1}{2} & \frac{1}{2}
\end{array}\right] \\
A=A
\end{gathered}
$$

$\therefore A$ is periodic of order one
(1) Ph $A=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is a periodic matrix and its period is 4 .

DETERMINANTS:
Determinant of a 2×2 matrix:
If $A=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ be a square matrix of order 2, then the value ad-be is called the determinant of A. It is denoted by $\operatorname{det} A$ cor $|A|$ i.e. $|A|=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|=a d-b c$.

Eg:- If $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$ then $|A|=4-6=-2$
Minors and cotactors of a square matrix:
(a) The minor of an element $a_{i j}$ in a determinant is obtained by omitting the row and the column of the $a_{i j}$. It is denoted by $M_{i j}$
(b) The cotactor of an element $a_{i j}$ in a determinant is obtained by multiplying its minor with $(-1)^{i+j}$. Where i, j indicate the sow and column of the element $a_{i j}$. It is devoted by $A_{i j}$.

$$
\begin{aligned}
& \text { i.e } A_{i j}=(1)^{i+j} M_{i j} \quad \forall i, j \\
& \text { Eg:- If } A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-2 & 4 & 7 \\
-6 & 5 & 8
\end{array}\right]
\end{aligned}
$$

(i) The minor of an element 4 is

$$
N_{22}=\left|\begin{array}{cc}
1 & 3 \\
-6 & 8
\end{array}\right|=8+18=26
$$

(ii) The cotactor of an element 4 is

$$
A_{22}=(-1)^{2+2} m_{22}=26
$$

Determinant of an nun matrix :
The sum of the products of the elements of any row en any column by its corresponding cotactors is said to be the determinant of a matrix of corder n.

We can expand the determinant in terms of any row or any Column of the matrix.

Thus if $A=\left[a_{i j}\right]_{n \times n}$ then

$$
\begin{aligned}
|A|= & a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}+\cdots+a_{1 n} A_{1 n} \\
= & a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23}+\cdots+a_{2 n} A_{2 n} \\
& =a_{n 1} A_{n 1}+a_{n 2} A_{n 2}+a_{n 3} A_{n 3}+\cdots+a_{n n} A_{n n} \\
= & a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31}+\cdots+a_{n 1} A_{n 1} \\
& =a_{1 n} A_{1 n}+a_{2 n} A_{2 n}+a_{3 n} A_{3 n}+\cdots+a_{n n} A_{n n}
\end{aligned}
$$

Thus if $A=\left[a_{i j}\right]_{3 \times 3}$ then

$$
\begin{aligned}
|A| & =a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\
& =a_{21} A_{21}+a_{22} A_{22}+a_{23} A_{23} \\
& =a_{31} A_{31}+a_{32} A_{32}+a_{33} A_{33} \\
& =a_{11} A_{11}+a_{21} A_{21}+a_{31} A_{31} \\
|A| & =a_{13} A_{13}+a_{23} A_{23}+a_{33} A_{33}
\end{aligned}
$$

It

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& |A|=a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13}
\end{aligned}
$$

Where $A_{11}=(-1)^{1+1}\left|\begin{array}{ll}a_{22} & a_{23} \\ a_{32} & a_{33}\end{array}\right|$

$$
\begin{aligned}
& A_{12}=(-1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right| \\
& A_{13}=(-1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

$$
\therefore|A|=a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
$$

Find the determinant of the matrix $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$
Sol: Given that $A=\left[\begin{array}{ccc}8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3\end{array}\right]$

$$
\begin{aligned}
& |A|=\left|\begin{array}{ccc}
8 & -6 & 2 \\
-6 & 7 & -4 \\
2 & -4 & 3
\end{array}\right| \\
& |A|=8\left|\begin{array}{cc}
7 & -4 \\
-4 & 3
\end{array}\right|-(-6)\left|\begin{array}{cc}
-6 & -4 \\
2 & 3
\end{array}\right|+2\left|\begin{array}{cc}
-6 & 7 \\
2 & -4
\end{array}\right| \\
& \\
& =8(21-16)+6(-18+8)+2(24-14) \\
& |A|
\end{aligned} \begin{aligned}
& \mid A 0-60+20 \\
&|A|=0
\end{aligned}
$$

Note :- (i) If A is a square matrix of order n and k is any scalar then $|K A|=K^{n}|A|$.
(ii) If A is a square matrix of order n, Then $|A|=\left|A^{\top}\right|$.
(iii) If A and B be two square matrices of same crises Then $|A B|=|A||B|$.

Eg: If $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & -1 & 4 \\ 3 & 1 & 2\end{array}\right]$ Then

$$
\begin{aligned}
|A| & =a_{11} A_{11}+a_{12} A_{12}+a_{13} A_{13} \\
& =1(-2-4)+2(4-12)+3(2+3) \\
|A| & =-6+16+15=25 .
\end{aligned}
$$

Adjoint of a Matrix:-
If A is a square matrix of order n, then the transpose of the cotactor matrix of A is said to be the adjoin' of a matrix A. It is denoted by $\operatorname{adj} A$.
Thus if $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the cofactor matrix of

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right] \\
\therefore & \text { Adj } A=\left[\begin{array}{lll}
\text { The cotactor matrix of } A
\end{array}\right]^{\top}=\left[\begin{array}{lll}
A_{11} & A_{12} & A_{13} \\
A_{21} & A_{22} & A_{23} \\
A_{31} & A_{32} & A_{33}
\end{array}\right.
\end{aligned}
$$

Note: - If A is a square matrix of order n, then $A(\operatorname{adj} A)=(\operatorname{adj} A) \cdot A=|A| \cdot I$ Where I is a unit matrix of order n.

Eg:- $A=\left[\begin{array}{ccc}6 & 2 & 4 \\ -2 & -3 & -1 \\ -4 & 1 & 3\end{array}\right]$
contactor of an element $a_{23}=-1$ is $A_{23}=(-1)^{2+3}\left|\begin{array}{cc}6 & 2 \\ -4 & 1\end{array}\right|$

$$
\begin{aligned}
& A_{23}=-(6+8) \\
& A_{23}=-14
\end{aligned}
$$

$$
\begin{aligned}
& A_{31}=-2+12 \\
& A_{31}=10
\end{aligned}
$$

Cotactor of an element $a_{22}=-3$ is $A_{22}=(-1)^{2+2-}\left|\begin{array}{cc}6 & 4 \\ -4 & 3\end{array}\right|$

$$
\begin{aligned}
& A_{22}=18+16 \\
& A_{22}=34
\end{aligned}
$$

cofactor of an element $a_{12}=2$ is $A_{12}=(-1)^{1+2}\left|\begin{array}{cc}-2 & -1 \\ -4 & 3\end{array}\right|$

$$
\begin{aligned}
& A_{12}=-(-6-4) \\
& A_{12}=10
\end{aligned}
$$

Inverse of a Matrix:-
Let A be any square matrix then a matrix B if exists such that $A B=B A=I$ then B is called inverse of A and is denoted by A^{-1}.
Singular matrix:- A square matrix A is said to be singular If $|A|=0$.
Non singular matrix:- A square matrix A is said to be non singular if $|A| \neq 0$.
\rightarrow Thus only non singular matrices possess inverses.

Theorem:- The necessary and sufficient condition for a square. matrix to possess inverse is that $|A| \neq 0$.

Note:- If $|A| \neq 0$ then $A^{-1}:=\frac{1}{|A|}(\operatorname{adj} A)$
Find the inverse of $A=\left[\begin{array}{ccc}7 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right]$
Sol: Given that $A=\left[\begin{array}{ccc}1 & 2 & 1 \\ 0 & 3 & -1 \\ -3 & 4 & -2\end{array}\right]$
We have $A^{\prime}=\frac{1}{|A|}(\operatorname{adj} A)$

$$
\begin{aligned}
|A| & =\left|\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right| \\
& =7(-6+4)-2(0-3)+1(0+9) \\
& =-14+6+9 \\
|A| & =1
\end{aligned}
$$

Cotactor of an element $a_{11}=7$ is $A_{11}=\left|\begin{array}{ll}3 & -1 \\ 4 & -2\end{array}\right|(-1)^{1+1}=-2$
cotactor of an element $a_{12}=2$ is $A_{12}=(-1)^{1+2}\left|\begin{array}{cc}0 & -1 \\ -3 & -2\end{array}\right|=3$
cotactor of an element $a_{13}=1$ is $A_{13}=(-1)^{1+3}\left|\begin{array}{cc}0 & 3 \\ -3 & 4\end{array}\right|=9$
Cofactor of an element $a_{21}=0$ is $A_{21}=(-1)^{2+1}\left|\begin{array}{cc}2 & 1 \\ 4 & -2\end{array}\right|=8$
cotactir of an element $a_{22}=3$ is $A_{22}=(-1)^{2+2}\left|\begin{array}{cc}7 & 1 \\ -3 & -2\end{array}\right|=-11$
contactor do an element $a_{2.3}=-1$ is $A_{23}=(-1)^{2+3}\left|\begin{array}{ll}7 & 2 \\ -3 & 4\end{array}\right|=-34$

Contactor of an element $a_{31}=-3$ is $A_{31}=(-1)^{3+1}\left|\begin{array}{cc}2 & 1 \\ 3 & -1\end{array}\right|=-5$
cotacter of an element $a_{32}=4$ is $A_{32}=(-1)^{3+2}\left|\begin{array}{cc}-1 & 1 \\ 0 & -1\end{array}\right|=7$
contactor of an element $a_{33}=-2$ is $A_{33}=(-1)^{3+3}\left|\begin{array}{cc}-7 & 2 \\ 0 & 3\end{array}\right|=21$

$$
\operatorname{adj} A=[\text { cotactor matrix of } A]^{T}=\left[\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right]
$$

We have $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$

$$
\therefore \quad A=\left[\begin{array}{rrr}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right]
$$

Matrix inversion Method:-
The system of linear equations are.

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \\
a_{2} x+b_{2} y+c_{2} z=d_{2} \tag{1}\\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\}
$$

The matrix tom ot given system of equations is $A x=B$.
where. $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
The solution of the given system is $x=A^{-1} B$.
So le $7 x+2 y+z=21, \quad 3 y-z=5,-3 x+4 y-2 z=-1$, by Matrix inversion method.
sol:-
Given that

$$
\begin{aligned}
7 x+2 y+z & =21 \\
3 y-z & =5 \\
-3 x+4 y-2 z & =-1
\end{aligned}
$$

The matrix form of given system of equations is $A X=B$.

$$
\text { Where } A=\left[\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right] \quad x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad B=\left[\begin{array}{c}
21 \\
5 \\
-1
\end{array}\right]
$$

The solution of system of equations by matrix inversion method is $x=A^{-1} B$

Where $A^{-1}=\frac{1}{|A|} \operatorname{adj} A$.

$$
|A|=\left|\begin{array}{ccc}
7 & 2 & 1 \\
0 & 3 & -1 \\
-3 & 4 & -2
\end{array}\right|=7(-6+4)-2(0-3)+1(0+9)=1
$$

$$
\begin{aligned}
& \text { cofactor matrix of } A=\left[\begin{array}{ccc}
-2 & 3 & 9 \\
8 & -11 & -34 \\
-5 & 7 & 21
\end{array}\right] \\
& \operatorname{adj} A=[\text { cotractor matrix of } A]^{T}=\left[\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right]
\end{aligned}
$$

We have $\hat{A}=\frac{1}{|A|} \operatorname{adj} A$

$$
\begin{aligned}
& \therefore A^{-1}=\left[\begin{array}{ccc}
2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right] \\
& x=A^{-1} B \\
& x=\left[\begin{array}{ccc}
-2 & 8 & -5 \\
3 & -11 & 7 \\
9 & -34 & 21
\end{array}\right]\left[\begin{array}{c}
2-1 \\
5 \\
-1
\end{array}\right] \\
& x=\left[\begin{array}{c}
-42+40+5 \\
63-55-7 \\
189-170-21
\end{array}\right] \\
& x=\left[\begin{array}{c}
3 \\
1 \\
-2
\end{array}\right]
\end{aligned}
$$

Which is the solution of the given system of equy.

CRAMER'S RULE (DETERMINANT METHOD):-
The given system of linear equations are

$$
\left.\begin{array}{l}
a_{1} x+b_{1} y+c_{1} z=d_{1} \tag{1}\\
a_{2} x+b_{2} y+c_{2} z=d_{2} \\
a_{3} x+b_{3} y+c_{3} z=d_{3}
\end{array}\right\}
$$

The matrix form of the system (1) is $A X=B$.
Where $A=\left[\begin{array}{lll}a_{1} & b_{1} & c_{1} \\ a_{2} & b_{2} & c_{2} \\ a_{3} & b_{3} & c_{3}\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{l}d_{1} \\ d_{2} \\ d_{3}\end{array}\right]$
The solution of the system (i) is given by

$$
\begin{aligned}
\text { The Solution of the } & =\frac{\Delta_{1}}{\Delta} \quad y=\frac{\Delta_{2}}{A} \quad 2=\frac{\Delta_{3}}{\Delta} \quad(\Delta \neq 0) \\
\text { Where } \Delta & =|A|=\left|\begin{array}{lll}
a_{1} & b_{1} & c_{1} \\
a_{2} & b_{2} & c_{2} \\
a_{3} & b_{3} & c_{3}
\end{array}\right| \quad \Delta_{1}=\left|\begin{array}{lll}
d_{1} & b_{1} & c_{1} \\
d_{2} & b_{2} & c_{2} \\
d_{3} & b_{3} & c_{3}
\end{array}\right| \\
\Delta_{2} & =\left|\begin{array}{lll}
a_{1} & d_{1} & c_{1} \\
a_{2} & d_{2} & c_{2} \\
a_{3} & d_{3} & c_{3}
\end{array}\right| \quad \Delta_{3}=\left|\begin{array}{lll}
a_{1} & b_{1} & d_{1} \\
a_{2} & b_{2} & d_{2} \\
a_{3} & b_{3} & d_{3}
\end{array}\right|
\end{aligned}
$$

We notice that $\Delta_{1}, \Delta_{2}, \Delta_{3}$ are the determinants obtained from Δ on replacing the $2^{s t}, 2^{\text {nd }}$ and $3^{r d}$ columns by d's i.e $\left(d_{1}, d_{2} d_{3}\right)$ respectively.
Solve $-x+3 y-2 z=5,4 x-y-3 z=-8,2 x+2 y-5 z=7$ by cranes's rule.
Sol: Given that $-x+3 y-2 z=5,4 x-y-3 z=-8 \quad 2 x+2 y-5 z=7$.
The matrix form of given system of eau's is $A x=B$
Where $A=\left[\begin{array}{ccc}-1 & 3 & -2 \\ 4 & -1 & -3 \\ 2 & 2 & -5\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}5 \\ -8 \\ 7\end{array}\right]$

The solution of linear system of equations by cramers rule is given by $x=\frac{\Delta_{1}}{\Delta}, y=\frac{\Delta_{2}}{\Delta} \quad z=\frac{\Delta_{3}}{\Delta}$.

$$
\begin{aligned}
& \Delta=|A|=\left|\begin{array}{ccc}
-1 & 3 & -2 \\
4 & -1 & -3 \\
2 & 2 & -5
\end{array}\right|=-1(5+6)-3(-20+6)-2(8+2) \\
& \Delta=|A|=-11+42-20=11 \\
& \Delta_{1}=\left|\begin{array}{ccc}
5 & 3 & -2 \\
-8 & -1 & -3 \\
7 & 2 & -5
\end{array}\right|=5(5+6)-3(40+21)-2(-16+7) \\
& \Delta_{2}=\left|\begin{array}{rrr}
-1 & 5 & -2 \\
4 & -8 & -3 \\
2 & 7 & -5
\end{array}\right|=-1(40+21)-5(-20+16)-2(28+16) \\
& \Delta_{1}=55-183+18=-110 \\
& \Delta_{3}=\left|\begin{array}{rrr}
-1 & 5 & 5 \\
4 & -1 & -8 \\
2 & 2 & 7
\end{array}\right|=-1(-7+16)-3(28+16)+5(8+2) \\
& \Delta_{2}=-70-88=-79 \\
& A_{3}=-9-132+50 \\
& A_{3}=-91
\end{aligned}
$$

$$
x=\frac{\Delta_{1}}{\Delta}=\frac{-110}{11}=-10 \quad y=\frac{\Delta_{2}}{\Delta}=\frac{-79}{11} \quad z=\frac{\Delta_{3}}{\Delta}=-\frac{91}{11}
$$

\therefore The solution of the given system of equations is

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
-10 \\
-79 / 11 \\
-91 / 11
\end{array}\right]
$$

Sub Matrix: - A matrix obtained by deleting a row or a column or both of a given matrix is called its sub matrix of the given matrix.
Eg:- Let $A=\left[\begin{array}{ccccc}1 & 3 & -4 & 7 & 8 \\ 9 & 8 & 2 & 8 & 7 \\ 5 & 6 & 9 & 5 & 3\end{array}\right]_{3 \times 5}$
Then $\left[\begin{array}{cccc}1 & 3 & 7 & 8 \\ 9 & 8 & 8 & 7 \\ 5 & 6 & 5 & 3\end{array}\right]$ is a sub matrix of A obtained by deleting third column from A.
Similarly $\left[\begin{array}{lll}1 & 3 & 8 \\ 9 & 8 & 7\end{array}\right]$ is a sub matrix of A obtained by deleting third row and $3^{\text {rod }}$, $4^{\text {th }}$ column from A.

Minor of a matrix:-
Let A be an $m \times n$ matrix. The determinant of a square sub matrix of A is called a minor of the matrix.
If the order of the square sub matrix is t then its determinant is called a minor of order.
Eg:- $A=\left[\begin{array}{ccc}1 & 3 & 5 \\ 7 & 9 & 2 \\ 4 & 5 & 8 \\ 6 & 0 & 1\end{array}\right]_{4 \times 3}$ be a matrix.
We have $B=\left[\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right]$ be a sub matrix of order 2 .
$|B|=9-21=-12$ is a minor of corder 2 .

Rank of a Matrix
Let A be an $m \times n$ matrix. If A is a null matrix. we define it Rank to be zero. If A is not null matrix. We say that r is the rank of A :
if (i) Every $(\gamma+1)^{\text {th }}$ order minor of A is zero.
 not zero

Rank of A is denoted by $f(A)$.
Note: - (1) It can be noted that the rank of a non zero matrix is the order of the highest order non zero minot of A (2) Rank of a matrix is unique.
(3) Every matrix will have a rank.
(4) If A is a matrix of order $m \times n$ then

$$
\operatorname{Rank} \text { of } A=P(A) \leq \min \{m, n\}
$$

Eg:- $A=\left[\begin{array}{lll}1 & 3 & 5 \\ 7 & 9 & 12\end{array}\right]_{2 \times 3}$
Given matrix is of order 2×3.

$$
\begin{array}{r}
P(A) \leq \min \{2,3\} \\
\text { ie } \quad P(A) \leq 2
\end{array}
$$

$\left[\begin{array}{ll}1 & 3 \\ 7 & 9\end{array}\right]$ be sub matrix of order 2 of the given matrix.

$$
\left|\begin{array}{cc}
1 & 3 \\
7 & 9
\end{array}\right|=9-21=-12 \neq 0
$$

(5) If $P(A)=6$ then every minor of A of order $x+1$ or more. is zero.

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right] \\
& |A|=\left|\begin{array}{lll}
1 & 2 & 3 \\
2 & 1 & 0 \\
0 & 1 & 2
\end{array}\right|=1(2-0)-2(4-0)+3(2-0)=0
\end{aligned}
$$

$|A|=0$ i.e A is singular

$$
\Rightarrow P(A)<3
$$

consider the minor of order 2, $\left|\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right|=1-4=-3 \neq 0$.

$$
\therefore P(A)=2
$$

(6) Rank of the identity matrix I_{n} is n

Eg:- $I=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ then $f(f)=2$.
(1) If A is non singular matrix of order n then $P(A)=n$.

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right] \\
& |A|=\left|\begin{array}{ll}
1 & 3 \\
4 & 2
\end{array}\right|=2-12=-10 \neq 0
\end{aligned}
$$

$\therefore|A| \neq 0$ ie A is non singular

$$
\therefore \quad P(A)=2
$$

(8) If A is a matrix, A^{\top} is transpose of matrix A Then $P(A)=P\left(A^{\top}\right)$

$$
\text { Eg:- } \quad A=\left[\begin{array}{ccc}
1 & 2 & -5 \\
-3 & 4 & 6
\end{array}\right]
$$

A is rectangular matrix of codes 2×3.

$$
\begin{aligned}
& P(A) \leq \min \{2,3\} \\
& P(A) \leq 2
\end{aligned}
$$

Consider the minor of order 2, $\left|\begin{array}{cc}1 & 2 \\ -3 & 4\end{array}\right|=4+6=10 \neq 0$

$$
\begin{gathered}
\therefore P(A)=2 \\
A^{\top}=\left[\begin{array}{rr}
1 & -3 \\
2 & 4 \\
-5 & 6
\end{array}\right]
\end{gathered}
$$

A^{T} is rectangular matrix of corder 3×2.

$$
\begin{aligned}
& P\left(A^{\top}\right) \leq \min \{3,2\} \\
& P\left(A^{\top}\right) \leq 2
\end{aligned}
$$

Consider the minor of codes 2, $\left|\begin{array}{cc}1 & -3 \\ 2 & 4\end{array}\right|=4+6=10 \neq 0$.

$$
\begin{aligned}
& \therefore P(A)=2 \\
& \therefore P(A)=P\left(A^{\top}\right)
\end{aligned}
$$

(9) If A is singular matrix of order n then $P(A)<n$.

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right] \\
& |A|=\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=4-4=0
\end{aligned}
$$

A is singular matrix

$$
P(A)<2
$$

A is not null matrix

$$
\therefore \quad P(A)=1
$$

(10) The Rank of non zero row matrix is 1 .

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{lllll}
1 & 3 & 5 & 7 & 9
\end{array}\right]_{1 \times 5} \\
& P(A)=1
\end{aligned}
$$

(ii) The Rank of non zero column matrix is 1 .

$$
\text { Eg:- } A=\left[\begin{array}{l}
2 \\
4 \\
6 \\
8
\end{array}\right]_{4 \times 1} \quad P(A)=1
$$

(12.) The rank of matrix is $\geqslant 8$ it there is atteast one minor of $r^{\text {th }}$ corder which is not equal to zero.
…… Find the value of k such that the rank of $\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10\end{array}\right]$ is 2.
sol. Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & k & 7 \\ 3 & 6 & 10\end{array}\right]$
Given that $P(A)=2$.
So every minor of order. greater than 2 is zero

$$
1(10 k-42)-2(20-8-1)+7(12-3 k)=0
$$

$$
\therefore \quad k=4
$$

\rightarrow Find the rank of a matrix $A=\left[\begin{array}{cccc}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2\end{array}\right]$
Sol:: Given that $A=\left[\begin{array}{cccc}0 & 1 & -3 & 1 \\ 1 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2\end{array}\right]_{3 \times 4}$
A is rectangular matrix of order 3×4

$$
\begin{aligned}
& P(A) \leq \min \{3,4\} \\
& P(A) \leq 3
\end{aligned}
$$

$$
=0-1(0-3)-3(1)=0
$$

$$
1(2-0)+3(0-1)+1(0-1)=-2 \neq 0 .
$$

One minor if order 3 is not zero.

$$
\therefore P(A)=3
$$

\rightarrow Find the rank of matrix $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$
Sol: Git $A=\left[\begin{array}{ccc}3 & -1 & 2 \\ -6 & 2 & 4 \\ -3 & 1 & 2\end{array}\right]$
A is a square matrix of coder 3

$$
\begin{aligned}
& P(A) \leq 3 \\
& |A|=\left|\begin{array}{ccc}
3 & -1 & 2 \\
-6 & 2 & 4 \\
-3 & 1 & 2
\end{array}\right|=3(4-4)+1(-12+12)+2(-6+6)=0
\end{aligned}
$$

Consider the minor of order 2, $\left|\begin{array}{cc}-1 & 2 \\ 2 & 4\end{array}\right|=-4-4=-8 \neq 0$.
one minor of order 2 is not equal to zero.

$$
\therefore P(A)=2
$$

\rightarrow Find the rank of matrix $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$
Sol: Glt $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 4 & 4 \\ 7 & 10 & 12\end{array}\right]$
A is a square matrix of order 3

$$
\begin{aligned}
& P(A) \leq 3 . \\
& |A|=\left|\begin{array}{ccc}
1 & 2 & 3 \\
3 & 4 & 4 \\
7 & 10 & 12
\end{array}\right|=1(48-40)-2(36-2-8)+3(30-28) \\
& =8-16+6=-2 \neq 0 \\
& |A| \neq 0 \\
& \therefore P(A)=3 .
\end{aligned}
$$

sol:

$$
\text { Given that } A=\left[\begin{array}{ccc}
3-x & 2 & 2 \\
2 & 4-x & 1 \\
-2 & 4 & -x
\end{array}\right]
$$

A is singular $\Rightarrow|A|=0$

$$
\begin{aligned}
& \left|\begin{array}{ccc}
3-x & 2 & 2 \\
2 & 4-x & 1 \\
-2 & 4 & -1-x
\end{array}\right|=0 \\
& R_{2}-R_{2}+R_{3} \\
& \left|\begin{array}{ccc}
3-x & 2 & 2 \\
0 & -x & -x \\
-2 & -4 & -1-x
\end{array}\right|=0 \\
& -x\left|\begin{array}{ccc}
3-x & 2 & 2 \\
0 & 1 & 1 \\
-2 & -4 & -1-x
\end{array}\right|=0 \\
& C_{3} \rightarrow c_{3}-c_{2} \\
& -x\left|\begin{array}{ccc}
3-x & 2 & 0 \\
0 & 1 & 0 \\
-2 & -4 & -3-x
\end{array}\right|=0
\end{aligned}
$$

Expand it by using $3^{\text {rd }}$ column

$$
\begin{aligned}
& x(3-x)^{2}=0 \\
& x=0,3
\end{aligned}
$$

Elementary transtormations or operations on a matrix :-
(a) There are three types of elementary row operations
 interchanged, it is denoted by $R_{i} \leftrightarrow R_{j}$

Eg:-

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right] } \\
& R_{2} \leftrightarrow R_{3} \\
& {\left[\begin{array}{ccc}
1 & 0 & 7 \\
4 & 6 & 3 \\
2 & 5 & -3
\end{array}\right] }
\end{aligned}
$$

(ii) Multiplication of each element of a row with non zero scalar:If $i^{\text {th }}$ row is multiplied with k then it is denoted by $R_{i} \rightarrow R_{i}(k)$ Eg:-

$$
\begin{array}{r}
A=\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right] \\
R_{2} \rightarrow \\
2 R_{2} \\
{\left[\begin{array}{ccc}
1 & 0 & 7 \\
4 & 10 & -6 \\
4 & 6 & 3
\end{array}\right]}
\end{array}
$$

(iii) Multiplying every element of a row which is a non zero scalar and adding to the corresponding elements of another row:If the elements of $i^{\text {th }}$ row are multiplied with k and added to the corresponding elements of ; th row then it is denoted by

$$
\begin{array}{rl}
R_{j} \rightarrow R_{j}+k R_{i} & E g: A= \\
& {\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right]} \\
R_{2} \rightarrow R_{2}-2 R_{1} \\
& {\left[\begin{array}{ccc}
1 & 0 & 7 \\
0 & 5 & -17 \\
4 & 6 & 3
\end{array}\right]}
\end{array}
$$

(b) There are three types of elementary column operations.
(i) Interchange of two columns: If $i^{\text {th }}$ column and $j^{\text {th }}$ column are interchanged, it is denoted by $c_{i} \leftrightarrow C_{j}$

Eg:-

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right] \\
C_{1} & \Leftrightarrow C_{2} \\
& \sim\left[\begin{array}{rrr}
0 & 1 & 7 \\
5 & 2 & -3 \\
6 & 4 & 3
\end{array}\right]
\end{aligned}
$$

(ii) Multiplication of each element of a column with a non zero scalar

If $i^{\text {th }}$ sow is multiplied with k then it is denoted by $c_{i} \rightarrow c_{i}(k)$.
Eg:

$$
\begin{aligned}
A= & {\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right] } \\
& c_{2} \rightarrow c_{2}(2) \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 10 & -3 \\
4 & 12 & 3
\end{array}\right]
\end{aligned}
$$

(iii) Multiplying every element of a column which is a non zero scalar and adding to the corresponding elements of another column:If the elements of $i^{\text {th }}$ colum are multiplied with k and added to the corresponding elements of $j^{\text {th }}$ column then it is denoted by.

$$
\begin{aligned}
C_{j} \rightarrow C_{j}+K C_{i} \quad A= & {\left[\begin{array}{ccc}
1 & 0 & 7 \\
2 & 5 & -3 \\
4 & 6 & 3
\end{array}\right] } \\
& c_{3} \rightarrow C_{3}-7 C_{1} \\
& \stackrel{\left[\begin{array}{ccc}
1 & 0 & 0 \\
2 & 5 & -17 \\
4 & 6 & -25
\end{array}\right]}{ } \quad l
\end{aligned}
$$

Equivalence of Matrices:
If a matrix B is obtained from a matrix A after a finite chain of elementary transtormations then B is said to be equivalent to A.
Symbolically it is denoted as $B \sim A$
Eg:-

$$
\begin{aligned}
A= & {\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 7 \\
3 & 5 & 9
\end{array}\right] } \\
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& \sim\left[\begin{array}{lll}
1 & 2 & 3 \\
0 & 0 & 1 \\
3 & 5 & 9
\end{array}\right]=B
\end{aligned}
$$

Matrix B obtained from a matrix A after elementary row trans formation. So the matrix B is said to be equivalent to A. Zero row and Non zero row:-
If all the elements in a row of a matrix are zero's then it is called zero row and if there is at east one zero element in a row then it is called a non zero row.

Eg:- $\left[\begin{array}{cccc}1 & 2 & 3 & 4 \\ 0 & 1 & 7 & 9 \\ 0 & 0 & 3 & 5\end{array}\right] \rightarrow$ Non zero row

Echelon form of a matrix : -
A Matrix is said to be Echelunturn it the following three properties are satisfied.
(i) zero rows if any must be below the non zero rows.
(ii) The first non zero element of a non zero row is equal to one
(iii) The no. of zeros before the non zero element of a row is less than such zeros in the next row.

Note: - The condition (ii) is not compulsory.
Result: - The no. ot non zero rows in a echelon form of A is the rank of A.

Eg:- $\quad A=\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3\end{array}\right]$ is in echelon form since.
it satisfies all the three.
conditions of the echelon form

$$
\therefore P(A)=3=\text { No. of non zero sous. }
$$

Working procedure to reduce a matrix into echelon form:-
Case (i):-
step 1:- If $a_{11} \neq 0$, by using a_{11} position, make a_{2-1} and a_{31} positions as zero. Here we apply row operations only.

$$
\cdots\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{1} & a_{23}^{1} & a_{24}^{1} \\
0 & \rightarrow a_{32}^{1} & a_{33}^{1} & a_{34}^{1}
\end{array}\right]
$$

Step 2-: If $a_{22}^{\prime} \neq 0$, by using a_{22}^{1} position, wake a_{32}^{\prime} position as zero. Here we apply row operations only.

$$
\left[\begin{array}{llll}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & a_{24}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime} & a_{34}^{\prime \prime}
\end{array}\right]
$$

Which is in echelon form.
(or)

$$
P(A)=3 \text { if } a_{33}^{\prime \prime} \neq 0 \text { or } a_{34}^{\prime \prime} \neq 0
$$

Case (ii):consider the matrix

step 1:- If $a_{11} \neq 0$, by using a_{11} position make a_{21}, a_{31} and a_{41} positions as zero. Here we apply row operations only

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & a_{24}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & a_{34}^{\prime} \\
0 & a_{42}^{\prime} & a_{43}^{\prime} & a_{44}^{\prime}
\end{array}\right]
$$

step 2:- If $a_{22}^{1} \neq 0$, by using a_{22}^{1} position make a_{32}^{\prime} and a_{42}^{1} positions as zero. Here we apply row operations only.

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & a_{24}^{\prime} \\
0 & 0 & a_{33}^{\prime \prime} & a_{34}^{11} \\
0 & 0 & >a_{43}^{11} & a_{444}^{\prime \prime}
\end{array}\right]
$$

step 3:- It $a_{33}^{11} \neq 0$ by using a_{33}^{11} position make a_{43}^{11} position as zero. Here we apply row operation only

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & a_{13} & a_{14} \\
0 & a_{22}^{1} & a_{23}^{1} & a_{24}^{\prime} \\
0 & 0 & a_{33}^{11} & a_{34}^{11} \\
0 & 0 & 0 & a_{44}^{\prime \prime}
\end{array}\right]
$$

Which is in echelon form

$$
P(A)=H \quad \text { if } a_{44}^{\prime \prime \prime} \neq 0
$$

(ox) $P(A)=3$ if $a_{44}^{11}=0$.
\ldots Find the rank of matrix $A=\left[\begin{array}{llll}1 & 2 & 3 & 1 \\ 1 & 3 & 3 & 2 \\ 2 & 4 & 3 & 3\end{array}\right]$ by reduce it to

Sol:- Given that

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 1 \\
01 & 3 & 3 & 2 \\
2 & 4 & 3 & 3 \\
1 & 1 & 1 & 1
\end{array}\right]
$$

Now we reduce the matrix A into echelon form by applying eleme - ntary row operations only.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}-2 R_{1}, R_{4} \rightarrow R_{4}-R_{1} \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & -3 & 1 \\
0 & -1 & -2 & 0
\end{array}\right]} \\
& R_{4} \rightarrow R_{4}+R_{2} \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & -3 & 1 \\
0 & 0 & -2 & 1
\end{array}\right]} \\
& R_{4} \rightarrow 3 R_{4}-2 R_{3} \\
& {\left[\begin{array}{cccc}
1 & 2 & 3 & 1 \\
0 & 1 & 0 & 1 \\
0 & 0 & -3 & 1 \\
0 & 0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Which is in echelon form.
$f(A)=$ No. of non zero rows of the last equivalent to A $=4$

$$
\therefore \quad P(A)=4
$$

Show that the equations $x-3 y-8 z=-10,3 x+y-4 z=0, \quad 2 x+5 y+6 z=13$ are consistent and solve the same.

Sol:- Given that $x-3 y-8 z=-10,3 x+y-4 z=0,2 x+5 y+6 z=13$
There are $m=3$ eqns in $n=3$ unknowns x, y, z.
The matrix equation of the given system of equ's is $A X=B$.
Where $A=\left[\begin{array}{rrr}1 & -3 & -8 \\ 3 & 1 & -4 \\ 2 & 5 & 6\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}-10 \\ 0 \\ 13\end{array}\right]$
The augmented matrix $[A \mid B]=\left[\begin{array}{rrr|r}1 & -3 & -8 & -10 \\ 3 & 1 & -4 & 0 \\ 2 & 5 & 6 & 13\end{array}\right]$
Now reduce the augmented matrix $[A \mid B]$ to echelon form by using E-row operations only and determine the $P(A)$ and $P([A \mid B])$ respectively.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-3 R_{1} \quad R_{3} \rightarrow R_{3}-2 R_{1} \\
& \sim\left[\begin{array}{ccc|c}
1 & -3 & -8 & -10 \\
0 & 10 & 20 & 30 \\
0 & 20 & 33
\end{array}\right] \\
& \sim\left[\begin{array}{rrr|r}
1 & -3 & -8 & -10 \\
0 & 10 & 20 & 30 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which is in echelon form.
Hence $P(A)=2=$ The no. of non zero rows of equivalent A. $P([A \mid B])=2=$ The no. of non zero rows of equivalent to [A|B]

$$
P(A)=P([A \mid B])=2 \angle 3 \text { (No. of unknowns). }
$$

Sothat the system is consistent and possesses an infinite no.of sol's.
To determine these solutions we have to assign arbitrary values

Discuss for what values of λ, μ the simultaneous equations $x+y+z=6, x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have (i) No solution
(ii) a unique solution (iii) an infinite no of solutions.

Sol: Given that $x+y+z=6, \quad x+2 y+3 z=10, \quad x+2 y+\lambda z=d$.
There are $m=3$ equations in $n=3$ unknowns x, y and z.
The matrix term of the given system of equations is $A x=B$.
Where $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 2 & \lambda\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}6 \\ 10 \\ \mu\end{array}\right]$

Now reduce the augmented matrix [A|B] to echelon form by using E-row operations only and determine ranks of A and $[A \mid B$] respect -rely.

- very.

$$
R_{2} \rightarrow R_{2}-R_{1}, \quad R_{3} \rightarrow R_{3}-R_{1}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & -1 & \lambda-1 & \mu-6
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& {\left[\begin{array}{ccc|c}
1 & 1 & 1 & 6 \\
0 & 1 & 2 & 4 \\
0 & 0 & \lambda-3 & \mu-10
\end{array}\right]}
\end{aligned}
$$

Which is in echelon form.
Case li):- No solution
Suppose $\lambda=3$ and $\mu \neq 0$, then $P(A)=2$ and $P([A \mid B])=3$

$$
P(A) \neq P([A \mid B])
$$

\therefore The system is inconsistent
\therefore It has no solution.

Now the equivalent matrix eqn. of $A X=B$ is.

$$
\left[\begin{array}{ccc}
2 & -1 & 3 \\
0 & 4 & -8 \\
0 & 0 & -8
\end{array}\right]\left[\begin{array}{c}
\sin \alpha \\
\cos \beta \\
\tan \gamma
\end{array}\right]=\left[\begin{array}{c}
3 \\
-4 \\
0
\end{array}\right]
$$

The corresponding system of equys is

$$
\begin{gathered}
2 \sin \alpha-\cos \beta+3 \tan \gamma=3 \\
4 \cos \beta-8 \tan \gamma=-4 \\
-8 \tan \gamma=0 \Rightarrow \gamma=0 \\
\cos \beta=\frac{-4+\tan \gamma}{4} \\
\cos \beta=-1 \Rightarrow \beta=\pi \\
\sin \alpha=\frac{3+\cos \beta-3 \tan \gamma}{2} \\
\sin \alpha=1 \Rightarrow \alpha=\frac{\pi}{2}
\end{gathered}
$$

Hence $\alpha=\frac{\pi}{2}, \beta=\pi$ and $r=0$ is the sol. of the system.

SYSTEM OF NON HOMOGENEOUS LINEAR EQUATIONS

1. Test for consistency and hence solve $x+y+z=6, x-y+2 z=5,3 x+y+z=8$ $2 x-2 y+3 z=7 \quad$ Ans:- $x=1 \quad y=2 \quad z=3$.

2 Test fur consistency $3 x+3 y+2 z=1, x+2 y-4=0,10 y+3 z=-2$, $2 x-3 y-z=5 \quad$ Ans: $\quad x=2 \quad y=1 \quad z=-4$.

3 It consistent, solve $x+y+z+t=4, x-z+2 t=2, y+z-3 t=-1, x+2 y-z+t=3$. Ans: $x=y=z=t=1$.

4 Solve completely the equations $3 x-2 y-\omega=2, \quad 2 y+2 z+w=1, y+2 z+w=1$ $x-2 y-3 z+2 w=3 \quad$ Ans:- $x=w=1, y=z=0$.
5 show that the equations $x+2 y-z=3, \quad 3 x-y+2 z=1,2 x-2 y+3 z=2, x-y+z=-1$ are consistent and solve them $x=-1, y=4, z=4$.

6 Solve the system for x, y and $z, \frac{1}{x}+\frac{3}{y}+\frac{4}{z}=30, \frac{3}{x}+\frac{2}{y}=\frac{1}{z}=9$, and $\frac{2}{x}-\frac{1}{y}+\frac{2}{z}=10$. Ans: $x=\frac{1}{2}, y=\frac{1}{4}, z=\frac{1}{5}$.
\rightarrow solve the following system of non linear equations tor the unknown angles d, β an r where $0 \leq \alpha \leq 2 \pi, 0 \leq \beta \leq 2 \pi$ and $0 \leq r<\pi$.
$2 \sin \alpha-\cos \beta+3 \tan \gamma=3,4 \sin \alpha+2 \cos \beta-2 \tan \gamma=2,6 \sin \alpha-3 \cos \beta+\tan \gamma=9$. Ans:- $\alpha=\frac{\pi}{2}, \beta=\pi, \gamma=0$.
8 Determine the values of λ tor which the system $3 x-y+\lambda z=0,2 x+y+z=2$, $x-2 y-\lambda z=-1$ will tail to have a unique solution. For what value of x are the equations consistent. Ans: $\lambda=-\frac{7}{2}$, No solution.

9 For what values of a and b the equations $x+2 y+3 z=8,2 x+y+3 z=13$ $3 x+4 y-a z=b$ have. (i) No solution (ii) A unique solution (iii) An infinite no. ot solutions.
10. Solve the system it consistent $x+y+z=-3,3 x+y-2 z=-2,2 x+4 y+7 z=7$ are inconsistent.

SYSTEM OF NON HOMOGENEOUS LINEAR EQUATIONS.
1 Are the following equations consistent, it so solve them.

$$
\begin{aligned}
& x_{1}-x_{2}+x_{3}-x_{4}+x_{5}=1, \quad 2 x_{1}-x_{2}+3 x_{3}+4 x_{5}=2, \quad 3 x_{1}-2 x_{2}+2 x_{3}+x_{4}+x_{5}=1 \\
& x_{1}+x_{3}+2 x_{4}+x_{5}=0 . \quad \text { Ans: } x_{4}=k_{1} \quad x_{5}=k_{2}, \quad x_{3}=1+k_{1}-2 k_{2} \\
& x_{2}=-1-3 k_{1}, x_{1}=-1+3 k_{1}+k_{2} .
\end{aligned}
$$

2 Solve the system completely $x+y+z=1, x+2 y+4 z=\alpha, x+4 y+10 z=\alpha^{2}$ Ans:- $\alpha=1, x=1+2 k_{1}, y=-3 k_{1}, z=k_{1} ; \alpha=2, x=2 k_{2}, y=1-3 k_{2}, z=k_{2}$.
3 show that the equations $-2 x+y+z=a, x-2 y+z=b, x+y-2 z=c$ have. no solution unless $a+b+c=0$, in which case, they have intrinitely many solution. Find these solutions when $a=1, b=1, c=-2$. Ans:- $x=k-1, y=k-1, z=k$.
4 Find tor what values of λ, the set of equations $2 x-3 y+6 z-5 t=3$, $y-4 z+t=1,4 x-5 y+8 z-9 t=\lambda$ has (i) No solution (ii) Intinite number of solutions and find the solution of the equations when they are consistent.

Ans:- (1) $\lambda \neq 7$
(ii) $\lambda=7, x=3 k_{1}+k_{2}+3, y=4 k_{1}-k_{2}+1, z=k_{1}, t=k_{2}$

5 show that if $\lambda \neq 0$, the system of equations $2 x+y=a, x+\lambda y-z=b, y+2 z=c$ has a unique solution tor eves value of a, b, c. If $x=0$, determine the relation satistied by a, b, c such that the system is consistent. Find the solution by taking $x=0, a=1, b=1, c=-1$. Ans: $x=1+k_{1}, y=-1-2 k_{1}, 2=-k_{1}$.

6 Find the value of λ tor which the system of equations $3 x-y+4 z=3$, $x+2 y-3 z=-2,6 x+5 y+\lambda z=-3$ will have infinite number of solutions and Solve them with the same λ value. Ans: $-x=\frac{4-5 k}{7}, y=\frac{13 k-9}{7}, z=k$.
7 Show that the equations $4 x-y+6 z=16, x-4 y-3 z=-16,2 x+7 y+12 z=48$. $5 x-5 y+3 z=0$ are consistent and solve the same Ans: $z=k, y=\frac{16}{3}-\frac{16}{5} k$, $x=\frac{16}{3}-\frac{9}{5} k$.
8 Solve $u+2 v+2 w=1, \quad 2 u+v+w=e, \quad 3 u+2 v+2 w=3, \quad v+w=0$ Ans: $-u=1, \quad v=-c, w=c$.

Method of Factorization $[1-U$ De Composition Method $]$.
(Triangularisation):-
This method is based on the fact that a square matrix A can be factorized into the form LU where L is the unit-lower triangular matrix and U is the upper triangular matrix. Here all principal minors of A must be non singular. This factorisation if it exists, is unique.
consider a system of linear equations $a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1}$

$$
\begin{aligned}
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{aligned}
$$

Which can be written in the matrix form $A X=B$ - (1).
Where $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
let $A=L U$-(2).
Where $L=\left[\begin{array}{ccc}1 & 0 & 0 \\ 1_{21} & 1 & 0 \\ 131 & 1_{32} & 1\end{array}\right]$ is the unit lower triangular matrix.
$v=\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$ is an upper triangular matrix.
Then from (1) and (2) $L U X=B$ - (3)
Put $u x=y$ —(4) Where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$.
Then (3) can be written as $L Y=B$ (5).

$$
(5) \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
1_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] .
$$

$$
\begin{aligned}
y_{1} & =b_{1} \\
1_{21} y_{1}+y_{2} & =b_{2} \\
l_{31} y_{1}+1_{32} y_{2}+y_{3} & =b_{3}
\end{aligned}
$$

This can be solved for y_{1}, y_{2}, y_{3} by froward substitution
Then (4) $\Rightarrow U x=Y$.

$$
\begin{array}{r}
{\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
u_{2} \\
y_{3}
\end{array}\right]} \\
u_{11} x_{1}+u_{12} x_{2}+u_{13} x_{3}=y_{1} \\
u_{22} x_{2}+u_{23} x_{3}=y_{2} \\
u_{33} x_{3}=y_{3} .
\end{array}
$$

Which can be solved for x_{1}, x_{2}, and x_{3} by back ward substi -rotation.

Computation of Lower and Upper triangular matrices L and V :

From equation (2) we have

$$
\begin{aligned}
& L u=A \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
d_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
l_{21} u_{11} & d_{21} u_{12}+u_{22} & d_{21} u_{13}+u_{23} \\
d_{31} u_{11} & d_{31} u_{12}+l_{32} u_{22} & d_{31} u_{13}+d_{32} u_{23}+u_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]}
\end{aligned}
$$

Now equating the corrosponding elements on both sides, we get

$$
\begin{aligned}
& u_{11}=a_{11} \quad u_{12}=a_{12} \quad u_{13}=a_{13} \\
& l_{21} u_{11}=a_{21} \Rightarrow l_{21}=\frac{a_{21}}{u_{11}}=\frac{a_{21}}{a_{11}} .
\end{aligned}
$$

$$
\begin{aligned}
& l_{31} u_{11}=a_{31} \Rightarrow u_{31}=\frac{a_{31}}{u_{11}}=\frac{a_{31}}{a_{11}} \\
& d_{21} u_{12}+u_{22}=a_{22} \Rightarrow u_{20}=a_{22}-l_{21} u_{12} \\
& u_{22}=a_{22}-\frac{a_{21}}{a_{11}} a_{12} \\
& d_{21} u_{13}+u_{23}=a_{23} \Rightarrow u_{23}=a_{23}-l_{21} u_{13} \\
& u_{23}=a_{23}-\frac{a_{21}}{a_{11}} a_{13} \\
& d_{31} u_{12}+l_{32} u_{22}=a_{32} \Rightarrow l_{32}=\frac{a_{32}-l_{31} u_{12}}{u_{22}} \\
& \lambda_{32}=\frac{a_{32}-\left(\frac{a_{31}}{a_{11}}\right) a_{12}}{a_{22}-\left(\frac{a_{21}}{a_{11}}\right) a_{12}}
\end{aligned}
$$

$f_{31} u_{13}+l_{32} u_{23}+u_{33}=9_{33}$ from which u_{33} can be calculated.
w he have a systematic procedure to evaluate the elements of L and U.
Step 1:- We determine the first row of t and the first column of 1 .
Step 2 : We determine the second row of u and the second Column of L
Step 3:- Finally we compute the third row of 4 . This procedure can be obviously generalized. This method is also called as $1-0$ decomposition method.
(1) Solve the system of equations $2 x+3 y+z=9, x+2 y+3 z=6$, $3 x+y+2 z=8$ by the factorization method.

Sol:- Given that

$$
\left.\begin{array}{c}
2 x+3 y+z=9 \\
x+2 y+3 z=6 \\
3 x+y+2 z=8 \tag{2}
\end{array}\right\}
$$

The matrix form of the given system of equs is $A X=B$
Where $A=\left[\begin{array}{lll}2 & 3 & 1 \\ 1 & 2 & 3 \\ 3 & 1 & 2\end{array}\right] \quad X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{l}9 \\ 6 \\ 8\end{array}\right]$

Let $\quad A=L U$
Where $L=\left[\begin{array}{lll}1 & 0 & 0 \\ 12 & 1 & 0 \\ 13 & 1_{32} & 1\end{array}\right]$ is the unit lower triangular matrix $U=\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$ is the upper triangular matrix.

From (1) and (2), $L U X=B$
Taking $u x=y$ Where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$

From (3) and (4), $L Y=B$
To find the matrices L and U :
From equation (2) we have bU = A

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
d_{21} & 1 & 0 \\
d_{31} & d_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
1_{21} u_{11} & 1_{21} u_{12}+u_{22} & 1_{21} u_{13}+u_{23} \\
d_{31} u_{11} & d_{31} u_{12}+i_{32} u_{22} & 1_{31} u_{13}+u_{32} u_{23}+u_{33}
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 1 \\
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right]
$$

Equating the corrosponding elements buthsides, weget

$$
\begin{aligned}
& u_{11}=2 \quad u_{12}=3 \quad u_{13}=1 \\
& u_{2,}, u_{11}=1 \quad \Longrightarrow l_{21}=\frac{1}{2} \\
& d_{31} 411=3 \quad \Longrightarrow \quad d_{31}=\frac{3}{2} . \\
& l_{21} u_{12}+u_{22}=2 \Rightarrow \frac{3}{2}+u_{22}=2 \quad \text { i.e } \quad u_{22}=2-\frac{3}{2}=\frac{1}{2} \text {. } \\
& 1_{21} u_{13}+u_{23}=3 \Longrightarrow \frac{1}{2}+u_{23}=3 \text { i.e } u_{23}=3-\frac{1}{2}=\frac{5}{2} \text {. } \\
& d_{31} u_{12}+d_{32} u_{22}=1 \Rightarrow \frac{9}{2}+d_{32} \frac{1}{2}=1 \text { i.e } l_{32}=-7 \text {. } \\
& \text { (3) } u_{13}+l_{32} u_{23}+u_{33}=2 \\
& \Rightarrow \frac{3}{2}-\frac{35}{2}+433=2 \\
& u_{33}=2-\frac{3}{2}+\frac{35}{2} \\
& u_{33}=18 \\
& \therefore L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right] U=\left[\begin{array}{lll}
2 & 3 & 1 \\
0 & \frac{1}{2} & \frac{5}{2} \\
0 & 0 & 18
\end{array}\right]
\end{aligned}
$$

From equation (5). Fiost we have to tind the values of y_{1}, y_{2} and y_{3}.

$$
\text { i.e } L y=B \Rightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
\frac{1}{2} & 1 & 0 \\
\frac{3}{2} & -7 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{l}
9 \\
6 \\
8
\end{array}\right]
$$

$$
\begin{aligned}
y_{1} & =9 \\
\frac{1}{2} y_{1}+y_{2} & =6 \\
\frac{3}{2} y_{1}-7 y_{2}+y_{3} & =8
\end{aligned}
$$

solving the above equations by forward substitution.

$$
\begin{aligned}
& y_{2}=6-\frac{1}{2} y_{1}=6-\frac{1}{2} 9=\frac{3}{2} \\
& y_{3}=8-\frac{3}{2} y_{1}+7 y_{2}=8-\frac{27}{2}+\frac{21}{2} \\
& y_{3}=5 \\
& \therefore y_{1}=6 \quad y_{2}=\frac{3}{2} y_{3}=5
\end{aligned}
$$

From the equation (4 , we have to find the values of x, y and z.

$$
\begin{aligned}
u x=y & \Rightarrow\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & 1 / 2 & 5 / 2 \\
0 & 0 & 18
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]
\end{aligned}=\left[\begin{array}{c}
6 \\
\frac{3}{2} \\
5
\end{array}\right] .
$$

solving the above eqn's by backward substitution.

$$
\begin{aligned}
& z=\frac{5}{18} \\
& \frac{5}{2} z=\frac{3}{2}-\frac{1}{2} y(0,2) \frac{4}{2}=\frac{3}{2}-\frac{52}{2} \\
& \frac{y}{2}=\frac{3}{2}-\frac{5}{2} \frac{5}{18} \\
& y=3-\frac{25}{18}=\frac{29}{18} \\
& z=-2 x-3 y(02) 2 x=9-3 y-z \\
& 2 x=4-3 \cdot \frac{29}{18}-\frac{5}{18}=\frac{70}{18} \\
& x=\frac{35}{18} .
\end{aligned}
$$

\therefore The solution of the given system is $x=\frac{35}{18}, y=\frac{29}{18}, z=\frac{5}{18}$
… Solve the system $x+2 y+3 z=10, \quad 3 x+y+2 z=13, \quad 2 x+3 y+z=13$ by LV Decomposition Method.
Sol:- Given that $x+2 y+3 z=10,3 x+y+2 z=13,2 x+3 y+z=13$
The matrix form of the given system of eqn's is $A X=B$
Where $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 3 & 1 & 2 \\ 2 & 3 & 1\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}10 \\ 13 \\ 13\end{array}\right]$
Step (i):- Let $A=$ LU
Where $L=\left[\begin{array}{lll}1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1\end{array}\right]$ is the unit lower triangular matrix $v=\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$ is the upper triangular mat in .
From (1) and (23, $\quad L U X=B$
Taking $u x=y$ \qquad
From (3) and (4), LY $=B$
Step (ii) :- To find the matrices L and U :-
From equation (2), we have $L U=A$

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 1 \\
2 & 3 & 1
\end{array}\right]} \\
& {\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
l_{21} u_{11} & l_{21} u_{12}+u_{22} & l_{21} u_{13}+u_{23} \\
l_{31} u_{11} & l_{31} u_{12}+l_{32} u_{22} & l_{31} u_{13}+l_{32} u_{23}+u_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 2 & 2 \\
2 & 3 & 1
\end{array}\right]}
\end{aligned}
$$

Equating the corresponding elements bothsides, we get.

$$
\begin{aligned}
& u_{11}=1 \quad u_{12}=2 \quad u_{13}=3 . \\
& l_{21} u_{11}=3 \Rightarrow l_{21}=3 . \\
& l_{31} u_{11}=2 \Rightarrow l_{31}=2 \\
& l_{21} u_{12}+u_{22}=1 \Longrightarrow u_{22}=1-l_{21} u_{12} \\
& u_{2.2}=1-3(2)=-5 \\
& d_{21} u_{13}+u_{23}=2 \Rightarrow u_{23}=2-1_{21} u_{13} \\
& u_{23}=2-3(3)=-7 \text {. } \\
& l_{31} u_{12}+l_{32} u_{22}=3 \Rightarrow l_{32}=\frac{3-l_{31} u_{12}}{u_{22}}=\frac{3-4}{-5}=\frac{1}{5} \\
& 1_{31} u_{13}+l_{32} u_{23}+u_{33}=1 \Rightarrow u_{33}=1-l_{3} u_{13}-l_{32} u_{23} \\
& u_{33}=1-6+\frac{7}{5}=-\frac{18}{5} \\
& \therefore L=\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]=\left[\begin{array}{lcc}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & \frac{1}{5} & 1
\end{array}\right] v=\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -7 \\
0 & 0 & -\frac{18}{5}
\end{array}\right]
\end{aligned}
$$

Step (iii): From equation (s) thirst we have to find the values of y_{1}, y_{2} and y_{3}.

$$
\begin{aligned}
& y_{1}, y_{2} \text { and } y_{3} \\
& i y=B {\left[\begin{array}{lll}
1 & 0 & 0 \\
3 & 1 & 0 \\
2 & \frac{1}{5} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] }
\end{aligned}=\left[\begin{array}{l}
10 \\
13 \\
13
\end{array}\right]
$$

$$
\therefore y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
-17 \\
\frac{-18}{5}
\end{array}\right]
$$

step (iv):- From the equation (4) we have to find the values of x, y and z.

$$
\begin{aligned}
& U x=y \Longrightarrow\left[\begin{array}{ccc}
1 & 2 & 3 \\
0 & -5 & -7 \\
0 & 0 & -\frac{18}{5}
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
10 \\
-17 \\
-\frac{18}{5}
\end{array}\right] \\
& x+2 y+3 z=10 \\
& \therefore-5 y-7 z=-17 \Rightarrow 5 y+7 z=17 \\
& \frac{-18}{5} z=\frac{-18}{5} \Rightarrow z=-1 . \\
& >^{y}=\frac{17-7 z}{5}=\frac{17-7}{5}=2 \\
& x=10-2 y-3 z \\
& x=10-43-3 \\
& x=3 \text {. }
\end{aligned}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]$ is the solution of the given
\rightarrow Solve $-3 x+12 y-6 z=-33 ; \ddot{x}-2 y+2 z=7, y+z=-1$ using u Decomposition Method.
Sol:- Given that $-3 x+12 y-6 z=-33, x-2 y+2 z=7, \quad y+z=-1$
The matrix from of the given system is $A x=B \cdots(1)$.
Where $A=\left[\begin{array}{ccc}-3 & 12 & -6 \\ 1: & -2 & 2 \\ 0 & 1 & 1\end{array}\right] \quad x=\left[\begin{array}{l}4 \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}-33 \\ 7 \\ -1\end{array}\right]$

Step (i):- Let $A=$ LU
Where $L=\left[\begin{array}{llll}1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1\end{array}\right]$ is the unit lower triangular matrix $U=\left[\begin{array}{ccc}u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33}\end{array}\right]$ is the upper triangular matrix.
From (1) and (2), $L U X=B$
Taking. $u x=y$ (4) Where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$

From (3) and (4), LY L (5)
Step (ii):- To find the matrices L and U :-
From equation (2), we have $L V=A$

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & u_{32} & 1
\end{array}\right]\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 12 & -6 \\
1 & -2 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

$$
\left[\begin{array}{lll}
u_{11} & u_{12} & u_{13} \\
l_{21} u_{11} & l_{21} u_{12}+u_{22} & l_{21} u_{13}+u_{23} \\
l_{31} u_{11} & l_{31} u_{12}+l_{32} u_{22} & l_{31} u_{13}+l_{32} u_{23}+u_{33}
\end{array}\right]=\left[\begin{array}{lll}
-3 & 12 & -6 \\
1 & -2 & 2 \\
0 & 1 & 1
\end{array}\right]
$$

Equating the corresponding elements bothsides, we get

Step(iii): From equation (5) first we have to find the values of y_{1}, y_{2} and y_{3}.

$$
\text { i.e } 1 y=B \Rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
y_{1}, y_{2} & 1 & 0 \\
l_{31} & 1_{32} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
7 \\
-1
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
7 \\
-1
\end{array}\right]
$$

$$
y_{1}=-33
$$

$$
-\frac{1}{3} y_{1}+y_{2}=7
$$

$$
\frac{1}{2} y_{2}+y_{3}=-1
$$

$$
\begin{aligned}
& u_{11}=-3 \quad u_{12}=12 \quad u_{13}=-6 . \\
& l_{21} u_{11}=1 \Longrightarrow \quad l_{21}=-\frac{1}{3} \text {. } \\
& l_{31} u_{11}=0 \Rightarrow l_{31}=0 . \\
& l_{21} u_{12}+u_{22}=-2 \Rightarrow u_{22}=-2-l_{21} u_{12} \\
& u_{22}=-2+\frac{1}{3}(12)=2 \text {. } \\
& 1_{21} u_{13}+u_{23}=2 \Rightarrow u_{23}=2-l_{21} u_{13}=2-\left(\frac{-1}{3}\right)(-6) \\
& u_{23}=0 \text {. } \\
& l_{31} u_{12}+l_{32} u_{22}=1 \Rightarrow d_{32}=\frac{1-l_{31} u_{12}}{u_{22}}=\frac{1-0}{2}=\frac{1}{2} . \\
& l_{31} u_{13}+l_{32} u_{23}+u_{33} \Rightarrow 1 \Rightarrow u_{33}=1-l_{31} u_{13}-l_{32} u_{23} \\
& u_{33}=1-0=1 . \\
& \therefore L=\left[\begin{array}{ccc}
1 & 0 & 0 \\
l_{21} & 1 & 0 \\
l_{31} & l_{32} & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{1}{3} & 1 & 0 \\
0 & \frac{1}{2} & 1
\end{array}\right], v=\left[\begin{array}{ccc}
u_{11} & u_{12} & u_{13} \\
0 & u_{22} & u_{23} \\
0 & 0 & u_{33}
\end{array}\right]=\left[\begin{array}{ccc}
-3 & 12 & -1 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
y_{2} & =7+\frac{1}{3} y_{1}=7+\frac{1}{3}(-33)=-4 \\
y_{3} & =-1-\frac{1}{2} y_{2}=-1-\frac{1}{2}(-4)=1 \\
\therefore y & =\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
-33 \\
-4 \\
1
\end{array}\right]
\end{aligned}
$$

Step (iv): From the equation (4), we have to ting the values of x, y and z

$$
\begin{aligned}
& u x=y \Rightarrow\left[\begin{array}{ccc}
-3 & 12 & -6 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-33 \\
-4 \\
1
\end{array}\right] \\
& -3 x+12 y-6 z=-33 \\
& 2 y=-4 \Rightarrow y=-2 \\
& z=1 . \\
& 3 x=33+12 y-6 z \\
& x=\frac{33+12 y-6 z}{3} \\
& x=\frac{33-24-6}{3}=1 \text {. }
\end{aligned}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]$ is the solution of the given system.

GROUTS METHOD:- -
Consider the linear system

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}-b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3} \tag{2}
\end{array}\right]
$$

Which can be written in the matrix form $A X=B$
Where $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
Let $A=L U$ (3)
Where $L=\left[\begin{array}{ccc}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right] \quad v=\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]$
Here L is the Lower triangular matrix.
U is the unit upper triangular matrix.
Then from (2) and (3), $L V X=B$
Put $u x=y —(5)$ where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$.
Then (a) can be written as $L Y=B=$ (b).

$$
\begin{array}{r}
\text { (6) } \Rightarrow \begin{array}{rll}
{\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]} & =\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right] \\
d_{11} y_{1} & =b_{1} \\
l_{21} y_{1}+l_{22} y_{2}=b_{2} \\
l_{31} y_{1}+l_{32} y_{2}+l_{33} y_{3}=b_{3} .
\end{array} .
\end{array}
$$

This can be solved for $y_{1}, 4,4,43$ by toward. Substitution.
Then (3) $\Rightarrow v x=-y$

$$
\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]
$$

$$
\begin{aligned}
x_{1}+u_{12} x_{2}+u_{13} x_{3} & =y_{1} \\
x_{2}+u_{23} x_{3} & =y_{2} \\
x_{3} & =y_{3} .
\end{aligned}
$$

Which can be solved tor x_{1}, x_{2}, x_{3} and by backward substitution Computation of Lower and Upper triangular Matrices.-.

We have $L U=A$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
l_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{lcc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]} \\
& {\left[\begin{array}{lll}
l_{11} & l_{11} u_{12} & l_{11} u_{13} \\
l_{21} & l_{21} u_{12}+l_{22} & l_{21} u_{23}+l_{22} u_{23} \\
l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{32} 4_{23}+l_{33}
\end{array}\right]=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]}
\end{aligned}
$$

Now equating the corrosponding elements on both sides, we get

$$
\begin{array}{ll}
l_{11}=a_{11} & d_{11} u_{12}=a_{12} \quad l_{11} u_{13}=a_{13} \\
l_{21}=a_{21} & l_{21} u_{12}+l_{22}=a_{22} \quad l_{21} u_{23}+l_{22} u_{23}=a_{23} \\
l_{3}=a_{31} & l_{31} u_{12}+l_{32}=a_{32} \quad l_{31} u_{13}+l_{32} u_{23}+l_{33}=a_{33} .
\end{array}
$$

From this, we obtain $U_{12}, 4_{13}, 4_{23}, l_{22}, l_{32}, l_{33}$ and thus 1 and u are obtained.

Use crouts method to solve the system $x+y+z=1 \quad 3 x+y-3 z=5$ $x-2 y-5 z=10$

Sol- Given that $x+y+z=1 \quad 3 x+y-3 z=5 \quad x-2 y-5 z=10$.
The matrix torm of the given system is $A x=B$
Where $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 3 & 1 & -3 \\ 1 & -2 & -5\end{array}\right] x=\left[\begin{array}{c}x \\ y \\ z\end{array}\right] \quad B=\left[\begin{array}{c}1 \\ 5 \\ 10\end{array}\right]$
Let $\quad A=L U$
Where $L=\left[\begin{array}{lll}l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33}\end{array}\right]$ is the lower triangular matrix.
$V=\left[\begin{array}{ccc}1 & u_{12} & u_{13} \\ 0 & 1 & u_{23} \\ 0 & 0 & 1\end{array}\right]$ is the unit upper triangular matrix.
From (1) and (2). LuX $=B$
Taking $u x=y$
From (3) and (4), $L Y=B$

To find the matrices L and U :
From equation (2), we have $L U=A$.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
d_{31} & l_{32} & l_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & 1 \\
3 & 1 & -3 \\
1 & -2 & -5
\end{array}\right]} \\
& {\left[\begin{array}{lll}
l_{11} & l_{11} u_{12} & l_{11} u_{13} \\
l_{21} & l_{21} u_{12}+l_{22} & l_{21} 1_{13}+l_{22} u_{23} \\
l_{31} & l_{31} u_{12}+l_{32} & l_{31} u_{13}+l_{32} u_{25}+l_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 1 \\
3 & 1 & -3 \\
1 & -2 & -5
\end{array}\right]}
\end{aligned}
$$

Equating the corrosponding elements bothsides, we get

$$
\begin{aligned}
& l_{11}=1 \\
& l_{11} u_{12}=1 \Rightarrow u_{12}=1 \\
& l_{11} u_{13}=1 \Rightarrow u_{13}=1
\end{aligned}
$$

$$
\begin{aligned}
& d_{21}=3 . \\
& l_{21} u_{12}+l_{22}=1 \quad \Rightarrow l_{22}=1-l_{21} u_{12} \\
& d_{22}=1-3 \cdot(1)=-2 \\
& l_{2_{1}} u_{13}+l_{22} t_{23}=-3 \Rightarrow u_{23}=-\frac{3-l_{2,} u_{13}}{l_{21}} \\
& u_{23}=\frac{-3-3(1)}{-2}=3 . \\
& t_{31}=1 \\
& d_{31} u_{12}+d_{32}=-2 \Rightarrow d_{32}=-2-d_{31} u_{12} \\
& =-2-1(1)=-3 \\
& l_{32}=-3 . \\
& d_{31} u_{13}+l_{32} u_{23}+l_{33}=-5 \\
& \Rightarrow l_{33}=-5-l_{31} u_{13}-l_{32} u_{23} \\
& d_{33}=-5-1(1)-(-3)(3)=-5-1+9=3 \text {. } \\
& l_{33}=3 \text {. } \\
& \therefore L=\left[\begin{array}{lll}
l_{11} & 0 & 0 \\
l_{21} & l_{22} & 0 \\
d_{31} & l_{32} & l_{33}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & -2 & 0 \\
1 & -3 & 3
\end{array}\right] \\
& v=\left[\begin{array}{ccc}
1 & u_{12} & u_{13} \\
0 & 1 & u_{23} \\
0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

From equation (5). First we have to find the values of y_{1}, y_{2}, and y_{3}

$$
\text { i.e } L y=B \Longrightarrow\left[\begin{array}{ccc}
1 & 0 & 0 \\
3 & -2 & 0 \\
1 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]=\left[\begin{array}{c}
1 \\
5 \\
10
\end{array}\right]
$$

$$
\begin{aligned}
y_{1} & =1 \\
3 y_{1}-2 y_{2} & =5 \\
y_{1}-3 y_{2}+3 y_{3} & =10 .
\end{aligned}
$$

Solving the above equations by forwasel substitution

$$
y_{2}=\frac{3 y_{1}-5}{2} \Rightarrow y_{2}=-1
$$

$$
\begin{aligned}
& y_{3}=\frac{10+3 y_{2}-y_{1}}{3} \\
& y_{3}=\frac{10-3-1}{3}=2
\end{aligned}
$$

From the equation (4), we have to find the values of x, y and z

$$
\begin{aligned}
& u x=y \Longrightarrow\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 1 & 3 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \\
& x+y+z=1 \\
& y+3 z=-1 \\
& z=2
\end{aligned}
$$

Solving the above equation by backusasd substitution.

$$
\begin{aligned}
& z=2 \\
& y=-1-32=-7 \\
& x=1-y-z=1+7-2=6
\end{aligned}
$$

$$
\therefore x=6, \quad y=-7-z=2
$$

Which is the required solution of the given system.

Solution to Tri-diagonal Systems :-
Definition:- If the coefficient matrix of a system of linear equations ie $A X=B$ has non zero elements along the main diagonal and the adjacent diagonals on either side of the main diagonal, then the system is called a "Tri diagonal system".
Working procedure: -
consider the system of equations.

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
& a_{32} x_{2}+a_{33} x_{3}+a_{34} x_{4}=b_{3} \\
& a_{43} x_{3}+a_{44} x_{4}=b_{4}
\end{aligned}
$$

Step 1:- The matrix equation of the given tridiagonal system is

$$
A X=B \quad \text { (1) }
$$

Where $A=\left[\begin{array}{llll}a_{11} & a_{12} & 0 & 0 \\ a_{21} & a_{22} & a_{23} & 0\end{array}\right]$ is the coefficient matrix of the system.
$X=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]$ is the matrix of unknowns $B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3} \\ b_{4}\end{array}\right]$ is the constant matrix.
Step 2: Let $A=L U$
Where $L=\left[\begin{array}{cccc}1 & 0 & 0^{\prime} & 0 \\ d_{21} & 1 & 0 & 0 \\ 0 & d_{32} & 1 & 0 \\ 0 & 0 & d_{43} & 1\end{array}\right]$ is the unit lower triangular matrix.

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \tag{3}\\
0 & u_{22} & u_{23} & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right] \text { is an upper triangular matrix. }
$$

From (1) and (2), $L U X=B$.
step 3:- Put $u x=y$ (4) where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]$
From (3) $L y=B$.

$$
\text { i.e }\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
l_{21} & 1 & 0 & 0 \\
0 & l_{32} & 1 & 0 \\
0 & 0 & l_{43} & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3} \\
b_{4}
\end{array}\right]
$$

The linear equations are $y_{1}=b_{1}$

$$
\begin{aligned}
& d_{21} y_{1}+y_{2}=b_{2} \\
& d_{32} y_{2}+y_{3}=b_{3} \\
& d_{43} y_{3}+y_{4}=b_{4}
\end{aligned}
$$

This can be solved for y_{1}, y_{2} and y_{3}, b_{y} forward substitution. y_{4}.
step 4 : Using (4) and $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]$, we get

$$
u x=y \Rightarrow\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
0 & u_{22} & u_{23} & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & a_{43} & u_{44}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

The linear equations are

$$
\begin{aligned}
u_{11} x_{1}+u_{12} x_{2} & =y_{1} \\
u_{22} x_{2}+u_{23} x_{3} & =y_{2} \\
u_{33} x_{3}+u_{34} x_{4} & =y_{3} \\
u_{44} x_{4} & =y_{4}
\end{aligned}
$$

Which can be solved for x_{1}, x_{2}, x_{3} and x_{4} by backward substitution. Thus when L and u are known, we can calculate $y_{1}, y_{2}, y_{3}, y_{4}$ and. $x_{1}, x_{2}, x_{3}, x_{4}$ by the above process.

Computation of L and $U:$ -
We have $A=L U$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{24} & a_{23} & 0 \\
a_{12} & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{34} & a_{44}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
l_{21} & 1 & 0 & 0 \\
0 & d_{32} & 1 & 0 \\
0 & 0 & d_{43} & 1
\end{array}\right]\left[\begin{array}{lll}
u_{11} & u_{12} & 0
\end{array} 0\right.} \\
& 0
\end{aligned} u_{22} \quad u_{23} \quad 0 \quad\left[\begin{array}{ccc}
0 & 0 & u_{33}
\end{array} u_{34} \begin{array}{llll}
a_{11} & a_{12} & 0 & 0 \\
a_{21} & a_{22} & a_{23} & 0 \\
0 & a_{32} & a_{33} & a_{34} \\
0 & 0 & a_{34} & a_{44}
\end{array}\right]=\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
l_{21} u_{11} & l_{22} u_{12}+u_{22} & u_{23} & 0 \\
0 & l_{32} u_{22} & l_{32} u_{23}+u_{33} & u_{34} \\
0 & 0 & l_{43} u_{33} & l_{43} u_{34}+u_{44}
\end{array}\right]
$$

Equating the corresponding elements on bothsides.

$$
\begin{aligned}
& u_{11}=a_{11}, u_{12}=a_{12} \\
& d_{21} u_{11}=a_{21} \Longrightarrow d_{21}=\frac{a_{21}}{u_{11}}, d_{22} u_{12}+u_{22}=a_{22} \\
& u_{22}=a_{22}-u_{12} l_{21} \\
& u_{23}=a_{23}, \\
& \Longrightarrow l_{32} u_{22}=a_{32} \\
&=\frac{a_{32}}{u_{22}} \\
& l_{32} u_{23}+u_{33}=a_{33} \Longrightarrow u_{33}=a_{33}-l_{32} u_{23} . \\
& u_{34}=a_{34} \\
& a_{34}=u_{33} l_{43} \Rightarrow l_{43}=\frac{a_{34}}{u_{33}} \\
& a_{44}=l_{43} u_{34}+u_{44} \Rightarrow u_{44}=a_{44}-l_{43} u_{34} .
\end{aligned}
$$

\rightarrow Solve the system of equations $2 x-y=0,-x+2 y-z=0,-y+2 z-\mu=0$ $-2+2 u=1$

Sol: Given that $2 x-y=0$

$$
\begin{aligned}
& -x+2 y-z=0 \\
& -y+2 z-u=0 \\
& -z+2 u=1
\end{aligned}
$$

The matrix equation of the given system of equations is $A x=B-(1)$
Where $A=\left[\begin{array}{rrrr}2 & -1 & 0 & 0 \\ -1 & 2 & -1 & 0 \\ 0 & -1 & 2 & -1 \\ 0 & 0 & -1 & 2\end{array}\right]$ is the Tri-diagonal matrix.

$$
x=\left[\begin{array}{l}
x \\
y \\
z \\
\mu
\end{array}\right] \text { and } B=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

Now we solve this system by L-U decomposition method or method of factorization.

Let $A=L U$
Where $L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ d_{21} & 1 & 0 & 0 \\ 0 & d_{32} & 1 & 0 \\ 0 & 0 & l_{43} & 1\end{array}\right]$ and $v=\left[\begin{array}{cccc}u_{11} & u_{12} & 0 & 0 \\ 0 & u_{22} & u_{23} & 0 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{44}\end{array}\right]$
From (1) and (2), \quad LUX $=B \cdots$-(3)
Taking $u x=y —$ (9) Where $y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3} \\ y_{4}\end{array}\right]$
From (3) and (4), $\quad-Y=B$.

$$
\begin{aligned}
L U & =A \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
u_{21} & 1 & 0 & 0 \\
0 & d_{32} & 1 & 0 \\
0 & 0 & l_{43} & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{11} & u_{12} & 0 & 0 \\
0 & u_{22} & u_{23} & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right]=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{ccc}
u_{11} & u_{12} & 0 \\
d_{21} u_{11} & l_{21} u_{12}+u_{22} & u_{23} \\
0 & l_{32} u_{22} & u_{32} u_{23}+u_{33} \\
0 & 0 & l_{43} u_{33} \\
u_{43} u_{34}+u_{44}
\end{array}\right]\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right]
\end{aligned}
$$

Equating the corresponding elements on both sides, we get

$$
\begin{aligned}
& u_{11}=2, u_{12}=-1, u_{23}=-1, u_{34}=-1 . \\
& l_{21} u_{11}=-1 \Rightarrow l_{21}=\frac{-1}{u_{11}}=\frac{-1}{2} . \\
& l_{21} u_{12}+u_{22}=2 \Rightarrow u_{22}=2-l_{21} u_{12}=2-\left(\frac{-1}{2}\right)(-1)=\frac{3}{2} \\
& l_{32} u_{22}=-1 \Rightarrow l_{32}=\frac{-1}{u_{22}}=-\frac{2}{3} . \\
& l_{32} u_{23}+u_{33}=2 \Rightarrow u_{33}=2-\left(-\frac{2}{3}\right)(-1)=\frac{4}{3} . \\
& d_{43} u_{33}=-1 \Rightarrow d_{43}=\frac{-1}{433}=\frac{-3}{4} . \\
& d_{43} u_{34}+u_{44}=2 \Rightarrow u_{44}=2-\left(\frac{-3}{4}\right)(-1)=\frac{5}{4} . \\
& \therefore L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right] \text { and } u=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]
\end{aligned}
$$

From (5), first we have to find the values of y_{1}, y_{2}, y_{3} and y_{4}.

$$
\text { i.e } L Y=B \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 / 2 & 1 & 0 & 0 \\
0 & -2 / 3 & 1 & 0 \\
0 & 0 & -3 / 4 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
0 \\
+1
\end{array}\right]
$$

Solving the system by forward substitution, we have $y_{1}=0$.

$$
\begin{aligned}
&-\frac{1}{2} y_{1}+y_{2}=0 \Rightarrow y_{2}=0 \\
&-2 y_{3} y_{2}+y_{3}=0 \Rightarrow y_{3}=0 \\
&-\frac{3}{4} y_{3}+y_{4} \Rightarrow y_{4}=1 \\
& \therefore y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Now from equation (4). We have to find the value of x, y, z and u.

$$
u x=y \Rightarrow\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
u
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
$$

solving the system by backward substitution, we have

$$
\frac{5}{4} \mu=1 \Rightarrow \mu=\frac{4}{5}
$$

$$
\frac{4}{3} z-l=0 \Rightarrow \frac{4}{3} z=\frac{4}{5} \Rightarrow z=\frac{3}{5}
$$

$$
\frac{3}{2} y-z=0 \Rightarrow \frac{3}{2} y=z \Rightarrow \frac{3}{2} y=\frac{3}{5} \Rightarrow y=\frac{2}{5}
$$

$$
2 x-y=0 \quad \Rightarrow \quad x=\frac{y}{2}=\frac{1}{5}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z \\ \mu\end{array}\right]=\left[\begin{array}{l}1 / 5 \\ 2 / 5 \\ 3 / 5 \\ 4 / 5\end{array}\right]$ is the solution of the given system.
Solve the system of equations $2 x_{1}+x_{2}=2, x_{1}+2 x_{2}+x_{3}=2, x_{2}+2 x_{3}+x_{4}=2$,

$$
x_{3}+2 x_{4}=1
$$

Sol:- Given that $2 x_{1}+x_{2}=2$

$$
\begin{aligned}
& x_{1}+2 x_{2}+x_{3}=2 \\
& x_{2}+2 x_{3}+x_{4}=2 \\
& x_{3}+2 x_{4}=2
\end{aligned}
$$

The matrix equation of the given system of equations is $A X=B$-(1).
Where $A=\left[\begin{array}{llll}2 & 1 & 0 & 0 \\ 1 & 2 & 1 & 0 \\ 0 & 1 & 2 & 1 \\ 0 & 0 & 1 & 2\end{array}\right]$ is the Fri diagonal matrix. $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right] B=\left[\begin{array}{l}2 \\ 2 \\ 2 \\ 1\end{array}\right]$
Now we solve this system by $L-v$ decomposition method or Method of factorization.
Let $A=L U$ _(2) Where $L=\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 1_{21} & 1 & 0 & 0 \\ 0 & 1_{32} & 1 & 0 \\ 0 & 0 & 1_{43} & 1\end{array}\right] \cdot U=\left[\begin{array}{llll}u_{11} & u_{12} & 0 & 0 \\ 0 & u_{22} & u_{23} & 0 \\ 0 & 0 & u_{33} & u_{34} \\ 0 & 0 & 0 & u_{24}\end{array}\right]$

From (1) Lp (2), we write $L U X=B$ (3)
Taking $u x=y$ \qquad

$$
\text { Where } y=\left[\begin{array}{l}
y_{1} \tag{4}\\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]
$$

From (3) and (4), LY $=B-$ (5)

$$
\begin{aligned}
& L U=A \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
l_{21} & 1 & 0 & 0 \\
0 & l_{32} & 1 & 0 \\
0 & 0 & u_{43} & 1
\end{array}\right]\left[\begin{array}{llll}
u_{11} & u_{12} & 0 & 0 \\
0 & u_{22} & u_{23} & 0 \\
0 & 0 & u_{33} & u_{34} \\
0 & 0 & 0 & u_{44}
\end{array}\right]=\left[\begin{array}{llll}
2 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{llll}
u_{11} & u_{12} & 0 & 0 \\
l_{21} u_{11} & l_{21} u_{12}+u_{22} & u_{23} & 0 \\
0 & l_{32} u_{22} & l_{32} u_{23}+u_{33} & u_{34} \\
0 & 0 & l_{43} u_{33} & l_{4-3} u_{34}+u_{44}
\end{array}\right]=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
1 & 2 & 1 & 0 \\
0 & 1 & 2 & 1 \\
0 & 0 & 1 & 2
\end{array}\right]
\end{aligned}
$$

Equating the corresponding elements on both sides, we get-

$$
\begin{aligned}
& u_{11}=2 \quad u_{12}=1 \quad u_{23}=1 \quad u_{34}=1 . \\
& d_{21} u_{11}=1 \Rightarrow d_{21}=\frac{1}{u_{11}}=\frac{1}{2} \\
& d_{21} u_{12}+u_{20}=2 \Rightarrow u_{22}=2-1_{21} u_{12}=2-\frac{1}{2}(1)=\frac{3}{2} . \\
& 1_{32} u_{22} \Rightarrow \Rightarrow 1_{32}=\frac{1}{u_{22}}=\frac{2}{3} . \\
& l_{32} u_{23}+u_{33}=2 \Rightarrow u_{33}=2-l_{32} u_{23}=2-\frac{2}{3}(1)=\frac{4}{3} \text {. } \\
& t_{43} u_{33}=1 \Rightarrow l_{43}=\frac{1}{u_{33}}=\frac{3}{4} \text {. } \\
& d_{43} u_{34}+u_{44}=2 \Rightarrow u_{44}=2-1_{43} u_{34}=2-\left(\frac{3}{4}\right)(1)=\frac{5}{4} \text {. } \\
& \therefore L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 2 / 3 & 1 & 0 \\
0 & 0 & 3 / 4 & 1
\end{array}\right] \text { and } U=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 3 / 2 & 1 & 0 \\
0 & 0 & 4 / 3 & 1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]
\end{aligned}
$$

Using equation (5), first we have to find the values of y_{1}, y_{2}, y_{3} and y_{4}

$$
L Y=B \Rightarrow\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 2 / 3 & 1 & 0 \\
0 & 0 & 3 / 4 & 1
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{l}
2 \\
2 \\
2 \\
1
\end{array}\right]
$$

Solving the system by forward substitution, we have

$$
\begin{aligned}
& y_{1}=2 \\
& \frac{1}{2} y_{1}+y_{2}=2 \Rightarrow y_{2}=2-\frac{1}{2}(2)=1 . \\
& \frac{2}{3} y_{2}+y_{3}=2 \Rightarrow y_{3}=2-\frac{2}{3} y_{2}=2-\frac{2}{3}(1)=\frac{4}{3} . \\
& \frac{3}{4} y_{3}+y_{4}=1 \Rightarrow y_{4}=1-\frac{3}{4} y_{3}=1-\frac{3}{4}\left(\frac{4}{3}\right)=0 . \\
& \therefore y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
4 / 3 \\
0
\end{array}\right]
\end{aligned}
$$

Now using equation ϵ_{\oplus}, we have to find the values of x_{1}, x_{2}, x_{3} and x_{4}.

$$
u x=y \Rightarrow\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
0 & 3 / 2 & 1 & 0 \\
0 & 0 & 4 / 3 & 1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
2 \\
1 \\
4 / 3 \\
0
\end{array}\right]
$$

Solving the system by backward substitution, we have.

$$
\begin{aligned}
& \frac{5}{4} x_{4}=0 \Rightarrow x_{4}=0 \\
& \frac{4}{3} x_{3}+x_{4}=\frac{4}{3} \Rightarrow x_{3}=1 \\
& \frac{3}{2} x_{2}+x_{3}=1 \Rightarrow x_{2}=0 \\
& 2 x_{1}+x_{2}=2 \Rightarrow x_{1}=2 \\
& \therefore x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
0 \\
1 \\
0
\end{array}\right]
\end{aligned}
$$

Note:- In the method of decomposition or in the method of solving tridiagonal system, we can take L and U such that L is unit lower arian - gulas \& U is upper triangular $(x) L$ is lower triangular and U is unit upper triangular

$$
*
$$

LU-DECOMPOSITION METHOD

1) Solve the system $x+y+z=1,3 x+y-3 z=5, x-2 y-5 z=10$ by using the LU decomposition method. Ans:- $x=6, y=-7, z=2$.
2) Solve the system $4 x+y+z=4, x+4 y-2 z=4,3 x+2 y-4 z=6$ by using Method of factorization. Ans:- $x=1, y=\frac{1}{2}, z=\frac{-1}{2}$.
3) Solve the system $x_{1}+3 x_{2}+8 x_{3}=4, x_{1}+4 x_{2}+3 x_{3}=-2, x_{1}+3 x_{2}+4 x_{3}=1$. by Triangularisation Method. Ans: $-x_{1}=\frac{19}{4} \quad y_{2}=\frac{-9}{4}, x_{3}=\frac{3}{4}$.
4) Solve the following matrix equation by using the Lu-decomposition method.

$$
\left[\begin{array}{ccc}
-3 & 12 & -6 \\
1 & -2 & 2 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
-33 \\
7 \\
-1
\end{array}\right] \quad \text { Ans:- } x=1, y=-2, z=1
$$

5) Solve the system of equations $x+y+z=3, x+2 y+3 z=6, x+y+4 z=6$, by using Triangularisation method. Ans:- $x=y=z=1$.
b) Solve the system of equations $10 x+y+2 z=13,3 x+10 y+z=14,2 x+3 y+10 z=15$ by using method of factorization Ans:- $x=y=z=1$.
6) Solve the system of equations $x+y-z=2,2 x+3 y+5 z=-3,3 x+2 y-3 z=6$ by using LU decomposition method. Ans:- $x=1, y=0, z=-1$.
7) Solve the system of equations $2 x+y+4 z=12,4 x+11 y-z=33$, $8 x-3 y+2 z=20$ by using Lu decomposition method Ans:- $x=3, y=2, z=1$.
8) Solve the following equations by expressing the coefficient matrix as a product of a lower triangular and upper triangular matrices.

$$
2 x+y-z=3, x-2 y-2 z=1, x+2 y-3 z=9 \text { Ans: } x=-\frac{1}{5}, y=\frac{7}{5}, z=-2
$$

10 Solve the following equations using LU decomposition method.

$$
\begin{aligned}
& 10 x_{1}+7 x_{2}+8 x_{3}+7 x_{4}=32,7 x_{1}+5 x_{2}+6 x_{3}+5 x_{4}=23,8 x_{1}+6 x_{2}+10 x_{3}+9 x_{4}=33 . \\
& 7 x_{1}+5 x_{2}+9 x_{3}+10 x_{4}=31 . \quad \text { Ans:- } x_{1}=x_{2}=x_{3}=x_{4}=1 .
\end{aligned}
$$

SOLUTION OF TRIDIAGONAL SYSTEMS.
1 Solve the following tridiagonal system of equations. $x_{1}+2 x_{2}=1$,

$$
x_{1}-3 x_{2}-x_{3}=4,4 x_{2}+3 x_{3}=5 \text {. Ans: } x_{1}=\frac{69}{11} x_{2}=\frac{4}{11}, x_{3}=\frac{13}{11} \text {. }
$$

2. Solve the tridiagonal system of equations. $2 x_{1}-x_{2}=0, x_{1}-2 x_{2}+x_{3}=0$.

$$
x_{2}-2 x_{3}+x_{4}=0, x_{3}-2 x_{4}=-1 \text {. Ans. } x_{1}=\frac{1}{5} x_{2}=\frac{2}{5} x_{3}=\frac{3}{5} \quad x_{4}=\frac{4}{5} \text {. }
$$

3 Solve the tridiagonal system of equations $2 x-3 y=8,3 x+y+z=4$, $y-3 z=-11$. Ans:- $x=1, y=-2, z=3$.
4 Solve the toidiagonal system $2 x_{1}-3 x_{2}=5, x_{1}+2 x_{2}-3 x_{3}=-2,3 x_{2}-x_{3}+2 x_{4}=1$ $x_{3}+x_{4}=2$ Ans:- $x_{1}=1 x_{2}=-1, x_{3}=0, x_{4}=2$
5 Solve the tridiagonal system $5 x+2 y=3,2 x-3 y+2=5,4 y-3 z=-4$
Ans:- $x=1, y=-1, z=0$.
6 Solve the tridiagonal system $3 x_{1}+2 x_{2}=1, x_{1}-2 x_{2}+3 x_{3}=-2,2 x_{2}-x_{3}+x_{4}=1$ and $3 x_{3}-4 x_{4}=11$ Ansi- $x_{1}=-1, x_{2}=2, x_{3}=1, x_{4}=-2$

Gaussian Elimination Method:-
This method of solving a system of n linear equations in n unknown consists of eliminating the coefficients in such a way that the system reduces to upper triangular system which may be solved by backward substitution.
consider the system of non homogeneous equations.

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}=b_{1} \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}=b_{2} \\
a_{31} x_{1}+a_{32} x_{2}+a_{33} x_{3}=b_{3}
\end{array}\right\}
$$

The matrix equation of the given system of eqn's is $A x=B$ Where $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right] \quad x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] \quad B=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$

The augmented matrix of this system is.

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{21} & a_{22} & a_{23} & b_{2} \\
a_{31} & a_{32} & a_{33} & b_{3}
\end{array}\right] \\
R_{2} & \rightarrow R_{2}-\frac{a_{21}}{a_{11}} R_{1} \\
R_{3} & \rightarrow R_{3}-\frac{a_{31}}{a_{11}} R_{1} \text {, weqet } \\
& =\left[\begin{array}{lll|l}
a_{11} & a_{12} & a_{13} & b_{1} \\
a_{12} & a_{22}^{\prime} & a_{23}^{\prime} & b_{2}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime} & b_{3}
\end{array}\right] \\
\text { Where } a_{22}^{\prime} & =a_{22}-\frac{a_{21}}{a_{11}} a_{12} \quad a_{23}^{\prime}=a_{23}-\frac{a_{21}}{a_{11}} a_{13} \\
a_{32}^{\prime} & =a_{32}-\frac{a_{31}}{a_{11}} a_{12} a_{33}^{\prime}=a_{33}-\frac{a_{31}}{a_{11}} a_{13} \\
b_{2}^{\prime} & =b_{2}-\frac{a_{21}}{a_{11}} b_{1} \quad b_{3}^{\prime}=b_{3}-\frac{a_{31}}{a_{11}} b_{1}
\end{aligned}
$$

Here we assume that $a_{11} \neq 0$
We call $\frac{-a_{21}}{a_{11}},-\frac{a_{31}}{a_{11}}$ as multipliers for the first stage a_{11} is called first pivot.

$$
\begin{align*}
R_{3} & \longrightarrow R_{3}-\frac{a_{32}^{1}}{a_{22}^{1}} R_{2} \text {, we get } \\
& \sim\left[\begin{array}{ccc|c}
a_{11} & a_{12} & a_{13} & b_{1} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} & b_{22}^{1} \\
0 & 0 & a_{33}^{\prime 1} & b_{3}^{11}
\end{array}\right] \tag{2}
\end{align*}
$$

Where $a_{33}^{\prime \prime}=a_{33}^{\prime}-\frac{a_{32}^{1}}{a_{22}^{\prime}} a_{23}^{\prime}$

$$
b_{3}^{\prime \prime}=b_{3}^{\prime}-\frac{a_{32}^{\prime}}{a_{22}^{\prime}} b_{2}^{\prime}
$$

We assume that $a_{2 e} \neq 0$.
Here the multiplier is $-\frac{a_{32}^{1}}{a_{22}}$
New pivot is a_{22}^{1}
The augmented matrix (4) coroosponds to an upper triangular system which can be solved by backulard substitution.

Note:-
11) If one of the cements $a_{11}, a_{22}^{1}, a_{33}^{18}$ are zero the method is moditied by rearranging the rows so that the pivot is non zero.
12) This procedure is called partial pivoting. T
13) If this is impossible then the matrix is singular and the system has no solution.

Solve the equations $2 x_{1}+x_{2}+x_{3}=10, \quad 3 x_{1}+2 x_{2}+3 x_{3}=18$, $x_{1}+4 x_{2}+9 x_{3}=16$ using Gauss Elimination method.

Sol:- Given that

$$
\left.\begin{array}{l}
2 x_{1}+x_{2}+x_{3}=10 \\
3 x_{1}+2 x_{2}+3 x_{3}=18 \tag{1}\\
x_{1}+4 x_{2}+9 x_{3}=16
\end{array}\right\} .
$$

The matrix equation of the given system of eau's is $A x=B$

$$
\text { Where } A=\left[\begin{array}{lll}
2 & 1 & 1 \\
3 & 2 & 3 \\
1 & 4 & 9
\end{array}\right] \quad x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad B=\left[\begin{array}{l}
10 \\
18 \\
16
\end{array}\right]
$$

The augmented matrix of the given system is

$$
\begin{aligned}
{[A \mid B] } & =\left[\begin{array}{ccc|c}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \\
& \sim\left[\begin{array}{lll|l}
2 & 1 & 1 & 10 \\
0 & \frac{1}{2} & \frac{3}{2} & 3 \\
0 & \frac{7}{2} & \frac{17}{2} & 11
\end{array}\right] \\
& R_{3} \rightarrow R_{2}-\frac{3}{2} R_{1} \quad R_{3} \rightarrow R_{3}-\frac{1}{2} R_{1} \\
& \sim\left[\begin{array}{lll|l}
2 & 1 & 1 & 10 \\
0 & \frac{1}{2} & \frac{3}{2} & 3 \\
0 & 0 & -\frac{4}{2} & -10
\end{array}\right] \quad\left[\begin{array}{ccc|c}
2 & R_{3} & \rightarrow R_{3} & -7 R_{2} \\
0 & \frac{1}{2} & \frac{3}{2} & 3 \\
0 & 0 & -2 & -10
\end{array}\right]
\end{aligned}
$$

The equivalent matrix equation of the given system of equations is

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & \frac{1}{2} & \frac{3}{2} \\
0 & 0 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
10 \\
3 \\
-10
\end{array}\right]
$$

The linear equations are

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =10 \\
\frac{x_{2}}{2}+\frac{3 x_{3}}{2} & =3 \text { ie } x_{2}+3 x_{3}=6 \\
-2 x_{3} & =-10 \text { ie } x_{3}=5
\end{aligned}
$$

These equations can be solved by back substitution

$$
\begin{gathered}
x_{2}=6-3 x_{3} \\
x_{2}=6-15=-9 \\
2 x_{1}=10-x_{2}-x_{3} \\
2 x_{1}=10+9-5=14 \\
x_{1}=7 .
\end{gathered}
$$

\therefore The solution of the given system is

$$
x_{1}=7 \quad x_{2}=-9 \quad x_{3}=5
$$

Gauss Jordan Method:
This is modified Gauss Elimination method.
consider the given system of linear equations in matrix. form $A x=B$
Now reduce the augmented matrix $[A \mid B]$ by applying E-row. operations only such that the coefficient matrix A is in diagonal from $\left[D \mid B^{1}\right]$ Then the solution is obtained directly.
11) Using Gauss Jordan method, Solve the system.

$$
\begin{aligned}
& \text { Using Gauss Jordan } \\
& 2 x+y+z=10, \quad 3 x+2 y+3 z=18, \quad x+4 y+9 z=16 .
\end{aligned}
$$

Sol. Glt $2 x+y+z=10 \quad 3 x+2 y+3 z=18 \quad x+4 y+9 z=16$.
The matrix equation of the given system of equations is $A x=B$. Where $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 3 \\ 1 & 4 & 9\end{array}\right] \quad B=\left[\begin{array}{c}10 \\ 18 \\ 16\end{array}\right] \quad x=\left[\begin{array}{c}x \\ y \\ z\end{array}\right]$.

$$
\begin{aligned}
& \text { The augmented matrix }[A \mid B]=\left[\begin{array}{ccc|c}
2 & 1 & 1 & 10 \\
3 & 2 & 3 & 18 \\
1 & 4 & 9 & 16
\end{array}\right] \\
& R_{2} \rightarrow 2 R_{2}-3 R_{1} R_{3} \rightarrow 2 R_{3}-R_{1} \\
& \sim\left[\begin{array}{ccc|c}
2 & 1 & 1 & 10 \\
0 & 1 & 3 & 6 \\
0 & 7 & 17 & 28
\end{array}\right] \\
& R_{3} \rightarrow R_{3}-7 R_{1} \quad R_{1} \rightarrow R_{1}-R_{2} \\
& -\left[\begin{array}{ccc|c}
2 & 0 & -2 & 4 \\
0 & 1 & 3 & 6 \\
0 & 0 & -4 & -20
\end{array}\right] \\
& R_{1} \rightarrow 2 R_{1}-R_{3} \quad R_{2} \rightarrow 4 R_{2}+3 R_{3} \\
& \sim\left[\begin{array}{ccc|c}
4 & 0 & 0 & 28 \\
0 & 4 & 0 & -36 \\
0 & 0 & -4 & -20
\end{array}\right]
\end{aligned}
$$

This is of the form $[D \mid \vec{B}]$.
The equivalent matrix equation of $A X=B$ is .

$$
\begin{gathered}
{\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
28 \\
-36 \\
-20
\end{array}\right]} \\
4 x=28 \Rightarrow x=7 \\
4 y=-36 \Rightarrow y=-9 \\
-4 z=-20 \Rightarrow z=-5 \\
\therefore\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 \\
-9 \\
5
\end{array}\right] \text { is the solution. }
\end{gathered}
$$

(2) Solve the system of equations by Gauss Jordan method.
(a)

$$
\begin{array}{r}
10 x+y+z=12 \\
2 x+10 y+z=13 \\
x+y+5 z=7
\end{array}
$$

Ans:- $x=y=z=1$.
(b) $10 x_{1}+x_{2}+x_{3}=12$

$$
\begin{aligned}
& x_{1}+10 x_{2}-x_{3}=10 \\
& x_{1}-2 x_{2}+10 x_{3}=9
\end{aligned}
$$

Ans:- $x_{1}=x_{2}=x_{3}=1$.

GAUSS ELIMINATION METHOD

1 Apply Gauss elimination method solve the equations $x+4 y-5=-5$, $x+y-6 z=-12,3 x-y-z=4$.

Ans:- $x=1.6479, y=-1.1408, z=2.0845$
2 Solve $10 x-7 y+3 z+5 \mu=6,-6 x+8 y-z-4 \mu=5, \quad 3 x+y+4 z+11 \mu=2$, $5 x-9 y-2 z+4 \mu=7$ by Gauss elimination method.

Ans:- $x=5, y=4, z=-1, u=1$.
3 Solve the following equations by Gauss elimination method. $2 x+y+z=10, \quad 3 x+2 y+3 z=18, \quad x+4 y+9 z=16$. Ans:- $x=7, y=-9 \quad z=5$

4 Solve $2 x-y+3 z=9, x+y+z=6, x-y+z=2$ by Gauss elimination method Ans: $x=2, y=2, z=3$

5 : Solve $2 x_{1}+4 x_{2}+x_{3}=3,3 x_{1}+2 x_{2}-2 x_{3}=-2, x_{1}-x_{2}+x_{3}=6$ by Gauss elimination method. Ans: $x_{1}=2, x_{2}=-1, x_{3}=3$
6 Solve $5 x_{1}+x_{2}+x_{3}+x_{4}=4, x_{1}+7 x_{2}+x_{3}+x_{4}=12, x_{1}+x_{2}+6 x_{3}+x_{4}=-5$ $x_{1}+x_{2}+x_{3}+4 x_{4}=-6$ Ans: $x_{1}=1, x_{2}=2, x_{3}=-1, x_{4}=-2$

- Solve (if possible.) $2 x+z=3, x-y+z=1,4 x-2 y+3 z=3$ Ans:- In consistent
8 Solve $4 x-3 y-9 z+6 w=0,2 x+3 y+3 z+6 w=6,4 x-2 y y-39 z-6 w=-24$.
Ans: - $x=1+k_{1}-2 k_{2}, \quad y=\left(4-5 k_{1}-2 k_{2}\right) / 3 \quad z=k_{1}, \omega=k_{2}$.
9 Solve $2 x_{1}+x_{2}+2 x_{3}+x_{4}=6,6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36,4 x_{1}+3 x_{2}+3 x_{3}-3 x_{4}$ $2 x_{1}+2 x_{2}-x_{3}+x_{4}=10$. Ans:- $x_{1}=2, x_{2}=1 x_{3}=-1, x_{4}=3$.

10. Solve $2 x+3 y-z=5, \quad 4 x+4 y-3 z=3, \quad 2 x-3 y+2 z=2$ Ans:- $x=1, y=2, z=3$

GAUSS JORDAN METHOD.
1 Apply Gauss Jordan method, solve the equations $x+y+z=9,2 x-3 y+4 z=13$, $3 x+4 y+5 z=40 . \quad$ Ans:- $x=1 \quad y=3 z=5$
2. So te by Gauss Jordan method $2 x+5 y+7 z=52,2 x+y-z=0, x+y+z=9$ Ans:- $\quad x=1, y=3, z=5$

3 Solve by Gauss Jordan method $2 x-3 y+z=-1, x+4 y+5 z=25$, $3 x-4 y+z=2$ Ans.

4 Solve $x+3 y+3 z=16, \quad x+4 y+3 z=18, \quad x+4 z+3 y=19$ using Gauss Jordan method. Ans:- $x=1 \quad y=2, z=3$.

5 Solve $2 x+y+z=10, \quad 3 x+2 y+3 z=18, \quad x+4 y+9 z=16$ using gauss Jordan method. An: $x=7, y=-9, z=5$

6 Apply Gauss Jordan method Solve $2 x_{1}+x_{2}+5 x_{3}+x_{4}=5, x_{1}+x_{2}-3 x_{3}+4 x_{4}=-1$

$$
3 x_{1}+6 x_{2}-2 x_{3}+x_{4}=8, \quad 2 x_{1}+2 x_{2}+2 x_{3}-3 x_{4}=2
$$

Ans: $x_{3}=2 \quad x_{2}=\frac{1}{5} \quad x_{3}=0 \quad x_{4}=\frac{4}{5}$.
7 Solve $5 x_{1}+x_{2}+x_{3}+x_{4}=4, \quad x_{1}+7 x_{2}+x_{3}+x_{4}=12, \quad x_{1}+x_{2}+6 x_{3}+x_{4}=-5$ $x_{1}+x_{2}+x_{3}+4 x_{4}=-5$ by Gauss Jordan Method.

Ans:- $x_{1}=1 \quad x_{2}=2 \quad x_{3}=-1 \quad x_{4}=-2$.
8 Solve $2 x_{1}+x_{2}+2 x_{3}+x_{4}=6, \quad 6 x_{1}-6 x_{2}+6 x_{3}+12 x_{4}=36$.

$$
4 x_{1}+3 x_{2}+3 x_{3}-3 x_{2}=-1,2 x_{1}+2 x_{2}-x_{3}+x_{4}=10
$$

Ans:- $x_{1}=2, x_{2}=1, x_{3}=-1, x_{4}=3$.

Vector:
An ordered n-tuple of numbers is called an n -vector. The n numbers which are called components of the vector maybe written in a horizontal or in a vertical line.

A vector over a real number is called a Real vector and vector over complex numbers is called a complex vector.

Eg:- $\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{lll}1 & 0 & 7\end{array}\right]$ are two vectors.
Linearly dependent set of vectors
A set $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{6}\right\}$ of x vectors is said to be a linearly dependent set if there exist. γ scalars $k_{1}, k_{2}, k_{3} \ldots k_{\gamma}$ not all zero such that $k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}+\cdots+k_{8} x_{0}=0$. Where o dino.

- Les the n vector with components all zero.

Linearly independent set of vectors:
A set $\left\{x_{1}, x_{2}, x_{3}, \ldots x_{8}\right\}$ of x vectors is said to be linearly independent set if the set is not linearly dependent ie if $k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}+\cdots+k_{\gamma} x_{\gamma}=0$. Where 0 denotes the n vector with components all zero.
(1) Show that the system of vectors $(1,3,2)(1,-7,-8)(2,1,-1)$ linearly independent.

Sol: Let $a, b, c \in R$ then

$$
\begin{gathered}
a(1,3,2)+b(1,-7,-8)+c(2,1,-1)=0 \\
(a+b+2 c, \quad 3 a-7 b+c, 2 a-8 b-c)=(0,0,0) \\
a+b+2 c=0 \quad 3 a-7 b+c=0 \quad 2 a-8 b-c=0 \\
a=3 \quad b=1 \quad c=-2 .
\end{gathered}
$$

\therefore The given vectors are Linearly dependent.
(2) Show that the system of vectors $(1,2,0)(0,3,1)(-1,0,1)$ is Linearly independent.

So:- Let $a, b, c \in R$ then

$$
\begin{gathered}
a(1,2,0)+b(0,3,1)+c(-1,0,1)=\overline{0} \\
(a-c, 2 a+3 b, b+0)=(0,0,0) \\
a-c=0 \quad 2 a+3 b=0 \quad b+c=0 . \\
a=0 \quad b=0 \quad b=0 .
\end{gathered}
$$

\therefore The given vectors are Linearly independent.
Note:-
(i) If a set of vectors is linearly dependent then at east ane. vector of the set can be expressed as a linear combination of the remaining vectors.
(ii) If a set of vectors is linearly ind pendent then no vector of the set can be expressed as a linear combination of the remain -ing vectors.

System of Homogeneous Linear. Equations
A set of equations of the form

$$
\left.\begin{array}{l}
a_{11} x_{1}+a_{12} x_{2}+a_{13} x_{3}+\cdots+a_{1 n} x_{n}=0 \tag{1}\\
a_{21} x_{1}+a_{22} x_{2}+a_{23} x_{3}+\cdots+a_{2 n} x_{n}=0 \\
a_{m 1} x_{1}+a_{m 2} x_{2}+a_{m 3} x_{3}+\cdots+a_{m n} x_{n}=0
\end{array}\right\}
$$

is said to be a system of m homogeneous equations in n unknowns $x_{1}, x_{2}, x_{3} \ldots x_{n}, 1$

The matrix form of the given system of equations (1) is $A x=0$
Where $A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\ a_{21} & a_{m 2} & a_{m} & & a_{m n}\end{array}\right]$ is called the coefficient matrix of
the system of equations (1).
$x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]$ is the matrix of unknowns and $0=\left[\begin{array}{c}0 \\ 0 \\ \vdots \\ \vdots \\ 0\end{array}\right]_{m \times 1}$ is the null
matrix of the system of equations (1).

Note:-
(1) The solution $x_{1}=x_{2}=x_{3}=\ldots=x_{n}=0$ i.e $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]=0$ is called a solution of (1) and it is said to be trivial. Solution (zero solution) of the system of homogeneous equations $A X=0$.
(2) Always the system of homogeneous equations consistent ie it contains a solution.
13) Always a system of homogeneous linear equations ie $A x=0$ contains $n-r$ linearly independent solutions, where r being the
rank of the co efficient matrix A and n being the number of variables of the system.
(4) The trivial solution $x=0$ is not linearly independent and it is a lineally dependent solution.
Nature of solutions of $A x=0$:-
Suppose we have m equations in n unknowns Then the coefficient matrix A win be of order $m \times n$. Let r be the rank of the matrix A. Caseli:- If $r=n$, then the given system of equations $A x=0$ will have $n-\gamma=n-n=0$ linearly ind pendent solutions. so in this case the given system possesses a linearly dependent solution i.e only a trivial solution (zero solution).
case (ii):- If $x<n$, then the given system of equations $A x=0$ nr lineally independent solutions. Any linear combination of these solutions will also be a solution of $A x=0$. Thus in this case the given system $A x=0$ contains an infinite number of solutions.

Case (iii): suppose $m<n$ le the number of equations less than the number of unknowns. Since $\gamma \leq m$, there tore γ is definitely less than n.
Hence in this case the given system of equations must possess a non zero solution. So that the number of solutions of the system $A X=0$ will be infinite.

Working Rule:-
Step 1:- First write the matrix equation of the given system of equations
Step 2:- Reduce the coefficient matrix A to echelon form to deter

- mine the rank of A. Let r be the rank of the coefficient matrix A of ores $m \times n$, and n be the number of variables or unknowns of the given system of eqn $A x=0$.
step 3.- Case li:- If $r=n$, then the given system of equations $A X=0$ possesses only a trivial trivial solution (zesosol.) i.e $x_{1}=0 \quad x_{2}=0 \ldots x_{n}=0$ or $x=0$.
case (ii:. - If $x<n$, then the given systion of equations possesses an infinite number of solutions. Of these solutions, $(n-\gamma)$ solutions are linearly independent and the remaining are depending upon them. So we have to assign arbitrary values for $(n-\gamma)$ variables. and the remaining variables are depending upon them
Case(iii): - If $m<n$, then since $\gamma \leq m<n$, here also the given system possesses an infinite number of solutions.

Note:- 11 It A is a non singular matrix i.e. $|A| \neq 0$ then the linear system $A X=0$ has only a trivial solution (zerosolution).
(2) If A is a singular matrix i.e. $|A|=0$, then the linear system $A X=0$ contains ai non zero solution i.e we get an infinite number of solutions.
(1) solve completely the system of equations.

$$
\begin{aligned}
& x+y-3 z+2 w=0, \quad 2 x-y+2 z-3 w=0, \quad 3 x-2 y+z-4 w=0 \\
& -4 x+y-3 z+w=0
\end{aligned}
$$

Sol'- Given that $x+y-3 z+2 w=0$

$$
\begin{aligned}
& 2 x-y+2 z-30=0 \\
& 3 x-2 y+z-4 w=0 \\
& -4 x+y-3 z+w=0
\end{aligned}
$$

$+\omega \Rightarrow$ There are 3 equ's 3 unknown y x y and z.
The matrix equation of the given system of equations is $A x=0$.

$$
A=\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
2 & -1 & 2 & -3 \\
3 & -2 & 1 & -4 \\
-4 & 1 & -3 & 1
\end{array}\right] \text { system of equations and } x=\left[\begin{array}{c}
x \\
y \\
3 \\
w
\end{array}\right]
$$

$$
A=\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
2 & -1 & 2 & -3 \\
3 & -2 & 1 & -4 \\
-4 & 1 & -3 & 1
\end{array}\right]
$$

Now we have to reduce the co efficient matrix A to echelon tom by applying E-row transformations only and determine the rank of A.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}-2 R_{1}, R_{3} \rightarrow R_{3}-3 R_{1} R_{4} \rightarrow R_{4}+4 R_{1} . \\
& \infty\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0(3-5 & 10 & -10 \\
0 & -15 & 9
\end{array}\right] \\
& R_{3} \rightarrow 3 R_{3}-5 R_{2}, \quad R_{4} \rightarrow 3 R_{4}+5 R_{2} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0 & 0 & -10 & 5 \\
0 & 0 & -5 & -8
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& R_{4} \rightarrow 2 R_{4}-R_{3} \\
& \sim\left[\begin{array}{cccc}
1 & 1 & -3 & 2 \\
0 & -3 & 8 & -7 \\
0 & 0 & -10 & 5 \\
0 & 0 & 0 & -21
\end{array}\right]
\end{aligned}
$$

$\therefore P(A)=x=4=$ The No. of non zero rows of equivalent to. $\operatorname{mat} r i x A$.
i.e $r=4=n$ ie. the number of unknowns of the given system.

Hence the given system of equations contains only a trivial solution
$\therefore x=y=z=w=0$ is the only solution of the given system of equations.
\rightarrow Solve completely the system of equations

$$
\begin{aligned}
& x-2 y+z-w=0 \quad x+y-2 z+3 w=0 \quad 4 x+y-5 z+8 w=0 \quad \text { and } \\
& 5 x-7 y+2 z-w=0
\end{aligned}
$$

sol:- Given that $x-2 y+z-w=0$

$$
\begin{aligned}
& x+y-2 z+3 w=0 \\
& 4 x+y-5 z+8 w=0 \\
& 5 x-7 y+2 z-w=0
\end{aligned}
$$

\rightarrow There are 3 equ's in 4 unknowns x, y and z, w. The matrix firm of the given system of equations is $A x=0$. Where

$$
\begin{gathered}
A=\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
1 & 1 & -2 & 3 \\
4 & 1 & -5 & 8 \\
5 & -7 & 2 & -1
\end{array}\right] \quad x=\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right] \quad 0=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] \\
A=\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
1 & 1 & -2 & 3 \\
4 & 1 & -5 & 8 \\
5 & -7 & 2 & -1
\end{array}\right]
\end{gathered}
$$

Now we reduce the matrix A to echelon form by applying E-row operations only

$$
\begin{gathered}
R_{2} \rightarrow R_{2}-R_{1} \quad R_{3} \longrightarrow R_{3}-4 R_{1} \quad R_{4} \rightarrow R_{4}-5 R_{1} \\
0\left[\begin{array}{rrrr}
1 & -2 & 1 & -1 \\
0 & 3 & -3 & 4 \\
0 & 9 & -9 & 12 \\
0 & 3 & -3 & 4
\end{array}\right] \\
R_{3} \rightarrow R_{3}-3 R_{2}, R_{4} \rightarrow R_{4}-R_{2} \\
A \sim\left[\begin{array}{cccc}
1 & -2 & 1 & -1 \\
0 & 3 & -3 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

Which is in echelon from.
Here $P(A)=r=2=$ The no. if non $z e r o$ routs equivalent to A.

$$
P(A)=2<4(\text { No. .t unknowns) }
$$

So that the given system possesses an infinite no. th sol's. of these $n-r=4-2=2$ are linearly independent and the remaining are depending upon them.
so we have to assign arbitrary values tor 2 variables and the. remaining 2 variables are depending upon them.
Now the equivalent matrix ear of $A x=0$ is

$$
\left[\begin{array}{rrrr}
1 & -2 & 1 & -1 \\
0 & 3 & -3 & 4 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

The linear equ's are

$$
\begin{aligned}
x-2 y+z-w & =0 \\
3 y-3 z+4 w & =0
\end{aligned}
$$

choose

$$
\begin{aligned}
& y=k_{1} \\
& 4 w=3 z-3 y \\
& w=\frac{3 k_{2}-3 k_{1}}{4} \\
& x=2 y-z+w \\
&=2 k_{1}-k_{2}+\frac{3 k_{2}-3 k_{1}}{4} \\
& x=\frac{5 k_{1}-k_{2}}{4}
\end{aligned}
$$

$$
\left[\begin{array}{c}
x \\
y \\
z \\
w
\end{array}\right]=\left[\begin{array}{c}
\frac{5 k_{1}-k_{2}}{4} \\
k_{1} \\
k_{2} \\
\frac{3 k_{2}-3 k_{1}}{4}
\end{array}\right]=k_{1}\left[\begin{array}{c}
\frac{5}{4} \\
1 \\
0 \\
\frac{-3}{4}
\end{array}\right]+k_{2}\left[\begin{array}{c}
-\frac{1}{4} \\
0 \\
1 \\
\frac{3}{4}
\end{array}\right]
$$

is the general

Solution of the given system of equations.
\rightarrow Solve completely the system ob equations $4 x+2 y+z+3 \mu=0$

$$
\begin{aligned}
& 6 x+3 y+4 z+7 x=0 \\
& 2 x+y+x=0 .
\end{aligned}
$$

sol:- Given that

$$
\begin{aligned}
& 4 x+2 y+z+3 u=0 \\
& 6 x+3 y+4 z+4=0 \\
& 2 x+y+11=0
\end{aligned}
$$

\rightarrow There are 3 equs in 4 unknowns x, y, z and l, The matrix from of the given system of equations is $A x=0$ where $A=\left[\begin{array}{llll}4 & 2 & 1 & 3 \\ 6 & 3 & 4 & 7 \\ 2 & 1 & 0 & 1\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z \\ y\end{array}\right] \quad 0=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
A=\left[\begin{array}{llll}
4 & 2 & 1 & 3 \\
6 & 3 & 4 & 7 \\
2 & 1 & 0 & 1
\end{array}\right]
$$

Now we reduce the matrix A to echelon form by applying E-row operations only.

$$
\begin{gathered}
R_{2} \rightarrow 2 R_{2}-3 R_{1} \quad R_{3} \rightarrow 2 R_{3}-R_{1} \\
{\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & -1 & -1
\end{array}\right]} \\
R_{3} \rightarrow 5 R_{3}+R_{2} \\
{\left[\begin{array}{cccc}
4 & 2 & 1 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]}
\end{gathered}
$$

Which is in echelon term.
Here $P(A)=2=r=$ The No nt non zero rows equivalent to A.

$$
P(A)=2<4(\text { No. ot unknowns })
$$

So that the given system et equations has an infinite no. of solutions. of these solutions. $n-r=4-2=2$ are linciady independent and the remaining are defending upon them.

So we have to assign arbitraly values for 2 variables and the remaining 2 variables are depending upon them.
Now the equivalent matrix equation of $A X=0$ is

$$
\left[\begin{array}{llll}
4 & 2 & 1 & 3 \\
0 & 0 & 5 & 5 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z \\
x
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equations are

$$
\begin{gathered}
4 x+2 y+z+3 l=0 \\
2+l=0 \\
y=k_{1} \\
z=k_{2}
\end{gathered}
$$

$$
\begin{aligned}
& \mu=-z \\
& \mu=-k_{2} \\
& 4 x=-2 y-2-3 \mu \\
&=-2 k_{1}-k_{2}+3 k_{2} \\
& 4 x=2 k_{2}-2 k_{1} \\
& x=\frac{k_{2}-k_{1}}{2} \\
& {\left[\begin{array}{l}
x \\
y \\
z \\
\mu
\end{array}\right]=\left[\begin{array}{c}
\frac{k_{2}-k_{1}}{2} \\
k_{1} \\
k_{2} \\
-k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-\frac{1}{2} \\
1 \\
0 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
\frac{1}{2} \\
0 \\
1 \\
-1
\end{array}\right] \quad \text { is the general solution } }
\end{aligned}
$$

of given system of equations where k_{1}, k_{2} are arbitrary constants.
Here the two L.I solution are $x_{1}=\left[\begin{array}{c}-\frac{1}{2} \\ 1 \\ 0 \\ 0\end{array}\right] x_{2}=\left[\begin{array}{c}\frac{1}{2} \\ 0 \\ 1 \\ -1\end{array}\right]$.
solve the following system of equations for all values of k.

$$
\begin{aligned}
& 2 x+3 k y+(3 k+4) z=0, \quad x+(k+4) y+(4 k+2) z=0 \\
& x+2(k+1) y+(3 k+4) z=0 .
\end{aligned}
$$

Sol:- Given that the system of equations are

$$
\left.\begin{array}{l}
2 x+3 k y+(3 k+4) z=0 \tag{1}\\
x+(k+4) y+(4 k+2) z=0 \\
x+2(k+1) y+(3 k+4) z=0
\end{array}\right]
$$

\rightarrow There are 3 cauls in 3 unknowns x, y and z.
The matrix form of the given system of equations is $A x=0$-(2)
Where $A=\left[\begin{array}{lll}2 & 3 k & 3 k+4 \\ 1 & k+4 & 4 k+2 \\ 1 & 2(k+1) & 3 k+4\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad D=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
We know that If the coefficient matrix A is singular ie $|A|=0$ then the linear system $A x=0$ contains a non zero solution ie we get an infinite number of solution.

$$
\left.\begin{aligned}
& |A|=0 \quad \text { i.e }\left|\begin{array}{ccc}
2 & 3 k & 3 k+4 \\
1 & k+4 & 4 k+2 \\
1 & 2 k+2 & 3 k+4
\end{array}\right|=0 \\
& R_{1} \leftrightarrow R_{2} \\
& \left|\begin{array}{ccc}
1 & k+4 & 4 k+2 \\
2 & 3 k & 3 k+4 \\
1 & 2 k+2 & 3 k+4
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}-2 k 1
\end{aligned} \right\rvert\, \begin{aligned}
& R_{3} \rightarrow R_{3}-R_{1} \\
& \left|\begin{array}{ccc}
1 & k+4 & 4 k+2 \\
0 & k-6 & -5 k \\
0 & k-2 & -(k+2) \mid
\end{array}\right|=0 \\
& (k-2)\left|\begin{array}{ccc}
1 & k+4 & 4 k+2 \\
0 & k-4 & -5 k \\
0 & 1 & -1
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{gathered}
(k-2)[8-k+5 k]=0 \\
(k-2)(4 k+8)=0 \\
k= \pm 2 .
\end{gathered}
$$

Case (i): When $k \neq \pm 2$, then the given system of equations possesses a zero solution i.e trivial solution. i.e $x=y=z=0$.
case (ii): - When $k=2$

$$
A=\left[\begin{array}{lll}
2 & 6 & 10 \\
1 & 6 & 10 \\
1 & 6 & 10
\end{array}\right]
$$

Now reduce the matrix A to echelon form by applying elementary row operations and determine the rank of A.

$$
R_{2} \rightarrow 2 R_{2}-R_{1}, R_{3} \rightarrow R_{3}-R_{2}
$$

$$
\sim\left[\begin{array}{lll}
2 & 0 & 10 \\
0 & 0 & 10 \\
0 & 0 & 0
\end{array}\right]
$$

\rightarrow Which is in echelon form.

$$
\therefore P(A)=2=\text { The No. of non zero rows equivalent to } A \text {. }
$$

$$
\therefore P(A)=2<3 \text { (No. of unknowns) }
$$

So that the given system of equs contains an infinite number of solutions. of these $n-r=3-2=1$ L. I solutions
We have to assign an arbitrary values for 1 variable and remaining ε variables are depending upon them.
The equivalent matrix equation of $A x=0$ is

$$
\left[\begin{array}{ccc}
2 & 6 & 10 \\
0 & 6 & 10 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equations are

$$
\begin{aligned}
2 x+6 y+10 z & =0 \\
6 y+10 z & =0
\end{aligned}
$$

choose $y=k-1$

$$
\begin{aligned}
10 z & =-6 y \\
z & =-\frac{3}{5} k
\end{aligned}
$$

$$
\begin{aligned}
& x=-3 y-52 \\
& x=-341-5 \cdot\left(-\frac{3}{5}\right)^{k} \\
& x=0 .
\end{aligned}
$$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
0 \\
k_{1} \\
-\frac{3}{5} k_{1}
\end{array}\right]
$$

Where k is angerbitraly constant.

Case(iii): When $k=-2$

$$
A=\left[\begin{array}{ccc}
2 & -6 & -2 \\
1 & 2 & -6 \\
1 & -2 & -2
\end{array}\right]
$$

Now reduce the matrix A to echelon form by applying E-row operations only and determine the rank of A.

$$
\begin{aligned}
& R_{2} \rightarrow 2 R_{2}-R_{1}, R_{3} \rightarrow 2 R_{3}-R_{1} \\
& \sim\left[\begin{array}{ccc}
2 & -6 & -2 \\
0 & 10 & -10 \\
0 & 2 & -2
\end{array}\right] \\
& R_{3}-5 R_{3}+R_{2} \\
& \sim\left[\begin{array}{ccc}
2 & -6 & -2 \\
0 & 10 & -10 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which is in echelon form
$\therefore P(A)=2=$ The no. of non zero rows equivalent to A.
$\therefore P(A)=2<3$ (No. of unknowing)
So that the given system of equ's contains an infinite no. do solutions of these $n-r=3-2=1$ L. i solution.
We have to assign an arbitrary values for $n-r=3-2=1$ variable. and remaining 2 variables are depending upon them.

The equivalent matrix equation of $A X=0$ is

$$
\left[\begin{array}{ccc}
2 & -6 & -2 \\
0 & 10 & -10 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equ's are $2 x-6 y-2 z=0$

$$
\begin{aligned}
10 y-10 z & =0 \\
& \Rightarrow y-z=0 .
\end{aligned}
$$

chase $y=k_{1}$

$$
\begin{aligned}
& z=y=k_{1} \\
& x=\frac{6 y+2 z}{2}=\frac{6 k_{1}+2 k-1}{2} \\
& x=4 k_{1}
\end{aligned}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}A k_{1} \\ k_{1} \\ k_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}4 \\ 1 \\ 1\end{array}\right]$ is
system when $k=-2$, where k_{1} is an arbitrary constant
\rightarrow Find the values of k two with the equations

$$
(k-1) x+(3 k+1) y+2 k z=0, \quad(k-1) x+(4 k-2) y+(k+3) z=0
$$

$2 x+(3 k+1) y+(3 k-3) z=0$ are consistent and find the ratios of
$x: y: z$ when k has the smallest of these values. What happens when k has the greatest of there values.

Sol: Given that $(k-1) x+(3 k+1) y+2 k z=0$

$$
\begin{aligned}
& (k-1) x+(3 k-1) x+(4 k-2) y+(k+3) z=0 \\
& 2 x+(3 k+1) y+(3 k-3) z=0
\end{aligned}
$$

\rightarrow There are 3 equ's in 3 unknowns x, y and z The matrix from of the given system of equations is $A x=0$.

$$
\begin{aligned}
& \text { The matrix form of the given system od } \\
& \text { Where } A=\left[\begin{array}{ccc}
k-1 & 3 k+1 & 2 k \\
k-1 & 4 k-2 & k+3 \\
2 & 3 k+1 & 3 k-3
\end{array}\right] x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] 0=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
&
\end{aligned}
$$

We know that If the coefficient matrix A is singular ie $|A|=0$ then the linear, system $A X=0$ contains a non zero solution i.c. we get an infinite number of solutions.

$$
\begin{aligned}
& |A|=0 \quad \text { ide }\left|\begin{array}{ccc}
k-1 & 3 k+1 & 2 k \\
k-1 & 4 k-2 & k+3 \\
2 & 3 k+1 & 3 k-3
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}-R_{1} \\
& \left|\begin{array}{ccc}
k-1 & 3 k+1 & 2 k \\
0 & k-3 & 3-k \\
2 & 3 k+1 & 3 k-3
\end{array}\right|=0 \\
& \mathrm{C}_{3} \rightarrow \mathrm{C}_{3}+\mathrm{C}_{2} \\
& \left|\begin{array}{ccc}
k-1 & 3 k+1 & 5 k+1 \\
0 & k-3 & 0 \\
2 & 3 k+1 & 6 k-2
\end{array}\right|=0 . \\
& (k-3)[(k-1)(6 k+2)-2(5 k+1)]=0 \text {. } \\
& (k-3) 6 k(k-3)=0 \\
& k(k-3)^{2}=0 \\
& \therefore \quad k=0,3,3 \text {. }
\end{aligned}
$$

case (i) when $k=0:-$

$$
A=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
-1 & -2 & 3 \\
2 & 1 & -3
\end{array}\right]
$$

Now reduce the matrix A into Echelon term by applying element tare row operations only

$$
\begin{aligned}
& \text { ions only } \\
& R_{2} \rightarrow R_{2}-R_{1} \\
& {\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -3 & 3 \\
0 & R_{3} & \rightarrow R_{3}+2 R
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]}
\end{aligned}
$$

Which is in Echolonterm.
$P(A)=2=$ No. ct Non zero rows equivalent to A.

$$
P(A)=2<3 \text { (No .if unknowns) }
$$

So that the given system of equations contains an infinite no. of solutions. of these $n-\gamma=3-2=1 L$. I solution.
To determine this, we have to assign an arbitrary values for $n-\gamma=3-2=1$ variable.

An equivalent matrix equation of $A x=0$ is

$$
\left[\begin{array}{ccc}
-1 & 1 & 0 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equations are

$$
\begin{aligned}
& -x+y=0 \\
& -3 y+3 z=0 \Rightarrow y-z=0
\end{aligned}
$$

choose $z=k$.

$$
\begin{aligned}
& y-z=0 \Rightarrow y=z=k_{1} . \\
& -x+y=0 \Rightarrow x=y=k_{1} .
\end{aligned}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{-1} \\ k_{1}\end{array}\right]$ is the solution of given system

$$
\therefore \quad x: y: z=1: 1: 1
$$

Case (ii) when $k=3:$

$$
A=\left[\begin{array}{lll}
2 & 10 & 6 \\
2 & 10 & 6 \\
2 & 10 & 6
\end{array}\right]
$$

When $k=3$, The system of equations $A X=0$ becomes identical.
\rightarrow Solve the system completely for all values of $\lambda, \lambda x+y+z=0$, $x+\lambda y+z=0, \quad x+y+\lambda z=0$.
Sol:- Given that $\lambda x+y+z=0, x+\lambda y+z=0, x+y+\lambda z=0$
\rightarrow There, are 3 eqn's in 3 unknowns x, y and z.
The matrix from of the given system (i) is $A x=0$

$$
\text { where } A=\left[\begin{array}{lll}
\lambda & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right] \quad x=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] \quad 0=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

We know that If the coefficient matrix A is singular i.e $|A|=0$ then the linear system $A x=0$ contains a non zero solution ie. we get an infinite no. of solutions.

$$
\begin{aligned}
&|A|=0 \quad i \cdot e \quad\left|\begin{array}{ccc}
\lambda & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right|=0 \\
& R_{1} \rightarrow R_{1}+R_{1}+\lambda_{3} \\
&\left|\begin{array}{ccc}
\lambda+2 & \lambda+2 & \lambda+2 \\
1 & \lambda & \vdots \\
1 & 1 & \lambda
\end{array}\right|=0
\end{aligned}
$$

$$
\left.\begin{gathered}
(\lambda+2)\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & \lambda & 1 \\
1 & 1 & \lambda
\end{array}\right|=0 \\
c_{2} \rightarrow c_{2}-c_{1} \\
(\lambda+2) \\
\left(\lambda-c_{3}-c_{1}\right. \\
1
\end{gathered} 00 \begin{array}{ccc}
1 & \lambda-1 & 0 \\
1 & 0 & \lambda-1
\end{array} \right\rvert\,=0 .
$$

Caseli):- When $\lambda \neq 1,-2$, then the given system of equations possesses a zero solution ie trivial solution.

$$
\therefore \quad x=y=z=0 .
$$

case (Ii):- when $\lambda=-2$

$$
A=\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]
$$

Now reduce the matrix A to echelon form by applying element - tarry now operations only and determine the rank of A.

$$
\begin{aligned}
R_{2} & \rightarrow 2 R_{2}+R_{1}, R_{3} \rightarrow 2 R_{3}+R_{1} \\
& \sim\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+R_{2} \\
& \sim\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

$\therefore P(A)=2=$ The No. of non zero rows equivalent to A

$$
P(A)=2 \angle 3(\text { No. of ink nowns })
$$

Sothat the given system of equ's contains an infinite no.ot solutions. of these $n-x=3-2=1$ L.I solution.

To determine this, we have to assign an arbitrary values tor $n-r=3-2=1$ variable and remaining 2 variables are depending upon them.
The equivalent matrix eqn. of $A x=0$ is

$$
\left[\begin{array}{rrr}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equ's are $-2 x+y+z=0$

$$
-3 y+3 z=0 \Rightarrow y-z=0
$$

choose $z=k+$

$$
\begin{gathered}
y=z=k_{1} \\
2 x=y+z \\
2 x=k_{1}+k_{1} \\
x=k_{1}
\end{gathered}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{1} \\ k_{1}\end{array}\right]$ where k, is arbitrary constant, is the
solution of the given system when $\lambda=-2$.
Case (iii):- when $\lambda=1$

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]
$$

Now reduce the matrix A to echelon form by applying elementary row operations only and determine the rank of A.

$$
R_{2} \rightarrow R_{2}-R_{1} \quad R_{3} \rightarrow R_{3}-R_{1}
$$

$$
\mu\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$\therefore P(A)=1=$ The No. of non zero sows equivalent to A.

$$
P(A)=1 \angle 3(\text { No. of unknowns) }
$$

So that the given system of equ's contains an infinite no. of solutions of these $n-r=3-1=2$ L.I solutions.
To determine this, we have to assign an arbitrary values for $n-r=3-1=2$ variables and remaining 1 variable. is depending upon them.
The equivalent matrix equation of $A x=0$ is

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear eqn. is $x+y+z=0$
choose $y=k_{1}, z=k_{2}$

$$
\therefore x=\left[\begin{array}{c}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{cc}
-k_{1} & -k_{2} \\
k_{1} \\
k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right] \text { where } k_{1} \text { and } k_{2}
$$

are arbitrary constants, is the solution of the given system.
Here the two LI solutions are $x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] x_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$.

Show that the only real number λ tor which the system. $x+2 y+3 z=\lambda x, \quad 3 x+y+2 z=\lambda y, \quad 2 x+3 y+z=\lambda z$ has a. non zero Solution is 6 and solve them when $\lambda=6$.
sol:- Given system can be written as $(1-\lambda) x+2 y+3 z=0$.

$$
\left.\begin{array}{l}
3 x+(1-\lambda) y+2 z=0 \tag{1}\\
2 x+3 y+(1-\lambda) z=0
\end{array}\right\}
$$

There are 3 equ's in 3 unknowns x, y and z.
The matrix form of the given system is $A x=0$.
Where $A=\left[\begin{array}{ccc}1-\lambda & 2 & 3 \\ 3 & 1-\lambda & 2 \\ 2 & 3 & 1-\lambda\end{array}\right] \quad x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right] \quad 0=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
We know that It the coeff matrix A is singular i.e. $|A|=0$. then the linear system $A X=0$ contains a non zero solution ice we get an infinite no. of solutions.

$$
\begin{array}{r}
|A|=0 \text { i.e }\left|\begin{array}{ccc}
1-\lambda & 2 & 3 \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right|=0 \\
R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
\left|\begin{array}{ccc}
6-\lambda & 6-\lambda & 6-\lambda \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right|=0 \\
(6-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
3 & 1-\lambda & 2 \\
2 & 3 & 1-\lambda
\end{array}\right|=0 \\
c_{2} \rightarrow c_{2}-c_{1} \\
c_{3} \rightarrow c_{3}-c_{1} \\
(6-\lambda)\left|\begin{array}{ccc}
1 & 0 & 0 \\
3 & -\lambda-2 & -1 \\
2 & 1 & -\lambda-1
\end{array}\right|=0
\end{array}
$$

$$
\begin{gathered}
(6-\lambda)[(\lambda+2)(\lambda+1)+1]=0 \\
(6-\lambda)\left(\lambda^{2}+3 \lambda+3\right)=0 \\
\lambda=6,-\frac{3}{2} \pm \frac{\sqrt{3}}{2} i
\end{gathered}
$$

\therefore The given system have non zero solution for only real number $\lambda=6$.
case- (i) when $\lambda=6$.

$$
A=\left[\begin{array}{ccc}
-5 & 2 & 3 \\
3 & -5 & 2 \\
2 & 3 & -5
\end{array}\right]
$$

Now reduce the matrix A to echelon form by applying element - Very row operations only and determine the rank of A.

$$
\begin{aligned}
& R_{2} \rightarrow 5 R_{2}+3 R_{1} \quad R_{3} \rightarrow 2 R_{1}+5 R_{3} \\
& {\left[\begin{array}{ccc}
-5 & 2 & 3 \\
0 & -19 & 19 \\
0 & 19 & -19
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
-5 & 2 & 3 \\
0 & -19 & 19 \\
0 & 0 & 0
\end{array}\right]} \\
& \text { Which is in echelon form. }
\end{aligned}
$$

$P(A)=2=$ The no. ff non zero rows equivalent to A.

$$
\begin{aligned}
& P(A)=2=T \text { unknowing }) \\
& P(A)=2<3(\text { No. of }
\end{aligned}
$$

sothat the given system ot equ's contains an infinite no. ot solutions of these $n-r=3-2=1$ L.I solution.
To determine this we have to assign an asbitracy values fer $n-r=3-2=1$ variable and remaining 2 variables are depending -upon them.

The equivalent matrix eqn of $A x=0$ is

$$
\left[\begin{array}{ccc}
-5 & 2 & 3 \\
0 & -19 & 19 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The linear equ's are $-5 x+2 y+3 z=0$

$$
\begin{aligned}
& -19 y+19 z=0 \\
& \Rightarrow y-z=0
\end{aligned}
$$

choose $z=k$

$$
\begin{aligned}
y & =z=k_{1} \\
5 x & =2 y+3 z \\
5 x & =2 k_{1}+3 k_{1} \\
x & =k_{1}
\end{aligned}
$$

$\therefore x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{1} \\ k_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ where
is the solution of the given system.

SYSTEM OF HOMOGENEOUS LINEAR EQUATIONS.
1 Find all the solutions of the following homogeneous systems.
(a) $3 x+y+2 z=0, \quad x-2 y+3 z=0, x+5 y-4 z=0$.

Ans: $x=-k, y=z=k$.
(b) $x+y+2 z=0, \quad 3 x+4 y-7 z=0,-x-2 y+11 z=0$.

Ans: $x=-15 k, y=13 k, z=k$.
(c) $x+2 y+3 z+4 w=0, x+y+z+w=0, x+2 y+6 z+12 w=0$.

Ans:- $x=-2 \alpha / 3, y=7 \alpha / 3 \quad z=-8 \alpha / 3 \quad \omega=\alpha$.
(d) $x+y+z+w=0,-x+y+z-w=0,-x-y+z+w=0, x+y-z+w=0$.

Ans:- $x=y=z=w=0$.
(e) $2 x-y-3 z+w=0, x+y+z+w=0,2 x-7 y-13 z-w=0,-x+5 y+9 z+w=0$

Ans: $\quad x=\frac{2}{3}\left(k_{2}-k_{1}\right), y=\frac{-1}{3}\left(5 k_{2}+k_{1}\right) \quad z=k_{2} \quad w=k_{1}$,
(f) $3 x+y+z+4 w=0,4 y+10 z+w=0, \quad x+7 y+17 z+3 w=0,2 x+2 y+4 z+3 w=0$.

Ans:- $x=(2 \beta-5 \alpha) / 4 \quad y=-(10 \beta+\alpha) / 4 \quad z=\beta, \omega=\alpha$.
(g) $3 x-11 y+5 z=0,4 x+y-10 z=0,4 x+9 y-6 z=0$ Ans:- $x=y=z=0$.
(h) $\quad x+y-3 z+2 \omega=0, \quad 2 x-y-2 z-3 \omega=0, \quad 3 x-5 y-\omega=0,5 x-y-7 z-4 \omega=0$.

Ans: $x=\left.(\alpha+5 \beta)\right|_{3} \quad y=(4 \beta-7 \alpha) \mid 3 \quad z=\beta \quad w=\alpha$.
(i) $x+y-2 z-w=0, \quad 2 x+y-z-2 \omega=0, \quad 3 x+2 y-z-3 w=0,4 x+2 y+2 z-4 \omega=0$.

Ans: $x=k_{1}-2 k_{2}, \quad y=5 k_{2}, \quad z=k_{2} \quad \omega=k_{1}$.
(j) $3 x-11 y+5 z=0, \quad 4 x+y-10 z=0, \quad 4 x+9 y-6 z=0 \quad$ Ans: $\quad x=y=z=0$.

2 If a, b, c are distinct non zero numbers show that the homogeneous System $\left[\begin{array}{lll}a & b & c \\ a^{2} & b^{2} & c^{2} \\ a^{3} & b^{3} & c^{2}\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ has no non trivial solution.

3 Solve the system $\quad 2 x+y+2 z=0, \quad x+y+3 z=0,4 x+3 y+8 z=0$
Ans: $\quad x=k \quad y=-4 k \quad 2=k$.

4 Determine the values of λ tor which the following set of equations may possess non trivial solution. $3 x_{1}+x_{2}-x_{3}=0,4 x_{1}-2 x_{2}-3 x_{3}=0$.

$$
\begin{aligned}
& 2 \lambda x_{1}+4 x_{2}+\lambda x_{3}=0 . \quad \text { Ans: } \quad \lambda=1,-9 ; \quad x_{3}=2 k, x_{2}=6 k, x_{3}=-\frac{4}{3} k ; \\
& x_{1}=k_{1} \quad x_{2}=-k_{1} \quad x_{3}=2 k_{1} .
\end{aligned}
$$

5 Solve the system of equations $x+2 y+(2+k) z=0,2 x+(2+k) y+4 z=0$. $7 x+13 y+(18+k) z=0$ tor all values of k. Ans $\because k=1, \frac{4}{3}$.

$$
x=1 \quad y=-2 k \quad z=k \quad, \quad x=\frac{14}{3} k \quad y=-4 k \quad z=k
$$

6 Solve the system $\lambda x+y+z=0, x+\lambda y+z=0, x+y+\lambda z=0$ it the system has non zero Solution only Ans: $\lambda=1,-2, \quad x=-k_{1}-k_{2}, y=k_{1}, z=k_{2}$..

$$
x=y=z=k
$$

7 Show that the only real number λ tor which the system $x+2 y+3 z=\lambda x$, $3 x+y+2 z=\lambda y, 2 x+3 y+z=\lambda z$ has non zero solution is b and solve. them when $\lambda=b$.
8 Solve $2 x+3 k y+(3 k+4) z=0, x+(k+4) y+(4 k+2) z=0, x+2(k+1) y+(3 k+4) z=0$ Ans:- $k=2,-2, x=0 \quad y=-\frac{5}{3} k_{1} z=k, \quad x=4 k_{2}, y=k_{2} \quad z=k_{2}$.
9 Find the values of λ for which the equations $(\lambda-1) x+(3 \lambda+1) y+2 \lambda z=0$. $(\lambda-1) x+(4 \lambda-2) y+(\lambda+3) z=0, \quad 2 x+(3 \lambda+1) y+3(\lambda-1) z=0$. are consistent and find the ratio of $x: y: 2$ when λ has the smallest of these values. what happens λ has the greatest of these values.
10 : Show that the system of equations $2 x_{1}-2 x_{2}+x_{3}=\lambda x_{1} \rightarrow$ $2 x_{1}-3 x_{2}+2 x_{3}=\lambda x_{2},-x_{1}+2 x_{2}=\lambda x_{3}$ can possess a non trivial solution only if $\lambda=1, \lambda=\beta$ obtain the general solution in each case.

11 Solve $4 x+2 y+z+3 \mu=0, \quad 2 x+y+\mu=0, \quad 6 x+3 y+4 z+7 u=0$
Ans: $x=-\frac{1}{2}\left(c_{1}+c_{2}\right) \quad y=c_{1}, z=-c_{2}$ and $u=c_{2}$.
12 Solve $x+3 y-2 z=0,2 x-y+4 z=0, x-11 y+14 z=0$.
Ans: $\quad x=-\frac{10}{7} k, \quad y=\frac{8}{7} k \quad z=k$.

Problems on L.I and L.D set of vectors ;-
\rightarrow Examine the following vectors for linear dependence or indepen - dence. If dependent, find the relation amongest them.

$$
x_{1}=(2,-1,3,2) \cdot x_{2}=(3,-5,2,2) \quad x_{3}=(1,3,4,2)
$$

Sol:- Given that $x_{1}=(2,-1,3,2) \quad x_{2}=(3,-5,2,2) \quad x_{3}=(1,3,4,2)$.
Let $\quad k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}=0$

$$
k_{1}(2,-1,3,2)+k_{2}(3,-5,2,2)+k_{3}(1,3,4,2)=\overline{0} \text {. }
$$

$$
\begin{aligned}
& k_{1}(2,-1,3,2)+k_{2}(3,-5,2,2) \\
& \left(2 k_{1}+3 k_{2}+k_{3},-k_{1}-5 k_{2}+3 k_{3}, 3 k_{1}+2 k_{2}+4 k_{3}, 2 k_{1}+2 k_{2}+2 k_{3}\right)=(0,0,0,0)
\end{aligned}
$$

Equating corresponding components,

$$
\begin{align*}
& 2 k_{1}+3 k_{2}+k_{3}=0 . \\
& -k_{1}-5 k_{2}+3 k_{3}=0 \tag{1}\\
& 3 k_{1}+2 k_{2}+4 k_{3}=0 \\
& 2 k_{1}+2 k_{2}+2 k_{3}=0 .
\end{align*}
$$

The matrix form of the system (1) is $A X=0$. in 3 unknowns.

$$
\text { Where } A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -5 & 3 \\
3 & 2 & 4 \\
2 & 2 & 2
\end{array}\right] x=\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right] \quad 0=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

$$
A=\left[\begin{array}{ccc}
2 & 3 & 1 \\
-1 & -5 & 3 \\
3 & 2 & 4 \\
2 & 2 & 2
\end{array}\right]
$$

Now reduce the matrix A into echelon form by applying element - Easy row operations only.

$$
R_{2} \rightarrow 2 R_{2}+R_{1}, R_{3} \rightarrow 2 R_{3}-3 R_{1}, R_{4} \rightarrow R_{4}-R_{1}
$$

$$
\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & -7 & 7 \\
0 & \cos -5 & 5 \\
0 & -1-1 & 1
\end{array}\right]
$$

$$
\begin{aligned}
R_{3} \rightarrow 7 R_{3}-5 R_{2}, & R_{4} \rightarrow 7 R_{4}-R_{2} \\
& \sim\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & -7 & 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

Which is in echelon form.
$P(A)=2=$ No. of non zero rows of last equivalent to A.

$$
\therefore P(A)=2<3 \text { (No .ot unknown) }
$$

So that the given system have an infinite no. ot solutions (Non trivial) of these $n-r=3-2=1$ L. I solution.
To determine this we have to assign an arbitrary value tor $n-r=3-2=$ variable and the remaining are depending upon them. Now the equivalent matrix equation of $A x=0$ is.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
2 & 3 & 1 \\
0 & -7 & 7 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right]} \\
& 2 k_{1}+3 k_{2}+k_{3}=0 \\
& -7 k_{2}+7 k_{3}=0 \Rightarrow k_{2}-k_{3}=0
\end{aligned}
$$

$$
\text { choose } k_{3}=t
$$

$$
\therefore k_{1}=-2 t \quad k_{2}=t \quad k_{3}=t-
$$

Since k_{1}, k_{2}, k_{3} are not all zero, the vectors are $L . I$. We have $k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}=0$.

$$
\begin{array}{r}
-2 t x_{1}+t x_{2}+t x_{3}=0 \\
2-x_{1}=x_{2}+x_{3}
\end{array}
$$

Examine tor linear dependence or independence of vectors $x_{1}=(1,1,-1) \quad x_{2}=(2,3,5) \quad x_{3}=(2,-1,4)$. If dependent find the relation between them.

Sol:- Given that $x_{1}=(1,1,-1) \quad x_{2}=(2,3,5) \quad x_{3}=(2,-1,4)$
Let $k_{1} x_{1}+k_{2} x_{2}+k_{3} x_{3}=\overline{0}$

$$
\begin{aligned}
& \text { Let } k_{1} x_{1}+k_{2} k_{2}, k_{2}(2,3,5)+k_{3}(2,-1,4)=0 \\
& k_{1}(1,1,-1)+k_{2}\left(2, k_{1}+5 k_{2}+4 k_{3}\right)=(0,0,0) \\
& \left(k_{1}+2 k_{2}+2 k_{3}, k_{1}+3 k_{2}-k_{3},-k_{1},\right.
\end{aligned}
$$

Equating corresponding components.

$$
\begin{align*}
& k_{1}+2 k_{2}+2 k_{3}=0 \tag{1}\\
& k_{1}+3 k_{2}-k_{3}=0 \\
& -k_{1}+5 k_{2}+4 k_{3}=0
\end{align*}
$$

There are 3 equ's in 3 unknowns.
The matrix form of the given system (1) is $A x=0$.
Where $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 1 & 3 & -1 \\ -1 & 5 & 4\end{array}\right] \quad x=\left[\begin{array}{l}k_{1} \\ k_{2} \\ k_{3}\end{array}\right] \quad 0=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$

$$
A=\left[\begin{array}{ccc}
1 & 2 & 2 \\
1 & 3 & -1 \\
-1 & 5 & 4
\end{array}\right]
$$

Now reduce the matrix A into echelon form by applying elementary row operations only.

$$
\begin{aligned}
R_{2} & \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}+R_{1} \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & -3 \\
0 & 7 & 6
\end{array}\right] \\
& \cdot R_{3} \rightarrow R_{3}-7 R_{2} \\
& \sim\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & 1 & -3 \\
0 & 0 & 27
\end{array}\right] \text { which i }
\end{aligned}
$$

\rightarrow Which is in echelon form
$P(A)=3=$ No. of non zero sous of last equivalent to A.
$\therefore P(A)=3=$ No. of ink nown.
Sothat the given system have trivial solution (zero solution)

$$
k_{1}=0 \quad k_{2}=0 \quad k_{3}=0
$$

since k_{1}, k_{2}, k_{3} are all zero, the vectors are linearly indepen -dent.

Linearly independent and Lirearly dependent set of vectors.

1) Examine for lineal dependence the system of vectors $(1,2,-1,0)$, $(1,3,1,2)(4,2,1,0),(6,1,0,1)$ and if dependent, find the relation. between them. Ans:- Linearly index pendent
2) Examine whether following vectors are linearly independent or depen - dent $x_{1}=(2,2,1)^{\top} \quad x_{2}=(1,3,1)^{\top} \quad x_{3}=(1,2,2)^{\top}$

Ans:- Linearly independent.
3) Examine whether following vectors are lincasty independent os depen - dent $x_{1}=(3,1,1) \quad x_{2}=(2,0,-1) \quad x_{3}=(4,2,1)$ Ans:- Linearly independent.
4) Examine whether following vectors are linearly independent or depen - dent $x_{1}=(1,1,-1) x_{2}=(2,3,-5) \quad x_{3}=(2,-1,4)$

Ans:- Linearly independent
5) Examine for linear dependence or independence of the following vectors. If dependent, find the relation between them, $x_{1}=(1,-1,1) x_{2}=(2,1,1)$ $x_{3}=(3,0,2)$ Ans:- Linearly de pendent, $x_{1}+x_{2}=x_{3}$.
6) Examine for linear de pendence or independence of the following vectors. If dependent find the relation between then.

$$
\begin{aligned}
& \text { vectors. If depended } \quad x_{1}=(1,1,1,3) \quad x_{2}=(1,2,3,4) \quad x_{3}=(2) \\
& x_{1}+x_{2}=x_{3} .
\end{aligned}
$$

Ans:- Linearly dependent, $x_{1}+x_{2}=x_{3}$.
7) Show that the vectors $x_{1}=(1,-1,2,2)^{\top} x_{2}=(2,-3,4,-1)^{\top}, x_{3}=(-1,2,-2,3)^{\top}$ are linearly dependent. Hence find the relation bin then $A_{n}:-x_{1}=x_{2}+x_{3}$
8) Show that the vectors $x_{1}=(3,1,-4) \quad x_{2}=(2,2,-3) x_{3}=(0,-4,1)$ are. linearly dependent Hence find the relation bio them.

Ans:- $2 x_{1}=3 x_{2}+x_{3}$.
vector space:-
Let v be a set on which two operations (vector addition and scalar. multiplication) are defined. If the listed axioms are satisfied. for every u, v, w in v and scalars c and d, then v is called a vector space (over the reals \mathbb{R})
(1) Addition.
(a) $u+v$ is a vector in v (closure under addition)
(b) $u+v=v+u$. (commutative property of addition)
(c) $(u+v)+w=u+(v+w)$ (Associative property of addition)
(d) There is a zero vector O in v suchthat for every u in v. we have $(u+0)=u$ (Additive identity)
(e) For every u in v, there is a vector in v denoted by $-u$ such that $u+(-u)=0$ (Additive inverse)
(2) Scalar multiplication.
(a) Cu is in v (closure under scalar multiplication)
(b) $c(u+v)=c u+c v$ (Distributive property of scalar multi.)
(c) $(c+d) u=c u+d u$ (Distributive property of scalar multi.)
(d) $c(d u)=(c d) u$ (Associative property of scalar multi.)
(c) $f(u)=u$ (scalar identity property)

Eg:- (1) The set \mathbb{R} of real numbers \mathbb{R} is a vector space over \mathbb{R}.
(2) The set \mathbb{R}^{2} of all ordered pairs of real numbers is a vector space over \mathbb{R}.
13) The set \mathbb{R}^{n} of all ordered n-tuples of real numess a vector space over R
(4) The set $M_{m, n}$ of all man matrices, with real entries is a vector space over \mathbb{R}.
(5) The set v of all real valued continuous (differentiable or integrable) functions defined on the closed interval $[a, b]$ is a real vector space with the vector addition and scalar multiplication defined as follows.

$$
\begin{aligned}
& (f+g)(x)=f(x)+g(x) \\
& (k f)(x)=k f(x), \text { For all } f, g \in v \text { and } k \in R
\end{aligned}
$$

Basis : - It v is any vector space and $s=\left\{v_{1}, v_{2}, v_{3} \ldots v_{n}\right\}$ is a set of vectors in V, then S is called a basis for v if the following two conditions hold.
(i) S is linearly independent
(ii) S spans V.

COMPLEX MATRICES
Conjugate of a Matrix:-
If the elements of matrix A are replaced by their conjugate complexes then the resulting matrix is defined as the conjugate of the given matrix. It is denoted by \bar{A}

Eg:-

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
7 & 5+4 i \\
-2+3 i & 4-7 i
\end{array}\right] \quad \bar{A}=\left[\begin{array}{cc}
7 & 5-4 i \\
-2-3 i & 4+7 i
\end{array}\right] \\
& A=\left[\begin{array}{ccc}
0 & 2+3 i & 7 i \\
4-7 i & 5+3 i & 1+i \\
7 & 1-i & 6+i
\end{array}\right] \quad \bar{A}=\left[\begin{array}{ccc}
0 & 2-3 i & -7 i \\
4+7 i & 5-3 i & 1-i \\
7 & 1+i & 6-i
\end{array}\right]
\end{aligned}
$$

Note:- If \bar{A} and \bar{B} be the conjugate matrices of A and B. respectively then (i) $\bar{A})=A$
(ii) $\overline{A+B}=\bar{A}+\bar{B}$
(iii) $\overline{K A}=\bar{K} \bar{A}$ where k is complex number.

The transpose of the conjugate of square matrix:-
If A is a square matrix and its conjugate is \bar{A}, then the transpose of \bar{A} is $(\bar{A})^{\top}$.
If can be easily seen that $(\bar{A})^{T}=\left(\overline{A^{\top}}\right)$ ie the transpose of the conjugate of a square matrix is same as the conjugate of its transpose.
The transposed conjugate of A is denoted by A.
Eg:- $A=\left[\begin{array}{cc}i & 4+3 i \\ 3-i & 7\end{array}\right] \quad \bar{A}=\left[\begin{array}{cc}-i & 4-3 i \\ 3+i & 7\end{array}\right] \quad A=(\bar{A})^{\top}=\left[\begin{array}{cc}-i & 3+i \\ 4-3 i & 7\end{array}\right]$

Note :- If A^{θ} and B^{θ} be the transposed conjugates of A and B respectively then
(i) $\left(A^{\theta}\right)^{\theta}=A$
(ii) $(A \pm B)^{\theta}=A^{\theta} \pm B^{\theta}$
(iii) $(K A)^{\theta}=\bar{K} A^{\theta}$ where k is a complex numb
(iv) $(A B)^{\theta}=B^{\theta} A^{\theta}$.

Hermitian Matrix
A square matrix A is said to be hermitian it $A^{\theta}=A$ i.e $(\bar{A})^{\top}=A$
Eg:-

$$
\begin{gathered}
A=\left[\begin{array}{cc}
5 & 2+4 i \\
2-4 i & 7
\end{array}\right] \quad \bar{A}=\left[\begin{array}{cc}
5 & 2-4 i \\
2+4 i & 7
\end{array}\right] . \\
A^{\theta}=(\bar{A})^{\top}=\left[\begin{array}{cc}
5 & 2+4 i \\
2-4 i & 7
\end{array}\right]=A
\end{gathered}
$$

$\therefore A$ is hermitian.
Eg:-

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & 1+3 i & 2-4 i \\
1-3 i & 0 & 5-3 i \\
2+4 i & 5+3 i & 8
\end{array}\right] \quad \bar{A}=\left[\begin{array}{ccc}
1 & 1-3 i & 2+4 i \\
1+3 i & 0 & 5+3 i \\
2-4 i & 5-3 i & 8
\end{array}\right] \\
A^{\theta}=(\bar{A})^{\top}=\left[\begin{array}{ccc}
1 & 1+3 i & 2-4 i \\
i-3 i & 0 & 5-3 i \\
2+4 i & 5+3 i & 8
\end{array}\right]=A
\end{gathered}
$$

$\therefore A$ is hermitian.
Note:- (i) The elements of the principal diagonal of a hermitian matrix must be real.
(ii) A Hermitian matrix over the field of real numbers is nothing but a real symmetric matrix.

Skew Hermitian Matrix :-
A square matrix A is said to be skew hermitian if $A=-A$

Eg:-

$$
\left.\begin{array}{rl}
A=\left[\begin{array}{cc}
0 & 2-3 i \\
-2+3 i & i
\end{array}\right] \quad \bar{A} & =\left[\begin{array}{cc}
0 & 2+3 i \\
-2+3 i & -i
\end{array}\right] \\
A^{\theta} & =(\bar{A})^{\top}
\end{array}\right]\left[\begin{array}{cc}
0 & -2+3 i \\
2+3 i & -i
\end{array}\right]
$$

$\therefore A$ is skew hermitian

Eg:-

$$
\begin{aligned}
A=\left[\begin{array}{lll}
i & 0 & 0 \\
0 & 0 & i \\
0 & i & 0
\end{array}\right] \quad \bar{A} & =\left[\begin{array}{ccc}
-i & 0 & 0 \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right] \\
A & =(\bar{A})^{\top}
\end{aligned} \begin{aligned}
\theta & {\left[\begin{array}{ccc}
-i & 0 & 0 \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right] } \\
& =-\left[\begin{array}{ccc}
i & 0 & 0 \\
0 & 0 & i \\
0 & i & 0
\end{array}\right] \\
A^{\theta} & =-A
\end{aligned}
$$

$\therefore A$ is skew hermitian.
Note: - (i) The elements of the principal diagonal of a skew hermi than matrix must be purely imaginary or zero.
(ii) A skew hermitian matrix over the field of real numbers is nothing but a real skews symmetric matrix.

Unitary Matrix:-
A square matrix A is said to be unitary if $A A^{\theta}=A A=I$.

Eg:-

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{cc}
i & \sqrt{3} \\
\sqrt{3} & i
\end{array}\right] \quad \hat{A}=\frac{1}{2}\left[\begin{array}{cc}
-i & \sqrt{3} \\
\sqrt{3} & -i
\end{array}\right] \\
& A^{\theta}=(\bar{A})^{T}=\frac{1}{2}\left[\begin{array}{cc}
-i & \sqrt{3} \\
\sqrt{3} & -i
\end{array}\right] \\
& A A^{\theta}=\frac{1}{2}\left[\begin{array}{ll}
i & \sqrt{3} \\
\sqrt{3} & i
\end{array}\right] \frac{1}{2}\left[\begin{array}{cc}
-i & \sqrt{3} \\
\sqrt{3} & -i
\end{array}\right] \\
&=\frac{1}{4}\left[\begin{array}{ll}
1+3 & \sqrt{3} i \\
-\sqrt{3} i \\
-\sqrt{3}+\sqrt{3} i \\
3+1
\end{array}\right] \\
&=\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& A A^{\theta}=I
\end{aligned}
$$

$\therefore A$ is unitary matrix.
Note: - A unitary matrix over the field of real numbers is nothing but a real ir thogonal matrix.

Properties:-
(i) If A is hermitian then iA is skew hermitian.
(ii) If A is skew hermitian then $i A$ is hermitian.
(iii) The matrix $B^{\theta} A B$ is hermitian or skew hermitian according as A is hermitian or skew hermitian.
(iv) The transpose of unitary matrix is unitary.
(v) The inverse of unitary matrix is unitary.
(vi) The product of two unitary matrices is unitary:
(vii) The determinant of unitary matrix is of unit modulus.

Properties of Complex matrices:-
Theorem:- It A is a Hermitian then iA is skew Hermitian. proof:- Let A be a Hermitian matrix so that $A^{\theta}=A$

$$
\text { Now } \begin{aligned}
(i A)^{\theta} & =T A^{\theta} & \left.\quad \because(K A)^{\theta}=\bar{K} A^{\theta}\right] \\
& =(-i) A^{\theta} & \quad\left[\because A^{\theta}=A\right] \\
& =-i A &
\end{aligned}
$$

$\Rightarrow i A$ is a skew Hermitian matrix.
Eg:- If $A=\left[\begin{array}{cc}4 & 1-3 i \\ 1+3 i & 7\end{array}\right]$ then prove that A is Hermition and $i A$ is skew Hermitian.
Sol:- Given

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
4 & 1-3 i \\
1+3 i & 7
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{cc}
4 & 1+3 i \\
1-3 i & 7
\end{array}\right] \\
& A^{\theta}=\bar{A}^{\top}=\left[\begin{array}{cc}
4 & 1-3 i \\
1+3 i & 7
\end{array}\right]=A
\end{aligned}
$$

$\therefore A$ is Hermitian.

$$
\begin{aligned}
& i A-i\left[\begin{array}{cc}
4 & 1-3 i \\
1+3 i & 7
\end{array}\right] \\
& =\left[\begin{array}{cc}
4 i & i+3 \\
i-3 & 7 i
\end{array}\right] \\
& \overline{i A}=\left[\begin{array}{cc}
-4 i & -i+3 \\
-i-3 & -7 i
\end{array}\right] \\
& (\overline{i A})^{\top}=\left[\begin{array}{cc}
-4 i & -3-i \\
3-i & -7 i
\end{array}\right]=-\left[\begin{array}{cc}
4 i & 3+i \\
i-3 & 7 i
\end{array}\right] \\
& (\overline{i A})^{T}=(i A)^{\theta}=-i A
\end{aligned}
$$

$\therefore i A$ is skew Hermitian

Theorem:- It A is a skew Hermitian then iA is Hermitian.
proof: :- Let A be a skew Hermitian matrix so that $A^{\theta}=-A$

$$
\begin{aligned}
(i A)^{\theta} & =T A^{\theta} \\
& =(-i)(-A) \\
& =i A \\
(i A)^{\theta} & =i A
\end{aligned}
$$

iA is Hermitian matrix.
Eg: It $A=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$ Hen prove that A is skew Hermitian matrix: and $i A$ is hermitian matrix.
sol:- Given that

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
3 i & 2+i \\
-2+i & -i
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{cc}
-3 i & 2-i \\
-2-i & i
\end{array}\right] \\
& \bar{A}^{\top}=\left[\begin{array}{cc}
-3 \hat{i} & -2-i \\
2-i & i
\end{array}\right] \\
& A^{\theta}=\bar{A}^{\top}=-\left[\begin{array}{cc}
3 i & 2+i \\
-2+i & -i
\end{array}\right]=-A \\
& \therefore A=-A
\end{aligned}
$$

$\therefore A$ is skew Hermitian.

$$
\begin{aligned}
& i A=i\left[\begin{array}{cc}
3 i & 2+i \\
-2+i & -i
\end{array}\right]=\left[\begin{array}{cc}
-3 & 2 i-1 \\
-2 i-1 & 1
\end{array}\right] \\
& \overline{i A}=\left[\begin{array}{cc}
-3 & -2 i-1 \\
2 i-1 & 1
\end{array}\right] \\
& (\overline{i A})^{\top}=\left[\begin{array}{cc}
-3 & 2 i-1 \\
-2 i-1 & 1
\end{array}\right] \\
& (i A)^{\theta}=(\overline{i A})^{\top}=i A \\
& (i A)^{\theta}=i A
\end{aligned}
$$

\therefore iA is skew hermitian.

Theorem: - The matrix $B_{3} A B$ is Hermitian or skew Hermitian accor-- ding as A is Hermitian or skew Hermitian.

Proof:- (i) Let A be a Hermitian matrix so that $A^{\theta}=A$
Now $\quad\left(B^{\theta} A B\right)^{\theta}=B^{\theta} A^{\theta}\left(B^{\theta}\right)^{\theta}$

$$
\begin{aligned}
& =B^{\theta} A^{\theta} B \cdot\left[\because\left(B^{\theta}\right)^{\theta}=B\right] \\
& =B^{\theta} A B \\
\left(B^{\theta} A B\right)^{\theta} & =B^{\theta} A B
\end{aligned}
$$

$\Rightarrow B^{A} A B$ is a hermitian matrix.
(ii) Let A be a skew Hermitian matrix so that $A=-A$.

$$
\begin{aligned}
\left(B^{\theta} A B\right)^{\theta} & =B^{\theta} A^{\theta}\left(B^{\theta}\right)^{\theta} \\
& =B^{\theta} A^{\theta} B \\
& =B^{\theta}(-A) B \\
& =-B^{\theta} A B \\
\therefore\left(B^{\theta} A B\right)^{\theta} & =-B^{\theta} A B .
\end{aligned}
$$

$\Rightarrow B^{\ominus} A B$ is skew Hermitian matrix.
Theorem:- The transpose of unitary matrix is unitary.
Proof:- Let A be the unitary matrix so that $A A^{\theta}=I=A^{\theta} A$
Now $\left(A A^{\theta}\right)^{\top}=I^{\top}=\left(A^{O} A\right)^{\top}$ (Taking Transpose).

$$
\begin{aligned}
& \left(A^{\theta}\right)^{\top} A^{\top}=I=A^{\top}\left(A^{\theta}\right)^{\top} \\
& \left(A^{\top}\right)^{\theta} A^{\top}=I
\end{aligned}
$$

$\Rightarrow A^{\top}$ is unitary matrix.
Eg. Prove that $A=\frac{1}{2}\left[\begin{array}{cc}1+i & -1+i \\ 1+i & 1-i\end{array}\right]$ is unitary matrix and A^{\prime} is also unitary matrix.

Sol: Given that

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right] \\
& \bar{A}=\frac{1}{2}\left[\begin{array}{cc}
1+i & -1-i \\
1-i & 1+i
\end{array}\right] \\
& A^{\theta}=(\bar{A})^{\top}=\frac{1}{2}\left[\begin{array}{cc}
1-i & 1-i \\
-1-i & 1+i
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A A^{\theta} & =\frac{1}{4}\left[\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right]\left[\begin{array}{cc}
1-i & 1-i \\
-1-i & 1+i
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I
\end{aligned}
$$

$\therefore A$ is unitary.

$$
\begin{aligned}
A^{\top} & =\frac{1}{2}\left[\begin{array}{cc}
1+i & 1+i \\
-1+i & 1-i
\end{array}\right] \\
\overline{A^{\top}} & =\frac{1}{2}\left[\begin{array}{cc}
1-i & +1-i \\
-1-i & 1+i
\end{array}\right] \\
\left(A^{\top}\right)^{\theta}=\left(\overline{A^{\top}}\right)^{\top} & =\frac{1}{2}\left[\begin{array}{cc}
1-i-1-i \\
+1+i & 1+i
\end{array}\right] \\
\left(A^{\top}\right)^{\theta} A^{\top} & =\frac{1}{4}\left[\begin{array}{cc}
1-i-i & -1-i \\
+1-i & 1+i
\end{array}\right]\left[\begin{array}{cc}
1+i & 1+i \\
-1+i & 1-i
\end{array}\right] \\
& =\frac{1}{4}\left[\begin{array}{cc}
4 & 0 \\
0 & 4
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
\left(A^{\top}\right)^{\theta} A^{\top} & =I
\end{aligned}
$$

$\therefore A^{\top}$ is unitary.
Theorem:- The inverse it unitary matrix is unitary.
Proof: - Let A be unitary matrix so that $A A^{\theta}=I=A^{\theta} A$
Now $\left(A A^{\theta}\right)^{-1}=I^{-1}=\left(A^{\theta} A\right)^{-1}$ (Taking inverse)

$$
\begin{aligned}
& \left(A^{\theta}\right)^{-1}\left(\vec{A}^{-1}\right)=I=\left(A^{-1}\right)\left(A^{\theta}\right)^{-1} \\
& \left(A^{-1}\right)^{-1} \vec{A}^{-1}=I=A^{-1}\left(A^{-1}\right)^{\theta}
\end{aligned}
$$

$\therefore A^{-1}$ is unitary matrix.
Eg:- If $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$ then prove that A and A^{-1} are unitary matrices.
Sol: Given that

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-i}{\sqrt{2}} \\
\frac{i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right] \quad A^{\theta}=(\bar{A})^{\top}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]
\end{aligned}
$$

Theorem:- The product of two unitary matrices is unitary prot:- Let A and B be two unitary matrices. $\Rightarrow A A^{\theta}=I=A^{\theta} A$ and $B B^{\theta}=I=\stackrel{\theta}{B B}$

We prove that $A B$ is unitary.
Consider $\left(A B^{\theta}(A B)=\left(B^{\theta} A^{\theta}\right)(A B)\right.$

$$
\begin{aligned}
& =B^{\theta}\left(A^{\theta} A\right) B \\
& =B^{\theta} I B \\
& =B^{\theta} B=I
\end{aligned}
$$

$$
(A B)^{\theta}(A B)=I
$$

$$
\Longrightarrow A B \text { is unitary }
$$

$$
\begin{aligned}
& A A^{\theta}=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]=I \\
& \therefore A A^{\theta}=I \\
& A \text { is unitary } \\
& |A|=\frac{-1}{2}-\frac{1}{2}=-1 . \\
& A^{-1}=\frac{1}{|A|} \operatorname{Adj} A \\
& A^{-1}=-\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& \vec{A}=-\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& \left(\vec{A}_{1}^{-1}\right)^{\top}=\left(\vec{A}^{-1}\right)^{\theta}=-\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& \left(A^{-1}\right)^{\theta} A^{-1}=\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& \therefore\left(A^{-1}\right)^{\theta} A^{-1}=I . \\
& \therefore A^{-1} \text { is unitary. }
\end{aligned}
$$

Similarly $(A B)(A B)^{\theta}=(A B)\left(B^{\theta} A^{\theta}\right)$

$$
\begin{aligned}
& =A\left(B B^{\theta}\right) A^{\theta} \\
& =A I A^{\theta} \\
& =A A^{\theta}=I \\
\therefore(A B)(A B)^{\theta} & =(A B)(A B)=I
\end{aligned}
$$

$\therefore A B$ is a unitary matrix.
Eg If $A=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}1 & i \\ -i & -1\end{array}\right]$ and $B=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]$ are unitary then p / T $A B$ isunitaoy

$$
\begin{aligned}
& A B=\frac{1}{\sqrt{b}}\left[\begin{array}{cc}
1 & i \\
-i & -1
\end{array}\right]\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right] \\
& A B=\frac{1}{\sqrt{b}}\left[\begin{array}{cc}
1+i+1 & +1+i-i \\
-1-1+i & -i+1+1
\end{array}\right]=\frac{1}{\sqrt{b}}\left[\begin{array}{cc}
2+i & 1 \\
-1 & 2-i
\end{array}\right] \\
& \overline{A B}=\frac{1}{\sqrt{b}}\left[\begin{array}{cc}
2-i & 1 \\
-1 & 2+i
\end{array}\right] \\
&(A B)^{\theta}=(\overline{A B})^{T}=\frac{1}{\sqrt{b}}\left[\begin{array}{cc}
2-i & -1 \\
1 & 2+i
\end{array}\right] \\
&(A B)^{\theta}(A B)=\frac{1}{b}\left[\begin{array}{cc}
2-i & -1 \\
1 & 2+i
\end{array}\right]\left[\begin{array}{cc}
2+i & 1 \\
-1 & 2-i
\end{array}\right] \\
&=\frac{1}{b}\left[\begin{array}{cc}
6 & 0 \\
0 & 6
\end{array}\right]=\left[\begin{array}{cc}
1 & 0 \\
0 & 1
\end{array}\right] \\
&(A B)^{\theta}(A B)=I
\end{aligned}
$$

$\therefore A B$ is unitary

Theorem:- The determinant of a unitary matrix is of unit modulus.
Proof:- Let A be unitary sothat $A A^{\theta}=I$

$$
\begin{array}{ll}
\Rightarrow & \left|A A^{\theta}\right|=|I| \\
\Rightarrow & \because|A B|=|A||B| \\
\Rightarrow & |A||(A)|=1 \\
\Rightarrow & |A||\bar{A}|=1 \\
\Rightarrow & |A|^{2}=1
\end{array}
$$

$\Rightarrow|A|$ is of unit modulus
Hence if A is unitary then $|A|$ is at unit modulus.
Eg: - If $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$, then prove that $|A|$ is of unit modulus
sol:- Given that

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right] \\
& |A|=\left|\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right|=\frac{-1}{2}-\frac{1}{2}=-1 \\
& |A|=-1
\end{aligned}
$$

$\therefore A$ is unitary and its determinant is of unit modulus.
E9: - Prove that the determinant of $A=\frac{1}{2}\left[\begin{array}{cc}1+i & -1+1 \\ 1+i & 1-i\end{array}\right]$ is ot unit modulus. sol. Given that

$$
\begin{aligned}
& A=\frac{1}{2}\left[\begin{array}{cc}
1+i & -1+i \\
1+i & 1-i
\end{array}\right] \\
& |A|=\left|\begin{array}{cc}
\frac{1+i}{2} & \frac{-1+i}{2} \\
\frac{1+i}{2} & \frac{1-i}{2}
\end{array}\right| \\
& =\frac{2}{4}-\left(\frac{-2}{4}\right) \\
& |A|=1
\end{aligned}
$$

\therefore A is unitary and lis determinant is of unit modulus,

Theorem :- Every square matrix is uniquely expressed as the sum of Hermitian and skew Hermitian matrices.

Prot:- Let A be a square matrix
Consider $\quad A=\frac{1}{2}\left(A+A^{\theta}\right)+\frac{1}{2}\left(A-A^{\theta}\right)$

$$
A=P+Q \text { where } P=\frac{1}{2}\left(A+A^{\theta}\right) \quad Q=\frac{1}{2}\left(A-A^{\theta}\right)
$$

We prove that P is Hermitian and Q is skew Hermitian matrices.

$$
\begin{aligned}
P & =\frac{1}{2}\left(A+A^{\theta}\right) \\
p^{\theta} & =\left[\frac{1}{2}\left(A+A^{\theta}\right)\right]^{\theta}=\frac{1}{2}\left(A+A^{\theta}\right)^{\theta} \\
& =\frac{1}{2}\left[A^{\theta}+\left(A^{\theta}\right)^{\theta}\right] \\
& =\frac{1}{2}\left(A^{\theta}+A\right) \\
p^{\theta} & =p
\end{aligned}
$$

$\therefore P$ is Hermitian matrix.

$$
\begin{aligned}
Q & =\frac{1}{2}\left(A-A^{\theta}\right) \\
Q^{\theta} & =\left[\frac{1}{2}\left(A-A^{\theta}\right)\right]^{\theta} \\
& =\frac{1}{2}\left(A-A^{\theta}\right)^{\theta} \\
& =\frac{1}{2}\left(A^{\theta}-\left(A^{\theta}\right)^{\theta}\right) \\
& =\frac{1}{2}\left(A^{\theta}-A\right) \\
& =-\frac{1}{2}\left(A-A^{\theta}\right) \\
Q & =-Q
\end{aligned}
$$

$\therefore Q$ is skew Hermitian matrix?
Thus every square matrix can be expressed as the sum of Hermitian and skew Hermitian matrices.
Uniqueness:-
Let $A=R+S$ be another such representation of A, where. R is Hermitian and Q is skew Hermitian.

Then we have to $P H \quad P=R$ and $Q=S$.

$$
\begin{aligned}
P & =\frac{1}{2}\left(A+A^{\theta}\right) \\
& =\frac{1}{2}\left[(R+S)+(R+S)^{\theta}\right] \\
& =\frac{1}{2}\left[(R+S)+\left(R^{\theta}+S^{\theta}\right)\right] \\
& =\frac{1}{2}[R+S+R-S]=\frac{1}{2}(2 R) \\
P & =R \\
Q & =\frac{1}{2}\left(A-A^{\theta}\right) \\
& =\frac{1}{2}\left[(R+S)-(R+S)^{\theta}\right] \\
& =\frac{1}{2}[(R+S)-(R+S)] \\
& =\frac{1}{2}[(R+S)-(R-S)] \\
& =\frac{1}{2}(2 S) \\
Q & =S \\
P & =R \text { and } Q=S
\end{aligned}
$$

Hence the representation is unique.
(1) Express the matrix $A=\left[\begin{array}{ccc}i & 2-3 i & 4+5 i \\ 6+i & 0 & 4-5 i \\ -i & 2-i & 2+i\end{array}\right]$ and a skew Hermitian matrices.

Sol:- Given that

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{ccc}
-i & 2+3 i & 4-5 i \\
6-i & 0 & 4+5 i \\
i & 2+i & 2-i
\end{array}\right] \\
& \hat{A}=(\bar{A})^{\top}=\left[\begin{array}{ccc}
-i & 6-i & i \\
2+3 i & 0 & 2+i \\
4-5 i & 4+5 i & 2-i
\end{array}\right]
\end{aligned}
$$

Hermitian part of the matrix A is $P=\frac{1}{2}(A+A \theta)$

$$
\begin{aligned}
& P=\frac{1}{2}\left(A+A^{\theta}\right)=\frac{1}{2}\left[\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right]+\left[\begin{array}{ccc}
-i & 6-i & i \\
2+3 i & 0 & 2+i \\
4-5 i & 4+5 i & 2-i
\end{array}\right]\right\} \\
& P=\frac{1}{2}\left[\begin{array}{ccc}
0 & 8-4 i & 4+6 i \\
8+4 i & 0 & 6-4 i \\
4-6 i & 6+4 i & 4
\end{array}\right]
\end{aligned}
$$

This is a Hermitian matrix

$$
\begin{aligned}
& \text { This is a Hermitian matrix } \\
& \left.Q=\frac{1}{2}\left(A-A^{\theta}\right)=\frac{1}{2}\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right]-\left[\begin{array}{ccc}
-i & 6-i & i \\
2+3 i & 0 & 2+i \\
4-5 i & 4+5 i & 2-i
\end{array}\right]\right\} \\
& Q=\frac{1}{2}\left[\begin{array}{ccc}
2 i & -4-2 i & 4+4 i \\
4-2 i & 0 & 2-6 i \\
-4+4 i & -2-6 i & 2 i
\end{array}\right]
\end{aligned}
$$

This is a skew Hermitian matrix.

$$
\begin{aligned}
P+Q & =\frac{1}{2}\left[\begin{array}{ccc}
0 & 8-4 i & 4+6 i \\
8+4 i & 0 & 6-4 i \\
4-6 i & 6+4 i & 4
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
2 i & -4-2 i & 4+4 i \\
4-2 i & 0 & 2-6 i \\
-4+4 i & -2-6 i & 2 i
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ccc}
2 i & 4-6 i & 8+10 i \\
12+2 i & 0 & 8-10 i \\
-2 i & 4-2 i & 4+2 i
\end{array}\right] \\
& =\left[\begin{array}{ccc}
i & 2-3 i & 4+5 i \\
6+i & 0 & 4-5 i \\
-i & 2-i & 2+i
\end{array}\right]=A
\end{aligned}
$$

$\therefore A=P+Q$ where P is thermition and Q is skew hermitian.

Prove that every Hermitian matrix can be written as $P+i \alpha$ whee ρ is a real symmetric matrix and Q is a real skew symmetric matrix.

Sol:- Let A be a Hermitian matrix.

$$
\begin{gathered}
A^{\theta}=A \\
A=\frac{1}{2}(A+\bar{A})+i \frac{1}{2 i}(A-\bar{A})=P+i Q
\end{gathered}
$$

Where $P=\frac{1}{2}(A+\bar{A})$ and $Q=\frac{1}{2 i}(A-\bar{A})$ are real matrices.

$$
\begin{aligned}
p^{\top} & =\left[\frac{1}{2}(A+\bar{A})\right]^{\top}=\frac{1}{2}\left[A^{\theta}+\bar{A}\right]^{\top} \\
& =\frac{1}{2}\left[(\bar{A})^{\top}+\bar{A}\right]^{\top}=\frac{1}{2}\left[\left[(\bar{A})^{\top}\right]^{\top}+(\bar{A})^{\top}\right] \\
& =\frac{1}{2}\left(\bar{A}+A^{\hat{A}}\right)=\frac{1}{2}(\bar{A}+A) \\
p^{\top} & =p
\end{aligned}
$$

Hence P is a real symmetric matrix.

$$
\begin{aligned}
Q^{\top} & =\left[\frac{1}{2 i}(A-\bar{A})\right]^{\top}=\frac{1}{2 i}\left[A^{\theta}-\bar{A}\right)^{\top} \\
& \left.=\frac{1}{2 i}\left[(\bar{A})^{\top}-\bar{A}\right]^{\top}=\frac{1}{2 i}\left[(\bar{A})^{\top}\right]^{\top}-(\bar{A})^{\top}\right] \\
& =\frac{1}{2 i}[\bar{A}-A \bar{A}]=\frac{1}{2 i}(\bar{A}-A) \\
& =-\frac{1}{2 i}(A-\bar{A})=-Q \\
Q^{\top} & =-Q .
\end{aligned}
$$

Hence \mathbb{Q} isareal skew symmetric matrix.
Thus, every Hermitian matrix can be written as $P+i k$, where P is a real symmetric matrix and a is a real skew symmetric matrix.

Express the Hermitian matrix $A=\left[\begin{array}{ccc}1 & -i & 1+i \\ i & 0 & 2-3 i \\ 1-i & 2+3 i & 2\end{array}\right]$ as $p+i Q$ where p is a. real symmetric matrix and Q is a real skew symmetric matrix.
sol: Given that $A=\left[\begin{array}{ccc}1 & -i & 1+i \\ i & 0 & 2-3 i \\ 1-i & 2+3 i & 2\end{array}\right]$

$$
\begin{aligned}
& \bar{A}=\left[\begin{array}{ccc}
1 & i & 1-i \\
-i & 0 & 2+3 i \\
1+i & 2-3 i & 2
\end{array}\right] \\
& A=\frac{1}{2}(A+\bar{A})+i \frac{1}{2 i}(A-\bar{A})=P+i Q .
\end{aligned}
$$

Where $P=\frac{1}{2}(A+\bar{A}), \quad Q=\frac{1}{2 i}(A-\bar{A})$
Let $P=\frac{1}{2}(A+\bar{A})=\frac{1}{2}\left\{\left[\begin{array}{ccc}1 & -i & 1+i \\ i & 0 & 2-3 i \\ 1-i & 2+3 i & 2\end{array}\right]+\left[\begin{array}{ccc}1 & i & 1-i \\ -i & 0 & 2+3 i \\ 1+i & 2-3 i & 2\end{array}\right]\right\}$

$$
\begin{aligned}
P & =\frac{1}{2}\left[\begin{array}{ccc}
2 & 0 & 2 \\
0 & 0 & 4 \\
2 & 4 & 4
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 2 \\
1 & 2 & 2
\end{array}\right] \\
Q=\frac{1}{2 i}(A-\bar{A}) & =\frac{1}{2 i}\left[\left[\begin{array}{ccc}
1 & -i & 1+i \\
i & 0 & 2+3 i \\
1-i & 2+3 i & 2
\end{array}\right]-\left[\begin{array}{ccc}
1 & i & 1-i \\
-i & 0 & 2+3 i \\
1+i & 2-3 i & 2
\end{array}\right]\right\} \\
Q & =\frac{1}{2 i}\left[\begin{array}{ccc}
0 & -2 i & 2 i \\
2 i & 0 & -6 i \\
-2 i & 6 i & 0
\end{array}\right]=\left[\begin{array}{ccc}
0 & -1 & 1 \\
1 & 0 & -3 \\
-1 & 3 & 0
\end{array}\right] \\
P^{\top} & =P, \quad Q^{\top}=-2
\end{aligned}
$$

We know that P is a real symmetric matrix and Q is a real skew. Symmetric matron.

$$
A=P+i Q=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 2 \\
1 & 2 & 2
\end{array}\right]+\left[\begin{array}{ccc}
0 & -i & i \\
i & 0 & -3 i \\
-i & 3 i & 0
\end{array}\right]
$$

show that every square matrix can be uniquely expressed as $P+1 Q$ Where P and Q are Hermitian matrices.
sol. Let A be a square matrix.

$$
A=\frac{1}{2}\left(A+A^{\theta}\right)+i \frac{1}{2}\left(A-A^{\theta}\right)=P+i Q
$$

Where $P=\frac{1}{2}\left(A+A^{\theta}\right)$ and $Q=\frac{1}{2 i}\left(A-A^{\theta}\right)$

Now

$$
\begin{aligned}
& p^{\theta}=\frac{1}{2}\left(A+A^{\theta}\right)^{\theta}=\frac{1}{2}\left[A^{\theta}+\left(A^{\theta}\right)^{\theta}\right] \\
&=\frac{1}{2}\left(A^{\theta}+A\right)=p \\
& p^{\theta}=p
\end{aligned}
$$

Hence, P is a Hermitian matrix.

$$
\begin{aligned}
\theta^{\theta}=\left[\frac{1}{2 i}\left(A-A^{\theta}\right)\right]^{\theta} & =-\frac{1}{2 i}\left[A^{\theta}-\left(A^{\theta}\right)^{\theta}\right] \\
& =-\frac{1}{2 i}\left[A^{\theta}-A\right] \\
& =\frac{1}{2 i}\left[A-A^{\theta}\right] \\
Q & =Q
\end{aligned}
$$

Hence. Q is a Hermitian matrix.
Thus, every square matrix can be expressed as $P+i Q$ where P and Q are Hermitian matrices

Uniqueness: - Let $A=R+i s$ where R and S are Hermitian matrices.

$$
\begin{array}{rlrl}
A^{\theta}=(R+i s)^{\theta}=R^{\theta}+(i s)^{\theta}=R-i s & R^{\theta}=R \\
\frac{1}{2}\left(A+A^{\theta}\right) & =\frac{1}{2}[(R+i s)+(R-i s)]=R=P & s^{\theta}=S . \\
\frac{1}{2}\left(A-A^{\theta}\right)=\frac{1}{2}[(R+i s)-(R-i s)]=i s=i Q . &
\end{array}
$$

Hence, representation $A=P+; Q$ is unique.

Express the matrix $A=\left[\begin{array}{ccc}2-i & -3 & 1-i \\ 0 & 2+3 i & 1+i \\ -3 i & 3+2 i & 2-5 i\end{array}\right]$ Hermitian $P+i Q$ where P and Q are both
sol.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 i & -3 & 1-i \\
0 & 2+3 i & 1+i \\
-3 i & 3+2 i & 2-5 i
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{ccc}
-2 i & -3 & 1+i \\
0 & 2-3 i & 1-i \\
3 i & 3-2 i & 2+5 i
\end{array}\right] \quad A=A^{T}=\left[\begin{array}{lll}
-2 i & 0 & 3 i \\
-3 & 2-3 i & 3-2 i \\
1+i & 1-i & 2+5 i
\end{array}\right]
\end{aligned}
$$

Let $P=\frac{1}{2}\left(A+A^{\theta}\right)=\frac{1}{2}\left[\left[\begin{array}{ccc}2 i & -3 & 1-i \\ 0 & 2+3 i & 1+i \\ -3 i & 3+2 i & 2-5 i\end{array}\right]+\left[\begin{array}{ccc}-2 i & 0 & 3 i \\ -3 & 2-3 i & 3-2 i \\ 1+i & 1-i & 2+5 i\end{array}\right]\right]$

$$
\begin{aligned}
& Q=\frac{1}{2}\left[\begin{array}{ccc}
0 & -3 & 4+2 i \\
-3 & 4 & 4-i \\
1-2 i & 4+i & 4
\end{array}\right] \\
&\left.\left.=\frac{1}{2 i}\left[\begin{array}{ccc}
2 i & \left.\left[\begin{array}{ccc}
4 i & -3 & 1-i \\
3 & -3 & 1-4 i \\
0 & 2+3 i & 1+i \\
-3 i & 3+2 i & 2-5 i
\end{array}\right]-\left[\begin{array}{ccc}
-2 i & 0 & 3 i \\
-3 & 2-3 i & 3-2 i \\
1+i & 1-i & 2+5 i
\end{array}\right]\right\}
\end{array}\right]\right\} \begin{array}{ccc}
2 i-4 i & 2+3 i & -10 i
\end{array}\right]
\end{aligned}
$$

We know that P and Q are Hermitian matrices.

$$
A=P+i Q=\frac{1}{2}\left[\begin{array}{ccc}
0 & -3 & 1+2 i \\
-3 & 4 & 4-i \\
1-2 i & 4+i & 4
\end{array}\right]+\frac{1}{2}\left[\begin{array}{ccc}
4 i & -3 & 1-4 i \\
3 & 6 i & -2+3 i \\
-1-4 i & 2+3 i & -10 i
\end{array}\right]
$$

Prove. that every skew Hermitian matrix can be written as $P+i Q$ where P is a real skew symmetric matrix and Q is a real symmetric matrix.
sol: Let A be a skew Hermitian matrix.

$$
\begin{gathered}
A \hat{\theta}=-A \\
A=\frac{1}{2}(A+\bar{A})+i \frac{1}{2 i}(A-\bar{A})=P+i Q
\end{gathered}
$$

Where $P=\frac{1}{2}(A+\bar{A})$ and $Q=\frac{1}{2 i}(A-\bar{A})$ are seat matrices.

$$
\begin{aligned}
P^{\top} & =\left[\frac{1}{2}(A+\bar{A})\right]^{\top}=\frac{1}{2}\left[-A^{\theta}+\bar{A}\right]^{\top} \\
& =\frac{1}{2}\left[-(\bar{A})^{\top}+\bar{A}\right]^{\top} \\
& =\frac{1}{2}\left[-\left[(\bar{A})^{\top}\right]^{\top}+(\bar{A})^{\top}\right] \\
& =\frac{1}{2}\left[-\bar{A}+A^{\theta}\right] \\
& =\frac{1}{2}[-\bar{A}-A]=-\frac{1}{2}(A+\bar{A})=-P \\
& P^{\top}=-P .
\end{aligned}
$$

Hence P is a real skew symmetric matrix.

$$
\begin{aligned}
& Q^{\top}=\left[\frac{1}{2 i}(A-\bar{A})\right]^{\top}=\frac{1}{2 i}\left(-A^{\theta}-\bar{A}\right)^{\top} \\
&=\frac{1}{2 i}\left[-(\bar{A})^{\top}-\bar{A}\right]^{\top}=\frac{1}{2 i}\left[-\left[(\bar{A})^{\top}\right]^{\top}-(\bar{A})^{\top}\right] \\
&=\frac{1}{2 i}\left[-\bar{A}-A^{\theta}\right]=\frac{1}{2 i}[-\bar{A}+\bar{A}]=\frac{1}{2 i}(A-\bar{A})=Q \\
& Q^{\top}=Q .
\end{aligned}
$$

Hence Q is a real symmetric matrix.
Thus, every skew Hermitian matrix can be written as $P+i Q$ where, P is areal ski symmetric matrix and Q is a real symmetric matrix.

Express the skew Hermitian matrix $A=\left[\begin{array}{ccc}2 i & 2+i & 1-i \\ -2+i & -i & 3 i \\ -1-i & 3 i & 0\end{array}\right]$ as $p+i Q$ where
P is a real skew symmetric matrix and Q is a real symmetric matrix.
Sol:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
2 i & 2+i & 1-i \\
-2+i & -i & 3 i \\
-1-i & 3 i & 0
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{ccc}
-2 i & 2-i & 1+i \\
-2-i & i & -3 i \\
-1+i & -3 i & 0
\end{array}\right] \\
& \text { Let } P=\frac{1}{2}(A+\bar{A})\left.=\frac{1}{2}\left[\begin{array}{ccc}
2 i & 2+i & 1-i \\
-2+i & -i & 3 i \\
-1+i & 3 i & 0
\end{array}\right]+\left[\begin{array}{ccc}
-2 i & 2-i & 1+i \\
-2-1 & i & -3 i \\
-1+i & -3 i & 0
\end{array}\right]\right] \\
& P=\frac{1}{2}\left[\begin{array}{ccc}
0 & 4 & 2 \\
-4 & 0 & 0 \\
-2 & 0 & 0
\end{array}\right]=\left[\begin{array}{cc}
0 & 2 \\
-2 & 0 \\
-1 & 0 \\
0
\end{array}\right] \\
& \frac{1}{2 i}(A-\bar{A})\left.=\frac{1}{2 i}\left[\begin{array}{ccc}
2 i & 2+i & 1-i \\
-2+i & -i & 3 i \\
-1+i & 3 i & 0
\end{array}\right]-\left[\begin{array}{ccc}
-2 i & 2-i & 1+i \\
-2-i & i & -3 i \\
-1+i & -3 i & 0
\end{array}\right]\right\} \\
& P^{\top}==\frac{1}{2 i}\left[\begin{array}{ccc}
4-i & 2 i & -2 i \\
2 i & -2 i & 6 i \\
-2 i & 6 i & 0
\end{array}\right]=\left[\begin{array}{ccc}
2 & 1 & -1 \\
1 & -1 & 3 \\
-1 & 3 & 0
\end{array}\right] \\
& Q \begin{array}{ll}
T & Q
\end{array}
\end{aligned}
$$

We know that P is a real skew symmetric matrix and Q is a real symmetric matrix.

$$
A=P+i Q=\left[\begin{array}{ccc}
0 & 2 & 1 \\
-2 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right]+\left[\begin{array}{ccc}
2 i & i & -i \\
i & -i & 3 i \\
-i & 3 i & 0
\end{array}\right]
$$

COMPLEX MATRICES
1 Define complex matrix. Give an example.
2 Define conjugate of a matrix. Give an example.
3 Define Conjugate transpose of a matrix Give an example.
4 Define Hermitian matrix Give an example.
5 Define skaw hermitial matrix Give an example.
6 Define Unitary matrix. Give an example.
7 (a) If A is Hermitian matrix then prove that iA is skew Hermitian. matrix
(b) If $A=\left[\begin{array}{ccc}-1 & 2+i & 5-3 i \\ 2-i & 7 & 5 i \\ 5+3 i & 5 i & 2\end{array}\right]$ show that A is a Hermitian matrix and $B=i A$

8 (a) If A is skew Hermitian matrix then prove that $I A$ is Hermitian matrix
(b) If $A=\left[\begin{array}{ccc}-i & 3+2 i & -2-i \\ -3+2 i & 0 & 3-4 i \\ 2-i & -3-4 i & -2 i\end{array}\right]$ show that A is skew Hermitian matrix
and $1 A$ is a Hermitian matrix.
Express the matrix $A=\left[\begin{array}{ccc}1+i & -i & 2-3 i \\ 2 & 1+2 i & 3+i \\ -1+i & 3 & 1-2 i\end{array}\right]$ as the sutrix and a skew Hermitian matrix

Ans:- $P=\frac{1}{2}\left[\begin{array}{ccc}2 & 2-i & 1-4 i \\ 2+i & 2 & 6+i \\ 1+4 i & 6-i & 2\end{array}\right] \quad Q=\frac{1}{2}\left[\begin{array}{ccc}2 i & -i-2 & 3-2 i \\ 2-i & 4 i & i \\ -3-2 i & i & -4 i\end{array}\right]$
10 (a) show that the matrix $A=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is both a skew Hermitian matrix and matrix.
(b) verity that the matrix $A=\frac{1}{2}\left[\begin{array}{cc}1+i & -1+i \\ 1+i & 1-i\end{array}\right]$ is a unitary matrix.

11 (a) Show that the matrix $A=\left[\begin{array}{cc}a+i c & -b+i d \\ b+i d & a-i c\end{array}\right]$ is unitary it $a^{2}+b^{2}+c^{2}+d^{2}=1$.
(b) If $A=\left[\begin{array}{ccc}2+i & 3 & -1+3 i \\ -5 & i & 4-2 i\end{array}\right]$ Show that $A A^{*}$ is a Hermittan-matrix.

12 If $A=\left[\begin{array}{cc}0 & 1+2 i \\ -1+2 i & 0\end{array}\right]$ show that $B=(I-A)(I+A)^{-1}$ is a unitary matrix il
13 Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ll}4 & 1\end{array}-3 i 10\right.$ Ans:- $\lambda=9,2 \quad x_{1}=\left[\begin{array}{c}-1+3 i \\ 2\end{array}\right] \quad x_{2}=\left[\begin{array}{c}1-3 i \\ 5\end{array}\right]$.
14 Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ll}2 i & 3 \\ 3 i & 0\end{array}\right]$ Ans:- $\lambda=1+\sqrt{10} i, 1-\sqrt{10} i$
15 Find the Eigen values and Eigen vectors of the matrix $A=\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & \frac{i}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$ Ans:- $\lambda=1,-1 \quad x_{1}=\left[\begin{array}{c}1 \\ i-i \sqrt{2}\end{array}\right], x_{2}=\left[\begin{array}{c}1 \\ i+i \sqrt{2}\end{array}\right]$

MODULE -II

EIGEN VALUES

AND
EIGEN VECTORS

EIGEN VALUES AND EIGEN VECTORS.
Let $A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\ \hdashline & \ldots & \ldots & \ldots & a_{n 2}\end{array} a_{n 3} \ldots a_{n n}.\right]$ be a square matrix. Let $x=\left[\begin{array}{c}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right]$ be a.
Column vector. Consider the equation $A x=\lambda x$ ——位. Where λ is a.
scalar. If I is a unit matrix of order n then the equation (i) can be written as $A X=\lambda I X$.

$$
\begin{align*}
& A X-\lambda I X=0 \\
& (A-\lambda I) X=0 \tag{2}
\end{align*}
$$

This matrix equation represents the following system of n homage-- reous equations in n unknowns.

$$
\left.\begin{array}{l}
\left(a_{11}-\lambda\right) x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\
a_{21} x_{1}+\left(a_{22}-\lambda\right) x_{2}+\cdots+a_{2 n} x_{n}=0 . \\
a_{31} x_{1}+a_{32} x_{2}+\left(a_{33}-\lambda\right) x_{3}+\cdots+a_{3 n} x_{n}=0 . \tag{3}\\
a_{n 1} x_{1}+a_{n 2} x_{2}+\cdots .+\left(a_{n n}-\lambda\right) x_{n}=0
\end{array}\right\}
$$

Here the co efficient matrix of this system is $A-\lambda I$. We know that The necessary and sufficient condition for the system (3) posseses a non zero solution is that the coefficient mat rix $A-\lambda I$ is singular i.e $|A-\lambda I|=0$.
Characteristic Matrix:- Let A be a square matrix of order n and I be a unit matrix of order Then the matrix $A-\lambda I$ is called characteristic matrix where λ is a constant.

Characteristic Polynomial:
The determinant of the matrix $A-\lambda I$ is called characteristic poly--nomial in λ of degree n. characteristic Equation:
For a square matrix A, the equation $|A-\lambda I|=0$ is called the char. - cteristic equation.

Eigen values : - The roots of the characteristic equation are called the characteristic values or roots or Eileen values or Latent roots or proper values of the square matrix.
Note: - The set of the Eigen values of A is called the spectrum of A.
Elgen vectors: - If λ is an eigen value of the square matrix A then $\operatorname{det}(A-\lambda I)=0$ i.e The matrix $A-\lambda I$ is singular. Therefore. there exists a non zero vector x such that $(A-\lambda I) x=0$ or $A x=\lambda x$. is said to be the eigen vector or characteristic vector of A corro--sponding to the eigen values.
($O R$)
Let A be a square matrix of order. A Non zero vector x is said to be characteristic vector of A it there exists a scalar λ such that $A x=\lambda x$.
Note: - An Eigen value of a square matrix A can be zero. But a zero vector can not be an Eigen vector of A.

Properties of Eigen values and Eigen vectors:-

1) The sum of the Eigen values of a square matrix is equal to its trace of the matrix.
i.e If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are Eigen values of A then $+\gamma(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$.

E9:-.-i) If $2,3,5$ are Eigen values of A then $+\gamma(A)=2+3+5=10$
(ii) If $0,1,-1$ are Eigen values of A then $\operatorname{tr}(A)=0+1-1=0$.
2) The product of the Eigen values of a square matrix is equal to its determinant.
i.e. If $\lambda_{1}, \lambda_{2} \lambda_{3}$ are Eigen values of A then $|A|=\lambda_{1} \lambda_{2} \lambda_{3}$.

Eg:- Ii) If $0,0,1$ are Figen values of A then $|A|=0.0 .1=0$.
(ii) It $1,3,-5$ are Eigen values of A then $|A|=1 \cdot 3 \cdot(-5)=-15$.

Note:-(i) It are of the Elgon values of A is zero then A is singe - lar matrix
(ii) If all the Eigen values of A are non zero then A is non singe
3) If λ is an eigen value of A corresponding to the eigen vector x. - lar matrix. then λ^{n} is an eigen value of A^{n} corresponding to the elgen vector x. Eg:- If $-1,1,2$ are Elgen values of A then Eigen values of A^{3} are $(-1)^{3}, 1^{3}$ and 2^{3} i.e $-1,1,8$.
H) If λ is an eigen value of A corresponding to the elgen vector x. then $K \lambda$ is an eigen value of $K A$ corresponding to the eigen vector x. Where k is non zero scalar.
Eg: - If $1,2,3$ are Elgen values of A then Eigen values of $3 A$ are 3,6 , and 9 .
5) If λ is an eigen value of a non singular matrix A correspo - aiding to the eigen vecto x, then λ^{-1} is an eigenvalue of \vec{A}^{-1}. corresponding to the eigen vector x.
E9: - If $1,2,3$ are eigen values of A then elgen values of A^{-1} are $1^{-1}, 2^{-1}$ and 3^{-1} i.e $1, \frac{1}{2}$ and $\frac{1}{3}$.
b) If λ is an eigen value of a non singular matrix A correspon

- ding to the eigen vector x then $\frac{|A|}{\lambda}$ is an eigen value of the matrix adj A corresponding to the eigen vector x.
Eg:- If $1,3,5$ are eigen values of A then eigen values of $\operatorname{adj} A$ are given by $\frac{|A|}{\lambda}=\frac{15}{1}, \frac{15}{3}, \frac{15}{3}$ i.e $15,3,5$

$$
[\because|A|=1.3 .5=15]
$$

7) If λ is an eigen value of an orthogonal matrix then $\frac{1}{\lambda}$ is also an eigen value.
8) The Eigen values of a triangular matrix are just the diagonal element of the matrix.

$$
\begin{aligned}
& \text { element of the matrix. } \\
& \text { Eg:- An Eigen values of } A=\left[\begin{array}{ll}
1 & 2 \\
0 & -3
\end{array}\right] \text { are } \lambda=1,-3 \text {. }
\end{aligned}
$$

a) For a real symmetric matrix, the elgen vectors corresponding to two distinct elgen values are orthogonal.
Eg:- $x_{1}=\left[\begin{array}{lll}-16 & 1 & 11\end{array}\right]^{\top} x_{2}=\left[\begin{array}{lll}2 & -1 & 3\end{array}\right]^{\top} x_{3}=\left[\begin{array}{lll}1 & 5 & 1\end{array}\right]^{\top}$ are eigen. vectors of corresponding to distinct eigen values of real symmetric matrix. Here x_{1}, x_{2} and x_{3} are pairwise orthogonal.
10) If x is an Eigen vector of a matrix A, then x can not correspond to more than one eigen value of A.
11) The Eigen vectors corresponding to distinct eigen values of a. matrix are linearly independent.
12) If x_{1} and x_{2} are two Eigen vectors of a matrix A corresponding to some some eigen value λ then any linear combination $k_{1} x_{1}+k_{2} x_{2}$ where k_{1}, k_{2} are arbitrary constants is also an eigen vector of A corresponding to the same Eigen value λ.
13) A square matrix A and H^{\prime} transpose A^{\top} have the same eigen values.

Eg: - If 2,3 are eigen values of A then eigen values A^{\top} are 2,3 .
14) If λ is an eigen value of the matrix A then $\lambda+k$ is an eigen value of the matrix $A+K I$ corresponding to the eigen vector X. Eg: - If $1,2,3$ are eigen values of A then eigen values of $A+2 I$ are $1+2,2+2,3+2$ i.e 3,4 and 5 .
(ii) It $0,1,-2$ are eigen values of A then eigen values of $A-31$ arc $0-3,1-3,-2-3$ i.e $-3,-2$ and -5 .
15) An Eigen values of hermitian matrix are purely imaginary or. zero.
16) An Elgen values of hermitian matrix are real.
17) The Eigen values of an unitary matrix have absolute value 1 .

Working procedure to find Eigen values:-
Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Step (i): - The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{align*}
& \text { i.e }\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|=0 \text {. } \\
& \lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0 \tag{1}
\end{align*}
$$

Where $S_{1}=$ sum of the principal diagonal elements of A i.e $\operatorname{tr}(A)$

$$
s_{1}=a_{11}+a_{22}+a_{33}
$$

$S_{2}=$ sum of the minors of principal diagonal elements of A

$$
\begin{aligned}
& S_{2}=\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{13} \\
a_{31} & a_{33}
\end{array}\right|+\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \\
& S_{3}=\operatorname{det} A .
\end{aligned}
$$

step (ii) :- Find s_{1}, s_{2} and s_{3},
Step (iii): - substitute the values of s_{1}, s_{2} and S_{3} in (i) Solve the eqn. (1), we get Figen values λ_{1}, λ_{2} and λ_{3}.

If $A=\left[\begin{array}{rrr}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$
(a) verity that $|A|=\lambda_{1} \lambda_{2} \lambda_{3}$ and $\operatorname{t\gamma }(A)=\lambda_{1}+\lambda_{2}+\lambda_{3}$.
(b) Find the eigen values for the following matrices
(i) A
(ii) A^{\top}
(iii) A^{-1}
(iv) $4 A^{-1}$
(v) A^{2} (vi) $\left.A^{2}-2 A+I \mid v^{i} i\right) A^{3}+2 I$.
(viii) $A-2 I$.

Sol: - Given that $A=\left[\begin{array}{ccc}3 & -1 & 1 \\ -1 & 5 & -1 \\ 1 & -1 & 3\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { n of } A \text { is }|A-\lambda I|=0 \\
& \text { i.e }\left|\begin{array}{ccc}
3-\lambda & -1 & 1 \\
-1 & 5-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right|=0 \\
& \lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-S_{3} \Rightarrow 0
\end{aligned}
$$

Where $S_{1}=$ sum of the principal diagonal elements of $A=3+5+3=11$
$s_{2}=$ sum of the minors of principal diagonal elements of A

$$
\left.\begin{array}{rl}
& =\left|\begin{array}{cc}
5 & -1 \\
-1 & 3
\end{array}\right|+\left|\begin{array}{ll}
3 & 1 \\
1 & 3
\end{array}\right|+\left|\begin{array}{cc}
3 & -1 \\
-1 & 5
\end{array}\right| \\
& =(15-1)+(9-1)(15-1) \\
S_{2} & =36 \\
S_{3} & =|A|
\end{array}\right)=\left|\begin{array}{ccc}
3 & -1 & 1 \\
-1 & 5 & -1 \\
1 & -1 & 3
\end{array}\right| .
$$

\therefore The characteristic equation of A is $\lambda^{3}-11 \lambda^{2}+36 \lambda-36=0$

$$
\lambda=2,3,6
$$

(a) $|A|=2 \cdot 3 \cdot 6=36$, $\operatorname{to}(A)=2+3+6=11$.
(b) (i) Eigen values of $A=\lambda$

$$
\longrightarrow 2,3,6
$$

(ii) Eigen values of $A^{\top}=\lambda$
(iii) Eigen values of $A^{-1}=\lambda^{-1}$

$$
\longrightarrow 2,3,6
$$

$$
\longrightarrow \frac{1}{2}, \frac{1}{3}, \frac{1}{6}
$$

(iv) Eigen values of $4 A^{-1}=4 \lambda^{-1}$

$$
\longrightarrow \frac{4}{2}, \frac{4}{3}, \frac{4}{6}
$$

(v) Eigen values of $A^{2}=\lambda^{2}$

$$
\rightarrow 2^{2}, 3^{2}, 6^{2}
$$

(vi) Eigen values of $A^{2}-2 A+I=\lambda^{2}-2 \lambda+1 \rightarrow 1,4,25$
(vii) Elgen values if $A^{3}+2 I=\lambda^{3}+2 \longrightarrow 10,29,218$
$\begin{aligned} & \text { (vii) Eigen values of } A^{3}+2 I=\lambda+2 \\ & \text { (viii) Eigen values of } A-2 I=\lambda-2\end{aligned} \longrightarrow 0,1,4$.

Working procedure to find Figen values and Eigen vectors:-

$$
\text { Let } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Step(i):- The characteristic equation of A is $|A-\lambda I|=0$.

$$
\begin{align*}
& \text { i.e }\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|=0 \\
& \lambda^{3}-s_{1} \lambda^{2}+s_{2} \lambda-s_{3}=0 \tag{1}
\end{align*}
$$

Where $s_{1}=\operatorname{tr}(A)$
$S_{2}=$ sum of the minors of principal diagonal elements of A

$$
s_{3}=|A|
$$

Step (ii):- Solve the characteristic eqn. (i), we get Eigen values λ_{1}, λ_{2} and λ_{3}.
step (iii) For finding an Eigen vector Corresponding Eigen value $\lambda=\lambda_{1}$, we solve homogeneous system $(A-\lambda I) x=0$.

$$
i \cdot e\left[\begin{array}{ccc}
a_{11} \lambda & a_{12} & a_{33} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Similarly we can find an eigen vector corresponding eigen value $\lambda=\lambda_{2}, \lambda=\lambda_{3}$. by solving homogeneous system (2).
\rightarrow Determine the characteristic roots and the characteristic vectors of the matrix $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$. Also find characteristic roots and char. vectors of
(i) A^{2}
(ii) \bar{A}^{-1}.

Sol: Given that $A=\left[\begin{array}{lll}2 & 1 & 0 \\ 0 & 2 & 1 \\ 0 & 0 & 2\end{array}\right]$
Let λ be the eigen value of A.
The characteristic equation of A is $|A-\lambda I|=0$.

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
2-\lambda & 1 & 0 \\
0 & 2-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right|=0 \\
& (2-\lambda)^{3}=0
\end{aligned}
$$

$\lambda=2,2,2$. [Algebraic multiplicity
\therefore Eigen values of A are $\lambda=2,2,2$.
Now the Egen vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ of A Corresponding to the Elgen value λ are obtained by solving the homogeneous system of eau's

$$
\begin{align*}
& \text { value } \lambda \text { are obtained by solving } \tag{1}\\
& (A-\lambda I) x=0 \text { i.e }\left[\begin{array}{ccc}
2-\lambda & 1 & 0 \\
0 & 2-\lambda & 1 \\
0 & 0 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]- \\
& \lambda=2
\end{align*}
$$

Elgen vector Corresponding to Eigen value $\lambda=2$:-
For $\lambda=2$, The system (1) can be written as.

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Which is in echelon form.
Here rank of the coefficient matrix of the system is 2 i.e $r=2$ Sothat the system has $n-r=3-2=1$ L.I solution.
These is only one L. I eigen vector corresponding to Eigen value

$$
\lambda=2 .
$$

To determine this, we have to assign an arbitrary value for $n-r=3-2=1$ variable.
From the above system, the eau's can be written as.

$$
x_{2}=0, x_{3}=0
$$

Note that we can not find x_{1} from these equ's. As x_{1} is not. present in any of these equations, It follows that x_{1} can be arbitrary,

Hence $x_{1}=k_{1} x_{2}=0, x_{3}=0$
$x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}k_{1} \\ 0 \\ 0\end{array}\right]$ is the only linearly independent Elgen vector of A
corresponding to the Eigen value $\lambda=2$. (Geometric multiplicity of $\lambda=2$ is 1)
(i) We know that If λ is an eigen value of- A corresponding to the Eigen vector x then λ is an eigen value of A^{n} corresponding to the Eigen vector x.
\therefore Eigen values of A^{2} is $\lambda^{2}=2^{2}, 2^{2}, 2^{2}$ and the corresponding eigen vector is $x_{1}=\left[\begin{array}{c}k_{1} \\ 0 \\ 0\end{array}\right]$.
(ii) We know that If λ is an eigen value of A corresponding to the Eigen vector x then λ^{-1} is an eigen value of A^{-1} corresponding to the Eigen vector x :
\therefore Eigen values of A^{-1} is $\lambda^{-1}=\frac{1}{2}, \frac{1}{2}, \frac{1}{2}$ and the corresponding Eigen vector is $x_{1}=\left[\begin{array}{l}k_{1} \\ 0 \\ 0\end{array}\right]$.

Find the Eigen values and Elgen vectors of $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2\end{array}\right]$.
Also find eigen values and eigen vectors of
(i) $\operatorname{adj} A$
(ii) $A-3 I$.

Sol:- Given that $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & 2-\lambda & 2 \\
0 & 0 & -2-\lambda
\end{array}\right|=0 \\
& (1-\lambda)(2-\lambda)(-2-\lambda)=0 \\
& \lambda=1,2,-2
\end{aligned}
$$

\therefore Eigen values of the matrix A are $\lambda=1,2,-2$
[Algebraic multiplicity of $\lambda=1,2,-2$ is 1]
Now the Eigen vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ of A corresponding to Eigen value λ are obtained by solving the x_{3}] homogeneous system $(A-\lambda I) X=0$.

$$
\text { i.c }\left[\begin{array}{ccc}
1-\lambda & 2 & -1 \\
0 & 2-\lambda & 2 \\
0 & 0 & -2-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-1
$$

(i) Eigen vector Corresponding to the Eigen value $\lambda=1$:-

For $\lambda=1$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 1 & 2 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the coeff. matrix into echelon form by applying E-row operations only, and hence determine the rank of coeff. matrix.

$$
R_{2} \rightarrow 2 R_{2}-R_{1}
$$

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 0 & 5 \\
0 & 0 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{3} \rightarrow 5 R_{3}+3 R_{2} \\
& {\left[\begin{array}{ccc}
0 & 2 & -1 \\
0 & 0 & 5 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Which is in echelon form
Here the rank of the coeff. matrix of the system is 2 i.e $r=2$ Sothat the system has $n-\gamma=3-2=1$ L. I solution.
There is only one L.I eigen vector corresponding to eigen value $\lambda=1$.
To determine this we have to assign an arbitrary value for $n-r=$ $3-2=1$ variable.
From the above system, the equ's can be written as

$$
\begin{aligned}
2 x_{2}-x_{3} & =0 \\
5 x_{3} & =0 \Rightarrow x_{3}=0 \\
x_{2} & =\frac{x_{3}}{2} \\
x_{2} & =0
\end{aligned}
$$

Now we cant find x_{1} from these equations. As x_{1} is not present in any of these equ's. it follows that x_{1} is an arbitrary.

Hence $x_{1}=k_{1}, x_{2}=0, x_{3}=0$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
k_{1} \\
0 \\
0
\end{array}\right]=k_{1}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { where } k_{1} \neq 0
$$

$\therefore x_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is the linearly independent eigen vector corresponding to eigen value $\lambda=1$.
[Geometric multiplicity of $\lambda=1$ is 1]

Case (ii) Eigen vector corresponding to Elgen value $\lambda=2$:-
For $\lambda=2$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 0 & 2 \\
0 & 0 & -4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the co eff. matrix into echelon form by applying E-row operations only and thence determine the rank of coeff matrix

$$
\begin{aligned}
& R_{3} \rightarrow R_{3}+2 R_{2} \\
& {\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 0 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Which is in echelon form.
Here the rank of the coeff. matrix if the system is 2 i.e $r=2$
So that the system has $n-\gamma=3-2=1$ L. I solution.
There is only one L. I eigen vector corresponding to the eigen value $\lambda=2$.

To determine this we have to assign an arbitrary value for $n-\gamma=$ $3-2=1$ variable.
From the above system, the equ's can be written as

$$
\begin{aligned}
-x_{1}+2 x_{2}-x_{3} & =0 \\
2 x_{3} & =0 \Rightarrow x_{3}=0 \\
-x_{1}+2 x_{2} & =0 \\
& \Rightarrow x_{1}=2 x_{2}
\end{aligned}
$$

choose $x_{2}=k_{2}$ Then $x_{1}=2 k_{2}$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 k_{2} \\
k_{2} \\
0
\end{array}\right]=k_{2}\left[\begin{array}{l}
2 \\
1 \\
0
\end{array}\right] .
$$

$\therefore x_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ is the L.I eigen vector corresponding eigen value $\lambda=2$.
[Geometric multiplicity of $\lambda=2$ is 1]

Case (iii) Eigen vector corresponding to the Elgen value $\lambda=-2$:-
For $\lambda=-2$, The system (i) can be written as

$$
\left[\begin{array}{ccc}
3 & 2 & -1 \\
0 & 4 & 2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Which is in echelon form.
Here the rank of the coff matrix of the system is 2 i.e $r=2$ So that the system has $n-r=3-2=1$ L. I solution.
There is only one L.I eigen vector corresponding to eigen value $\lambda=-2$.
To determine we have to assign an arbitrary value for $n-r=$ $3-2=1$ variable.
From the above system, the equations can be written as

$$
\begin{gathered}
3 x_{1}+2 x_{2}-x_{3}=0 \\
4 x_{2}+2 x_{3}=0 \Rightarrow x_{2}=-\frac{1}{2} x_{3} \\
\text { choose } x_{3}=k_{3} \\
x_{2}=-\frac{1}{2} k_{3} \\
x_{1}=\frac{x_{3}-2 x_{2}}{3} \\
x_{1}=\frac{2}{3} k_{3} . \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{2}{3} k_{3} \\
\frac{-1}{2} k_{3} \\
k_{3}
\end{array}\right]=k_{3}\left[\begin{array}{c}
\frac{2}{3} \\
-\frac{1}{2} \\
1
\end{array}\right] \text { where } k_{3} \neq 0 .}
\end{gathered}
$$

$\therefore x_{3}=\left[\begin{array}{c}\frac{2}{3} \\ -\frac{1}{2} \\ 1\end{array}\right]$ is the linearly independent eigen vector corresponding [Geometric multiplicity of $\lambda=-2$ is 1]
\therefore The Eigen values of A are $1,2,-2$ and the corresponding eigen vectors are $\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]$ and $\left[\begin{array}{c}2 / 3 \\ -1 / 2 \\ 1\end{array}\right]$.
(i) We know that λ is an eigen value of non singular matrix A. Corresponding to the eigen vector x then $\frac{|A|}{\lambda}$ is an eigen value of $\operatorname{adj} A$ corresponding to the elgen vector X.
\therefore Elgen values of $\operatorname{adj} A$ are $\frac{|A|}{\lambda}=\frac{-4}{1}, \frac{4}{2}, \frac{4}{-2}$ i.e $-4,2,-2$. and corresponding eigen vectors are $x_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad x_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \quad x_{3}=\left[\begin{array}{c}\frac{2}{3} \\ -1 / 2 \\ 1\end{array}\right]$
(ii) We know that λ is an eigen value of A corresponding to the eigen vector x then $\lambda-k$ is an eigen value of $A-K I$ corresponding to the eigen vector x.
\therefore Eigen values of $A-3 I$ are $\lambda-3=-2,-1,-5$ and corresponding eigen vectors are $x_{1}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right] \quad x_{2}=\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right] \quad x_{3}=\left[\begin{array}{c}2 / 3 \\ -1 / 2 \\ 1\end{array}\right]$.

Find the eigen values and the corrosponding eigen vectors of iq. the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Sol:- Given that $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$.

$$
\begin{aligned}
& \text { i.e } \left.\begin{array}{ccc}
1-\lambda & 1 & 1 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array} \right\rvert\,=0 \\
& R_{1} \rightarrow R_{1}-R_{2} \\
& \left|\begin{array}{ccc}
-\lambda & \lambda & 0 \\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right|=0 \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& \left|\begin{array}{ccc}
-\lambda & \lambda & 0 \\
1 & 1-\lambda & 1 \\
0 & \lambda & -\lambda
\end{array}\right|=0 \\
& \lambda^{2}\left|\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 1-\lambda & 1 \\
0 & 1 & -1
\end{array}\right|=0 \\
& c_{2} \rightarrow c_{2}+c_{3} \\
& \lambda^{2}\left|\begin{array}{ccc}
-1 & 1 & 0 \\
1 & 2-\lambda & 1 \\
0 & 0 & -1
\end{array}\right|=0 \\
& \lambda^{2}\left[\left[\begin{array}{l}
1 \\
-1(\lambda-2)
\end{array}-0\right]-(-1)\right]=0 \\
& \lambda^{2}[2-\lambda+1]=0=\lambda^{2}(3-\lambda)=0 \\
& \lambda=0,0,3
\end{aligned}
$$

The Eigen values of the matrix A are $\lambda=0,0,3$.

Now the Eigen vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ of A corrosponding to Eigen value λ are obtained by solving the homogeneous system $(A-\lambda I) x=0$.

$$
\text { i.e }\left[\begin{array}{ccc}
1-\lambda & 1 & 1 \tag{1}\\
1 & 1-\lambda & 1 \\
1 & 1 & 1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {. }
$$

Eigen vector corrosponding to the Eigen value $\lambda=0$
For $\lambda=0$, The system (1) can be written as

$$
\left[\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the coefficient matrix to echelon form by applying elementary row operations only and hence determine the rank of the coefficient matrix.

$$
\begin{aligned}
& R_{2} \longrightarrow R_{2}-R_{1}, R_{3} \longrightarrow R_{3}-R_{1} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Here the Rank of the coefficient matrix of the system is 1 i.e $\gamma=1$.
So that the system has $n-\gamma=3-1=2$ linearly independent sol's. There are two linearly independent eigen vectors corrosponding to the eigen value $\lambda=0$.

To determine this, from the above system. the equs can be written as $x_{1}+x_{2}+x_{3}=0$

- choose $x_{2}=k_{1}$

$$
x_{3}=k_{2}
$$

$$
\begin{aligned}
x_{1} & =-x_{2}-x_{3} \\
x_{1} & =-k_{1}-k_{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-k_{1}-k_{2} \\
k_{2} \\
k_{2}
\end{array}\right] } & =k_{1}\left[\begin{array}{c}
-1 \\
0 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

$x_{1}=\left[\begin{array}{r}-1 \\ 1 \\ 0\end{array}\right] \quad x_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ are the L.I eigen vectors corrosponding to the eigen value $\lambda=0$.
Ellen vector corrosponding to the eigen value $\lambda=3$:
For $\lambda=3$, The system (1) can be written as.

$$
\left[\begin{array}{ccc}
-2 & 1 & 1 \\
1 & -2 & 1 \\
1 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the coefficient matrix to echelon form by applying elementary row operations only and. Hence determine the rank of the coefficient matrix.

$$
\begin{aligned}
& R_{2} \rightarrow 2 R_{2}+R_{1}, R_{3} \rightarrow 2 R_{3}+R_{1} \\
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{3} \rightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
-2 & 1 & 1 \\
0 & -3 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Here the Rank of the coefficient matrix of the system is 2 ier $=2$ so that the system has $n-r=3-2=1$ L.I sol.
There is onlyone L.I eigen vector corrosponding to the eigen value $\lambda=3$.

To determine this, from the above system, the equ's can be written as

$$
\begin{aligned}
-2 x_{1}+x_{2}+x_{3} & =0 \\
x_{2}-x_{3} & =0
\end{aligned}
$$

choose $x_{3}=k_{1}$

$$
\begin{gathered}
x_{2}=x_{3} \\
x_{2}=k_{1} \\
2 x_{1}=x_{2}+x_{3} \\
x_{1}=k_{1} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
k_{1} \\
k_{1} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \text { where } k_{1} \neq 0}
\end{gathered}
$$

$x_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is the L.I eigen vector corrosponding to the eigen
\therefore The Eigen value of A are $0,0,3$ and the corrosponding to the eigen vectors are $x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] \quad x_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$.
(2) Show that $A=\left[\begin{array}{lll}i & 0 & 0 \\ 0 & 0 & i \\ 0 & i & 0\end{array}\right]$ is a skew Hermitian matrix and also

Find eigen values and the carrosponding eigen vectors of A.

Sol:- Given that

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
i & 0 & 0 \\
0 & 0 & i \\
0 & i & 0
\end{array}\right] \\
& \bar{A}=\left[\begin{array}{ccc}
-i & 0 & 0 \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right] \\
& A^{\theta}=\bar{A}^{\top}=\left[\begin{array}{ccc}
-i & 0 & \theta \\
0 & 0 & -i \\
0 & -i & 0
\end{array}\right] \\
& A^{\theta}=-\left[\begin{array}{ccc}
i & 0 & 0 \\
0 & 0 & i \\
0 & i & 0
\end{array}\right]-A
\end{aligned}
$$

$\therefore A$ is skew hermitian matrix.

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& i \cdot e\left|\begin{array}{ccc}
i-\lambda & 0 & 0 \\
0 & 0-\lambda & i \\
0 & i & 0-\lambda
\end{array}\right|=0 \\
& (i-\lambda)\left(\lambda^{2}+1\right)=0 \\
& \lambda=-i, i, i
\end{aligned}
$$

The eigen values of the matrix A are $\lambda=-i, i, i$ Now we have to find eigen vectors $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ eorrosponding to the eigen values of λ by solving the homogeneous system $(A-\lambda I) x=0$.

$$
\text { i.e }\left[\begin{array}{ccc}
i-\lambda & 0 & 0 \tag{1}\\
0 & -\lambda & i \\
0 & i & -\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Case (i): - Eigen vector corrosponding to the eigen value $\lambda=-i$
For $\lambda=-i$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
r_{i} & 0 & 0 \\
0 & i & i \\
0 & i & i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the co efficient; to echelon form by applying dele-- mentary row operations only and determine the rank of the matrix.

$$
\begin{aligned}
R_{3} & \longrightarrow R_{3}-R_{2} \\
& {\left[\begin{array}{lll}
2 i & 0 & 0 \\
0 & i & i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Here the rank of the coefficient matrix of the system is $\gamma=2=$ The No. of non zero rows.
So that the system have $n-r=3-2=1$ linearly independent sol.
\therefore There is only one linearly independent eigen vector corresponding to the eigen value $\lambda=-i$
To determine this, we have to assign an aebitrasy value fer $n-\gamma=3-2 \Rightarrow$ variable.

The linear equations are $x_{1}=0$

$$
x_{2}+x_{3}=0
$$

choose $x_{3}=k_{1}$

$$
x_{2}=-x_{3}=-k_{1} .
$$

$$
x_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
0 \\
-k_{1} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
0 \\
-1 \\
1
\end{array}\right] \text { where } k_{1} \neq 0 .
$$

$x_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right]$ is the linearly independent eigen vector corresponding to
the eigen value $\lambda=-i$.
Case (ii) :- Elgen vector corresponding to the elgen value $\lambda=i$:-
For $\lambda=i$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -i & i \\
0 & i & -i
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the co efficient matrix to echelon form by applying elementary row operations only and determine the rank of the matrix.

$$
\begin{aligned}
& R_{3} \longrightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -i & i \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .}
\end{aligned}
$$

Here the rank of the coefficient matrix of the system is $\gamma=1=$ The No. of non zero rows.
So that the, system have $n-\gamma=3-1=2$ linearly independent Solutions. There ire only linearly independent eigen vectors corresponding to the eigen value $\lambda=i$
To determine this, we have to assign an arbitrary value too $n-\gamma=3-1=2$ variables

The linear equation is $x_{2}-x_{3}=0$.
choose $x_{3}=k_{2}$

$$
x_{2}=x_{3}=k_{2} .
$$

Now we cannot find x_{1} from these equations. As x_{1} is
not present in any of these equations it follows that x_{1} is an arbitrary.

Hence $x_{1}=k_{3}$

$$
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
k_{3} \\
k_{2} \\
k_{2}
\end{array}\right]=k_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]+k_{3}\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]
$$

$x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] x_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ are linearly independent eigen vectors corresponding to the elgen value $\lambda=i$
$\therefore x_{1}=\left[\begin{array}{c}0 \\ -1 \\ 1\end{array}\right] x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right] \quad x_{3}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ are eigen vectors corrosponding to the elgen values $\lambda=-i, i, i$.

Find the eigen values and eigen vectors of the Hermitian matrix.

$$
A=\left[\begin{array}{cc}
2 & 3+4 i \\
3-4 i & 2
\end{array}\right]
$$

Sol: Given that $A=\left[\begin{array}{cc}2 & 3+4 i \\ 3-4 i & 2\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$ i.e $\left|\begin{array}{cc}2-\lambda & 3+4 i \\ 3-4 \mid & 2-\lambda\end{array}\right|=0$.

$$
\begin{aligned}
& (2-\lambda)^{2}-(3+4 i)(3-4 i)=0 \\
& (2-\lambda)^{2}-25=0 \\
& \lambda^{2}-4 \lambda-21=0 \\
& \lambda^{2}-7 \lambda+3 \lambda-21=0 \\
& \lambda(\lambda-7)+3(\lambda-7)=0 \\
& (\lambda-7)(\lambda+3)=0 \\
& \lambda=-3,7
\end{aligned}
$$

The eigen values of the matrix A are $\lambda=-3,1$.
Now we have find the eigen vectors $x=\left[\begin{array}{l}x_{1} \\ z_{2}\end{array}\right]$ corrosponding to the esgen values of λ by solving the homogeneous system $(A-\lambda I) x=0$.

$$
\text { ie. }\left[\begin{array}{cc}
2-\lambda & 3+4 i \tag{1}\\
3-4 i & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Case (i):- Eigen vector corrosponding to the eigen value $\lambda=1$.
For $\lambda=7$ the system (1) can be written as

$$
\left[\begin{array}{cc}
-5 & 3+4 i \\
3-4 i & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Now we reduce the coefficient matrix to echelon form by applying E-row operations only and determine the rank of the matrix

$$
\begin{aligned}
& R_{2} \rightarrow 5 R_{2}+(3-4 i) R_{1} \\
& {\left[\begin{array}{cc}
-5 & 3+4 i \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Here the rank of the co efficient matrix of the system is $r=2$. So that the system ${ }_{\text {where }}^{n-r}=2-1=1$ linearly independent solutions.
\therefore There is only one linearly independent eigen vector corrospondic, to the eigen value $\lambda=7$.
To determine this, we have to assign an arbitracy value tor $n-\gamma=2-1=1$ variable.
The linear eqn is, $-5 x_{1}+(3+4 i) x_{2}=0$.
choose $x_{2}=k_{1}$

$$
\begin{aligned}
& x_{1}=\frac{3+4 i}{5} x_{2} \\
& x_{1}=\frac{3+4 i}{5} k_{1} \\
& x_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{3+4 i}{5} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
\frac{3+4 i}{5} \\
1
\end{array}\right] \text { where } k_{1} \neq 0
\end{aligned}
$$

$x_{1}=\left[\begin{array}{c}\frac{3+4 i}{5} \\ 1\end{array}\right]$ is the linearly independent eigen vector corrospon -ding to the eigen value $\lambda=1$.

Case(ii): - Eigen vector corrosponding to the eigen value $\lambda=-3$:-
For $\lambda=-3$, The system (1) can be written as.

$$
\left[\begin{array}{cc}
5 & 3+4 i \\
3-4 i & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

. Now we reduce the co efficient, to echelon form by applying elementary row operations only and determine the rank of the matrix.

$$
\begin{aligned}
R_{2} & \longrightarrow 5 R_{2}-(3-4 i) R_{1} \\
& {\left[\begin{array}{cc}
5 & 3+4 i \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

Here the rank of the co efficient matrix of the system is $r=1$ so that the system have $n-\gamma=2-1=1$ linearly independent Solution.

There is only one linearly independent eigen vector corrosponding to the eigen value $\lambda=-3$

To determine this, we have to assign an aebitraly value for $n-\gamma=2-1=1$ variable.

The linear eq is $5 x_{1}+(3+4 i) x_{2}=0$
choose $x_{2}=k_{2}$

$$
\begin{aligned}
& 5 x_{1}=-(3+4 i) x_{2} \\
& x_{1}=-\frac{(3+4 i)}{5} k_{2} \\
& x_{2}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{(3+4 i)}{5} k_{2} \\
k_{2}
\end{array}\right]=k_{2}\left[\begin{array}{c}
-\frac{(3+4 i)}{5} \\
1
\end{array}\right] \text { Where } k_{2} \neq 0 \text {. }
\end{aligned}
$$

$x_{2}=\left[\begin{array}{c}-\frac{(3+4 i)}{5} \\ 1\end{array}\right]$ is the L.I eigen vector corrosponding to the eigen
$\left.\begin{array}{r}\text { Corrosponding } \\ 1\end{array}\right] x_{1}=\left[\begin{array}{c}\frac{3+4 i}{5} \\ 1\end{array}\right] \quad x_{2}=\left[\begin{array}{c}\frac{-(3+4 i)}{5} \\ \text { values the eigen vectors to the eigen } \lambda=7,\end{array}\right.$ values $\lambda=7,-3$.

Find the eigen values and corresponding eigen vectors of the matrix

$$
A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}
1 & 1+i \\
1-i & -1
\end{array}\right] .
$$

sol:- Given that $A=\frac{1}{\sqrt{3}}\left[\begin{array}{cc}1 & 1+i \\ 1-i & -1\end{array}\right]=\left[\begin{array}{cc}\frac{1}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\ \frac{1-i}{\sqrt{3}} & \frac{-1}{\sqrt{3}}\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { 1.e }\left|\begin{array}{cc}
\frac{1}{\sqrt{3}}-\lambda & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}-\lambda
\end{array}\right|=0 . \\
& -\left(\frac{1}{3}-\lambda^{2}\right)-\frac{(1+i)(1-i)}{\sqrt{3} \sqrt{3}}=0 \\
& \lambda^{2}-\frac{1}{3}-\frac{1}{3}(1+1)=0 \\
& \lambda^{2}=1 \\
& \lambda= \pm 1
\end{aligned}
$$

The eigen values of the matrix A are $\lambda=1,-1$.
Now we have to find eigen vectors $x=\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$ corresponding to eigen values of λ by solving the homogeneous system $(A-\lambda I) x=0$

$$
\text { i.e }\left[\begin{array}{cc}
\frac{1}{\sqrt{3}}-\lambda & \frac{1+i}{\sqrt{3}} \tag{1}\\
\frac{1-i}{\sqrt{3}} & \frac{-1}{\sqrt{3}}-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Case (1): Eigen vector corrosponding to the eigen value $\lambda=1$
For $\lambda=1$, The system (1) can be written as.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1}{\sqrt{3}}-1 & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & -\frac{1}{\sqrt{3}}-1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow\left(\frac{1-\sqrt{3}}{\sqrt{3}}\right) R_{2}-\left(\frac{1-i}{\sqrt{3}}\right) R_{1} . \\
& {\left[\begin{array}{cc}
\frac{1-\sqrt{3}}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Here the rank of the coefficient matrix of the system is $\gamma=1=$ No. of non zero rows.
So that the system have $n-\gamma=q-1=1$ linearly independent solutions
\therefore There is only one linearly indepent eigenvector corrosponding to the eigen value $\lambda=1$.
To determine this, we have to assign an arbitrary value for $n-\gamma=2-1=1$ variable.

The linear equation is $\left(\frac{1-\sqrt{3}}{\sqrt{3}}\right) x_{1}+\left(\frac{1+i}{\sqrt{3}}\right) x_{2}=0$
choose $x_{2}=k_{1}$

$$
\begin{gathered}
\frac{1-\sqrt{3}}{\sqrt{3}} x_{1}=\frac{-(1+i)}{\sqrt{3}} x_{2} \\
x_{1}=\frac{-(1+i)}{1-\sqrt{3}} k_{1} \\
x_{1}=\left[\begin{array}{c}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
\frac{1+i}{\sqrt{3}-1} k_{1} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
\frac{1+i}{\sqrt{3}-1} \\
1
\end{array}\right] \text { where } k_{1} \neq 0 .
\end{gathered}
$$

the eigen value $\lambda=$?
case (ii):- Eigen vector corresponding to the eigen value $\lambda=-1$

For $\lambda=-1$, The system (1) can be written as.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
\frac{1}{\sqrt{3}}+1 & \frac{1+i}{\sqrt{3}} \\
\frac{1-1}{\sqrt{3}} & \frac{-1}{\sqrt{3}}+1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& {\left[\begin{array}{ll}
\frac{1+\sqrt{3}}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
\frac{1-i}{\sqrt{3}} & \frac{-1+\sqrt{3}}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Now we reduce the coefficient matrix to echelon form by apply -ing elementary row operations only and determine the rank of the matrix.

$$
\begin{aligned}
R_{2} & \rightarrow\left(\frac{1+\sqrt{3}}{\sqrt{3}}\right) R_{2}-\left(\frac{1-i}{\sqrt{3}}\right) R_{1} \\
& {\left[\begin{array}{cc}
\frac{1+\sqrt{3}}{\sqrt{3}} & \frac{1+i}{\sqrt{3}} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] . }
\end{aligned}
$$

Here the rank of the coefficient matrix of the system is $\gamma=1=$ No. of non zero rows.

So that the system have $n-\gamma=2-1=1$ linearly independent Solution.
\therefore There is only one linearly independent eigen vector corrospon - ding to the eigen value $\lambda=-1$.

To determine this, we have to assign an aebitraly value tor $n-\gamma=2-1=1$ variable

The linear equation is

$$
\left(\frac{1+\sqrt{3}}{\sqrt{3}}\right) x_{1}+\left(\frac{1+i}{\sqrt{3}}\right) x_{2}=0
$$

choose $x_{2}=k_{2}$

$$
\begin{gathered}
(1+\sqrt{3}) x_{1}=-(1+i) x_{2} \\
x_{1}=\frac{-(1+i)}{1+\sqrt{3}} k_{2} \\
x_{2}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
-\frac{(1+i)}{1+\sqrt{3}} k_{2} \\
k_{2}
\end{array}\right]=k_{2}\left[\begin{array}{c}
-\frac{(1+i)}{1+\sqrt{3}} \\
1
\end{array}\right] \text { where } k_{2} \neq 0 .
\end{gathered}
$$

$x_{2}=\left[\begin{array}{c}-\frac{(1+i)}{1+\sqrt{3}} \\ 1\end{array}\right]$ is the eigen vector corrosponding to the eigen value $\lambda=-1$.
$\therefore x_{1}=\left[\begin{array}{c}\frac{1+i}{\sqrt{3}-1} \\ 1\end{array}\right] \quad x_{2}=\left[\begin{array}{c}-\frac{(1+i)}{\sqrt{3}+1} \\ 1\end{array}\right]$ are two linearly ind pendent eigen vectors corresponding to the eigen values $\lambda=1,-1$.

Determine the constants p, q, r, s, t, u so that $\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]^{\top},\left[\begin{array}{lll}1, & -1\end{array}\right]^{\top}$ and $\left[\begin{array}{lll}1 & -1 & 0\end{array}\right]^{\top}$ are the eigen vectors of the matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ p & q & \gamma \\ s & t & u\end{array}\right]$
Sol: Let $A=\left[\begin{array}{lll}1 & 1 & 1 \\ p & q & r \\ s & t & u\end{array}\right]$
Let $\lambda_{1} \lambda_{2} \lambda_{3}$ be the eigen values of A.
Let $x_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ be the eigen vector corrosponding to λ_{1}.

$$
\begin{align*}
& \therefore A x_{1}=\lambda_{1} x_{1} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
p & q & \gamma \\
s & t & u
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\lambda_{1}\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1}
\end{array}\right] } \\
& 1+1+1=\lambda_{1} \quad \text { le } \lambda_{1}=3 . \\
& p+q+\gamma=\lambda_{1} \Rightarrow p+q+\gamma=3 . \tag{1}\\
& s+t+u=\lambda_{1} \Rightarrow s+t+u=3- \tag{2}
\end{align*}
$$

Let $x_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ be the eigen vector corrosponding to λ_{2} then

$$
\begin{align*}
& A x_{2}=\lambda_{2} x_{2} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
p & q & \gamma \\
s & t & u
\end{array}\right]\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\lambda_{2}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]=\left[\begin{array}{c}
\lambda_{2} \\
0 \\
-\lambda_{2}
\end{array}\right]} \\
& 1 \cdot 1+1 \cdot 0+1(-1)=\lambda_{2} \Rightarrow \lambda_{2}=0 . \\
& p+q \cdot 0+\gamma(-1)=p-\gamma=0 . \tag{3}\\
& s+t \cdot 0-u=-\lambda_{2} \Rightarrow s-u=0 \tag{4}
\end{align*}
$$

Let $x_{3}=\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ be the eigen vector corrosponding to λ_{3} Then

$$
\begin{aligned}
& A x_{3}=\lambda_{3} x_{3} \\
& {\left[\begin{array}{lll}
1 & 1 & 1 \\
p & q & x \\
s & t & 4
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\lambda_{3}\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=\left[\begin{array}{c}
\lambda_{3} \\
-\lambda_{3} \\
\partial_{3}
\end{array}\right]}
\end{aligned}
$$

$$
\begin{align*}
& \lambda_{3}=0 . \\
& p-q=-\lambda_{3} \Rightarrow p-q=0 . \tag{5}\\
& \text { st }=0 \tag{6}
\end{align*}
$$

To get the values of p, q, r, s, t, is we have to solve the equations
(1) 50 (6)

$$
\begin{aligned}
&(1)+(3)+(5) \Rightarrow 3 p=3 \Rightarrow p=1 . \\
& \therefore \text { (3) } \Rightarrow r=1 \text { and (5) } \Rightarrow q=1 .
\end{aligned}
$$

Similarly from (2), (4) and (6) we get $s=t=u=1$.

$$
\therefore p=q=r=s=t=u=1 .
$$

\therefore The matrix $A=\left[\begin{array}{lll}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]$.

Let a 3×3 matrix A have eigen values $1,2,-1$. Find the trace of the matrix $B=A-A^{-1}+A^{2}$. Also find determinant of B. ES

Sol:- Given that the eigen values of the matrix A are $\lambda_{1}=1 \quad \lambda_{2}=2$ $\lambda_{B}=-1$.

We know that If λ is an eigen value of the matrix A then. $f(\lambda)$ is an elgen value of the matrix $f(A)$.
let $f(A)=A-A^{-1}+A^{2}$.
An eigen values of the matrix A^{2} are $\lambda_{1}=1 \quad \lambda_{2}=4 \lambda_{3}=1$
An eigen values of the matrix A^{-1} are $\lambda_{1}=1 \quad \lambda_{2}=\frac{1}{2} \quad \lambda_{3}=-1$.

$$
\begin{aligned}
\text { Let } f(\lambda) & =\lambda-\lambda^{-1}+\lambda^{2} \\
\therefore f\left(\lambda_{1}\right) & =f(1)=1-1+1=1 \\
f\left(\lambda_{2}\right) & =f(2)=2-\frac{1}{2}+4=\frac{11}{2} . \\
f\left(\lambda_{3}\right) & =f(-1)=-1-(-1)+1=1 .
\end{aligned}
$$

\therefore The eigen values of the matrix $f(A)$ i.e B are $1, \frac{11}{2}$ and 1 .
\therefore The trace of the matrix $B=1+\frac{11}{2}+1=\frac{15}{2}$.
The determinant of the matrix $B=1 \cdot \frac{11}{2} \cdot 1=\frac{11}{2}$.

EIGEN VALUES AND EIGEN VECTORS

1) Find the Eigen values and Eigen vectors of a matrix A and A^{3} Where $A=\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$
Ans:- Eileen values of A are $\lambda=-2,3,6$; Eigen values of A^{3} are $\lambda=-8,27,196$
Eigen vectors $x_{1}=[1,0,-1]^{\top} x_{2}=[1,-1,1]^{\top} x_{3}=[1,2,1]^{\top}$
2) Determine the Eigen values and Eigen vectors of A and A^{-1} Where $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$
Ans:- Eigen values of A are $\lambda=1,2,3$: Eigen values of A^{-1} are $\lambda=1, \frac{1}{2}, \frac{1}{3}$. Eigen vectors $x_{1}=[-1,1,0]^{\top} x_{2}=[-2,1,2]^{\top} x_{3}=[-1,1,2]^{\top}$.
3) Determine the Eigen values and Eigen vectors of A and $\operatorname{Adj} A$.

Where $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$
Ans:- Eigen values of A are $\lambda=1,2,-2$; Eigen values of Adj A are $\lambda=-4,-2,2$. Eigen vectors $x_{1}=[-1,1,1]^{\top} x_{2}=[0,1,1]^{\top} x_{3}=[8,-5,3]^{\top}$.
4) Find the Eigen values and Eigen vectors a matrix A and $2 A, 30 A, 44 A$. Where $A=\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & 2 & 2 \\ 0 & 0 & -2\end{array}\right]$
Ans:- Eigen values of(i) A are $\lambda=1,2,-2$ (ii) $2 A$ are $2,4,-4$
(iii) 30 A are $30,60,-60$
(iv) $44,88,-88$.

Eigen vectors are $x_{1}=[1,0,0]^{\top} \quad x_{2}=[2,1,0]^{\top} \quad x_{3}=\left[-\frac{4}{3}, 1,-2\right]^{\top}$
5 If $A=\left[\begin{array}{cc}8 & -4 \\ 2 & 2\end{array}\right]$ find the eigen values and eigen vectors of A and those of $B=2 A^{2}-\frac{1}{2} A+3 I$. Ans:- Eigen values of A are $\lambda=4,6$
Eigen values of B are $\lambda=33,72$.
Eigen vectors are $x_{1}=[1,1]^{\top} \quad x_{2}=[2,1]^{\top}$

6 For the matrix $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ 1 & 0 & 2\end{array}\right]$ find the eigen values and eigen vectors of the matrix $B=2 A^{3}-3 A^{2}+4 A-5 I$.
Ans:- Eigen values of A are $\lambda=1,2,3$ Eigen values of B are $\lambda=-2,7,34$ Eigen vectors are $x_{1}=[1,0,-1]^{\top} x_{2}=[0,1,0]^{\top} x_{3}=[1,0,1]^{\top}$

7 Let a 4×4 matrix A have eigen values $1,-1,2,-2$. Find the value of the determinant of the matrix $B=2 A+A^{-1}-I$.
Ans: $-\lambda=2,-4, \frac{7}{2}, \frac{-11}{2},|B|=154$.
8 Let a 3×3 matrix A have eigen values $1,2,-1$. Find the trace of the matrix $B=A-A^{-1}+A^{2}$.

Ans:- $1, \frac{11}{2}, 1$, Trace of $B=\frac{15}{2}$.

Matrix Polynomial:
A_{n} expression of the form $F(x)=A_{0}+A_{1} x+A_{2} x^{2}+\cdots+A_{m} x^{m}, A_{m} \neq 0$ Where $A_{0}, A_{1}, A_{2}, \ldots A_{m}$ are matrices each of order $n \times n$ over a field F, is called a matrix polynomial of degree m.
The symbol x is called indeterminate and will be assumed that it is commutative with every matrix coefficient.

The matrices themselves are matrix polynomials of zero degree. Equality of Matrix Polynomials:
Two matrix polynomials are equal if and only it the coefficients of like powers of x are the same:

The Cayley Hamilton Theorem:
Every square matrix satisfies its own characteristic equation.
Determination of A^{-1} using Cayley Hamilton Theorem:
The matrix A satisfies its characteristic equation.

$$
\begin{aligned}
\text { atria } A \text { satistres } & (-1)^{n}\left[A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n} I\right]=0 \\
& \Rightarrow A^{n}+a_{1} A^{n-1}+a_{2} A^{n-2}+\cdots+a_{n} I=0 .
\end{aligned}
$$

Multiplying bothsides by A^{-1}, we get.

$$
\begin{aligned}
& A^{-1}\left[A^{n}+a_{1} A^{n-1}+a_{2} A^{n-l}+\cdots+a_{n} I\right]=0 \\
& A^{n-1}+a_{1} A^{n-l}+a_{2} A^{n-3}+\cdots+a_{n} A^{-1}=0
\end{aligned}
$$

If A is non singular, then we have.

$$
\begin{aligned}
& a_{n} A^{-1}=-A^{n-1}-a_{1} A^{n-2}-a_{2} A^{n-3}+\cdots-a_{n-1} I \\
& A^{-1}=\frac{-1}{a_{n}}\left[A^{n-1}+a_{1} A^{n-2}+a_{2} A^{n-3}+\cdots+a_{n-1} I\right]
\end{aligned}
$$

(1) Find the inverse of the matrix. $\left[\begin{array}{rrr}1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]$ by using cayes Hamilton
verity cayley Hamilton theorem verity cayley Hamilton theorem. and hence find $A 4$. soli- Let $A=\left[\begin{array}{ccc}1 & -1 & 0 \\ 0 & 1 & 1 \\ 2 & 1 & 2\end{array}\right]$

The characteristic equation of A is $|A-\lambda I|=0$.

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
1-\lambda & -1 & 0 \\
0 & 1-\lambda & 1 \\
2 & 1 & 2-\lambda
\end{array}\right|=0 \\
& (1-\lambda)[(1-\lambda)(2-\lambda)-1]+1[0-2]=0 . \\
& (1-\lambda)\left[\begin{array}{c}
\left.2-3 \lambda+\lambda^{2}-1\right]-2=0 \\
(1-\lambda)\left[\lambda^{2}-3 \lambda+1\right]-2=0 \\
\lambda^{2}-3 \lambda+1-\lambda^{3}+3 \lambda^{2}-\lambda-2=0 \\
-\lambda^{3}+4 \lambda^{2}-4 \lambda+1=0 \\
\lambda^{3}-4 \lambda^{2}+4 \lambda+1=0 .
\end{array}\right.
\end{aligned}
$$

We know that the cayley hamilton theorem.
Every square matrix satisties its own characteristic equation.

$$
A^{3}-4 A^{2}+4 A+I=0
$$

Multiply bothsides by A^{-1}, we get

$$
\begin{array}{r}
A^{-1}\left(A^{3}-4 A^{2}+4 A+I\right)=A^{-1}(0) \\
A^{2}-4 A+4 I+A^{-1}=0 \\
A^{-1}=-A^{2}+4 A-4 I
\end{array}
$$

$$
\begin{aligned}
A^{2} & =\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 & 2 & 3 \\
6 & 1 & 5
\end{array}\right] \\
\therefore A^{-1} & =\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-2 & -2 & -3 \\
-6 & -1 & -5
\end{array}\right]+\left[\begin{array}{ccc}
4 & -4 & 0 \\
0 & 4 & 4 \\
8 & 4 & 8
\end{array}\right]+\left[\begin{array}{ccc}
-4 & 0 & 0 \\
0 & -4 & 0 \\
0 & 0 & -4
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -2 & 1 \\
-2 & -2 & 1 \\
2 & 3 & -1
\end{array}\right] .
\end{aligned}
$$

Verification: -
We know that the cayley Hamilton theorem.
Every square matrix satisfies its own characteristic equation.

$$
\begin{aligned}
& \text { i.e } A^{3}-4 A^{2}+4 A+I=0 \\
& A^{3}=A^{2} \cdot A=\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 & 2 & 3 \\
6 & 1 & 5
\end{array}\right]\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
-1 & -4 & -4 \\
8 & 3 & 8 \\
16 & 0 & 11
\end{array}\right] \\
& A^{3}-4 A^{2}+4 A+I=\left[\begin{array}{ccc}
-1 & -4 & -4 \\
8 & 3 & 8 \\
16 & 0 & 11
\end{array}\right]-4\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 & 2 & 3 \\
6 & 1 & 5
\end{array}\right]+4\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right]+\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
&=\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& \therefore A^{3}-4 A^{2}+4 A+I=0
\end{aligned}
$$

\therefore Casley Hamilton theorem is verified

To find A^{4} :-
We have $A^{3}-4 A^{2}+4 A+I=0$
Prem multiply with ' A ', we get-

$$
\begin{gathered}
A\left(A^{3}-4 A^{2}+4 A+1\right)=A(0) \\
A^{4}-4 A^{3}+4 A^{2}+A=0 \\
A^{4}=4 A^{3}-4 A^{2}-A
\end{gathered}
$$

$$
\begin{aligned}
& A^{4}=4\left[\begin{array}{ccc}
-1 & -4 & -4 \\
8 & 3 & 8 \\
16 & 0 & 11
\end{array}\right]-4\left[\begin{array}{ccc}
1 & -2 & -1 \\
2 & 2 & 3 \\
6 & 1 & 5
\end{array}\right]-\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & 1 \\
2 & 1 & 2
\end{array}\right] \\
& A^{4}=\left[\begin{array}{ccc}
-9 & -7 & -12 \\
24 & 3 & 19 \\
38 & -5 & 22
\end{array}\right] .
\end{aligned}
$$

Using Cayley-Hawition theorem, Express $A^{6}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}$ as a linear polynomial in A, where $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$
sol:- Given that $A=\left[\begin{array}{cc}1 & 2 \\ -1 & 3\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { ie } \left.\begin{gathered}
1-\lambda \\
-1
\end{gathered} 3-\lambda \right\rvert\,=0
$$

We know that The cayley Hamilton Theorem.
Every square matrix satisfies its own characteristic equation

$$
\text { i.e } \begin{align*}
& A^{2}-4 A+5 I=0 \\
& A^{2}=4 A-5 I . \tag{1}
\end{align*}
$$

Pore multiplying (1) by A, A^{2}, A^{3} and A^{4}, we get

$$
\begin{aligned}
& A^{3}=4 A^{2}-5 A \\
& A^{4}=4 A^{3}-5 A^{2} \\
& A^{5}=4 A^{4}-5 A^{3} \\
& A^{6}=4 A^{5}-5 A^{4}
\end{aligned}
$$

$$
\begin{aligned}
A^{2}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2} & =4 A^{5}-5 A^{4}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2} \\
& =3 A^{4}-12 A^{3}+14 A^{2} \\
& =3\left(4 A^{3}-5 A^{2}\right)-12 A^{3}+14 A^{2} \\
& =12 A^{3}-15 A^{2}-12 A^{3}+14 A^{2} \\
& =-A^{2} \\
& =5 I-4 A
\end{aligned}
$$

Which is a linear polynomial in A.

Verity cayley Hamilton theorem for $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$ and hence
find A^{4} and A^{-1}.
Hence find the matrix represented by $A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}$

$$
+8 A^{2}-2 A+I
$$

Sol: Given that $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\left.\begin{aligned}
& \text { quation of } \\
& \text { i.e }
\end{aligned} \begin{array}{ccc}
2-\lambda & 1 & 1 \\
0 & 1-\lambda & 0 \\
1 & 1 & 2-\lambda
\end{array} \right\rvert\,=0
$$

Verification:-
We know that cayley Hamilton theorem.
Every square matrix satistles its own characteristic equation.

$$
\begin{aligned}
& \text { ie } A^{3}-5 A^{2}+7 A-3 I=0 \\
& A^{2}=\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right] \\
& A^{3}=\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]=\left[\begin{array}{ccc}
14 & 13 & 13 \\
0 & 1 & 0 \\
13 & 13 & 14
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
A^{3}-5 A^{2}+7 A-3 I & =\left[\begin{array}{ccc}
14 & 13 & 13 \\
0 & 1 & 0 \\
13 & 13 & 14
\end{array}\right]-5\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]+7\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right] \\
& +3\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
A^{3}-5 A^{2}+7 A-3 I & =\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]=0 .
\end{aligned}
$$

\therefore Cayley Hamilton theorem verified.
To find A^{4} :
We have $A^{3}-5 A^{2}+7 A-3 I=0$.
Prem multiply with A, we get

$$
\begin{aligned}
& \text { Ore multiply } \\
& A\left(A^{3}-5 A^{2}+7 A-3 I\right)=A(0) \\
& A^{4}-5 A^{3}+7 A^{2}-3 A=0 \\
& A^{4}=5 A^{3}-7 A^{2}+3 A \\
& A^{4}=5\left[\begin{array}{lll}
14 & 13 & 13 \\
0 & 1 & 0 \\
13 & 13 & 14
\end{array}\right]-7\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]+3\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right] \\
& A^{4}=\left[\begin{array}{lll}
41 & 40 & 40 \\
0 & 1 & 0 \\
40 & 40 & 41
\end{array}\right]
\end{aligned}
$$

To find A^{-1} :-
We have $A^{3}-5 A^{2}+7 A-3 I=0$.
Pere multiply with A^{-1}, we get

$$
\begin{aligned}
& A^{-1}\left(A^{3}-5 A^{2}+7 A-3 I\right)=A^{-1}(0) \\
& A^{2}-5 A+7 I-3 A^{-1}=0 . \\
& 3 A^{-1}=A^{2}-5 A+7 I . \\
& 3 A^{-1}=\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]-5\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]+7\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& 3 A^{-1}=\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 3 & 0 \\
-1 & -1 & 2
\end{array}\right] \\
& \therefore A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}
2 & -1 & -1 \\
0 & 3 & 0 \\
-1 & -1 & 2
\end{array}\right]
\end{aligned}
$$

\rightarrow We have $A^{3}-5 A^{2}+7 A-3 I=0$.

$$
A^{3}=5 A^{2}-7 A+3 I
$$

Pore multiply with ' A ', we qed-

$$
\begin{aligned}
& A^{4}=5 A^{3}-7 A^{2}+3 A . \\
& A^{5}=5 A^{4}-7 A^{3}+3 A^{2} \\
& A^{6}=5 A^{4}-7 A^{4}+3 A^{3} \\
& A^{7}=5 A^{6}-1 A^{5}+3 A^{4} \\
& A^{8}=5 A^{7}-7 A^{6}+3 A^{5}
\end{aligned}
$$

$$
\begin{aligned}
& A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I . \\
&=\left(5 A^{7}-7 A^{6}+3 A^{5}\right)-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+I \\
&=A^{4}-5 A^{3}+8 A^{2}-2 A+I . \\
&=\left(5 A^{3}-7 A^{2}+3 A\right)-5 A^{3}+8 A^{2}-2 A+I . \\
&=A^{2}+A+I \quad 1 \\
& \therefore A^{2}+A+I=\left[\begin{array}{lll}
5 & 4 & 4 \\
0 & 1 & 0 \\
4 & 4 & 5
\end{array}\right]+\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & 2
\end{array}\right]+\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
&=\left[\begin{array}{lll}
8 & 5 & 5 \\
0 & 3 & 0 \\
5 & 5 & 8
\end{array}\right] .
\end{aligned}
$$

If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ then show that $A^{n}=A^{n-2}+A^{2}-I$ for $n \geqslant 3$. Hence find
So:- Given that $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
01 & 0-\lambda & 1 \\
0 & 1 & 0-\lambda
\end{array}\right|=0 \\
& (1-\lambda)\left(\lambda^{2}-1\right)=0 \text {. } \\
& \lambda^{3}-\lambda^{2}-\lambda+1=0 .
\end{aligned}
$$

We know that cayley Hamilton theorem.
Every square matrix satisfies Its own characteristic equation.

$$
\begin{aligned}
& A^{3}-A^{2}-A+I=0 \\
& A^{3}-A^{2}=A-I .
\end{aligned}
$$

Pre multiplying both sides successively by A, we obtain.

$$
\begin{aligned}
& A^{3}-A^{2}=A-1 \\
& A^{n}-A^{3}=A^{2}-A \\
& A^{3}-A^{4}=A^{3}-A^{2} \\
& A^{n-1}-A^{n-2}=A^{n-3}-A^{n-4} \\
& A^{n}-A^{n-1}=A^{n-2}-A^{n-3}
\end{aligned}
$$

Adding these equations, we get

$$
\begin{aligned}
& A^{n}-A^{2}=A^{n-2}-I \\
& A^{n}=A^{n-2}+A^{2}-I, n \geqslant 3
\end{aligned}
$$

Using this equation recursively, we get.

$$
\begin{aligned}
& A^{n-2}=A^{(n-2)-2}+A^{2}-I=A^{n-4}+A^{2}-I \\
& A^{n}=\left(A^{n-4}+A^{2}-I\right)+A^{2}-I . \\
& A^{n}=A^{n-4}+2\left(A^{2}-I\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(A^{n-6}+A^{2}-I\right)+2\left(A^{2}-I\right)=A^{n-6}+3\left(A^{2}-I\right) \\
& =A^{n}\left(-(n-2)+\frac{1}{2}(n-2)\left(A^{2}-I\right) .\right. \\
& =\frac{n}{2} A^{2}-\frac{1}{2}(n-2) I .
\end{aligned}
$$

Substituting $n=50$, we get

$$
\begin{gathered}
A^{50}=25 A^{2}-24 I=25\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 0 & 1
\end{array}\right]-24\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
\therefore A^{50}=\left[\begin{array}{lll}
1 & 0 & 0 \\
25 & 1 & 0 \\
25 & 0 & 1
\end{array}\right] .
\end{gathered}
$$

CAYLEY - HAMILTON THEOREM

1 State cayley Hamilton theorem
2 verity cayley Hamilton theorem for the matrix $A=\left[\begin{array}{ccc}1 & 2 & 0 \\ -1 & 1 & 2 \\ 1 & 2 & 1\end{array}\right]$
Hence find (i) A^{-1} (ii) A^{4}.
Ans:- $\quad A^{-1}=\frac{1}{3}\left[\begin{array}{ccc}-3 & -2 & 4 \\ 3 & 1 & -2 \\ -3 & 0 & 3\end{array}\right]$.
3 Verity cayley Hamilton theorem tor the matrix $A=\left[\begin{array}{ccc}0 & 2 & -1 \\ -2 & 0 & 2 \\ 1 & -2 & 0\end{array}\right]$
Hence find (i) A^{4} and show that (ii) $A^{3}=-9 A$ (iii) $A^{5}=81 A$.
4 Prove that the matrix $A=\left[\begin{array}{ccc}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$ satisfies its characteristic equation Using C.H.T, show that (i) $A^{4}=I$ and (iii) $A^{3}=A^{-1}$. Also Find A^{4}.
5 If $A=\left[\begin{array}{cc}1 & 2 \\ 2 & -1\end{array}\right]$ find A^{8} using the cayley Hamilton theorem.
6 verity cayley Hamilton theorem, for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$.
Express $A^{4}-3 A^{3}+2 A^{2}-5 I$ as a linear polynomial in A.
\rightarrow If $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & 2\end{array}\right]$. verity Cayley Hamilton theorem for the matrix A. Hence find (i) A^{4} (ii) A^{-1}. Also Find the matrix

$$
B=A^{8}-5 A^{7}+7 A^{6}-3 A^{5}+A^{4}-5 A^{3}+8 A^{2}-2 A+1 \quad \text { Ans: } A^{2}+A+1
$$

8 If $A=\left[\begin{array}{rr}1 & 2 \\ -1 & 3\end{array}\right]$ show that $A^{8}-4 A^{5}+8 A^{4}-12 A^{3}+14 A^{2}=\left[\begin{array}{cc}1 & -8 \\ 4 & -7\end{array}\right]$.
9 For the matrix $A=\left[\begin{array}{ccc}8 & -8 & 2 \\ 4 & -3 & -2 \\ 3 & -4 & 1\end{array}\right]$ Express A^{3}, A^{4} and A^{-1} in terms of I, A and A^{2} by using the cayley Hamilton Theorem. Hence find there explicitly.

$$
\text { Ans:- } A^{3}=\left[\begin{array}{ccc}
214 & -296 & 206 \\
88 & -115 & 70 \\
69 & -100 & 69
\end{array}\right] A^{4}=\left[\begin{array}{ccc}
1146 & -1904 & 1226 \\
322 & -639 & 476 \\
359 & -544 & 407
\end{array}\right] \quad A^{-1}=\left[\begin{array}{ccc}
9 & 0 & -22 \\
10 & -4 & -24 \\
7 & -8 & -10
\end{array}\right] \cdot \frac{1}{22}
$$

10 If $A=\left[\begin{array}{lll}1 & 3 & 7 \\ 4 & 2 & 3 \\ 1 & 1 & 1\end{array}\right]$ find A^{3}, A^{4} and A^{-2} by using cayley Hamilton theorem.
Ans:- $A^{3}=\left[\begin{array}{cc}135 & 152 \\ 140 & 163 \\ 60 & 76\end{array}\right] \quad A^{4}=\left[\begin{array}{ccc}975 & 1173 & 1633 \\ 1000 & 1162 & 1677 \\ 475 & 554 & 759\end{array}\right] \quad A^{-2}=\frac{1}{245}\left[\begin{array}{ccc}-5 & -23 & 69 \\ 32 & 10 & -79 \\ -17 & 10 & 19\end{array}\right]$
11 Find the characteristic equation of the matrix $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 5 & -1 \\ 1 & 1 & 5\end{array}\right]$ and show that
Ans:- $\quad A^{-1}=\frac{1}{12}\left[\begin{array}{ccc}24 & -6 & -6 \\ 4 & 14 & 2 \\ -4 & 4 & 16\end{array}\right]$
12 Find the characteristic equation of the matrix $A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6\end{array}\right]$ and show that it is satisfied by A and hence obtain its A^{-1}.
Ans:- $\quad A^{-1}=\left[\begin{array}{ccc}1 & -3 & 2 \\ -3 & 3 & -1 \\ 2 & -1 & 0\end{array}\right]$
13 Using Eayley Hamilton theorem, express $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$ as a linear polynomial in A. Where $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ Ans:- $A+5 I$.
14 Show that the matrix $A=\left[\begin{array}{ccc}0 & c & -b \\ -c & 0 & a \\ b & -a & 0\end{array}\right]$ Satisfies the conley Hamilton the Hind A^{4}.
15 If $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ show by using the cayley. Hamilton theorem that
(i) $\quad A^{4}=2 A^{2}-I$
(ii) $A^{5}=2 A^{2}+A-2 I$.

DIAGONALIZATION OF A MATRIX:-
Let A be a square matrix of order n. Then A is said to be diagonalizable if there exists a matrix P of order n such that $P^{-1} A P=D$ where D is a diagonal matrix. Then $P^{-1} A P$ is a diagonal form of A.
P is formed by the linearly independent eigen vectors corresponding to the eigen values of A then $P=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}\right]$ is said to be transforming matrix of A and it reduces the matrix A to the diagonal form D.
Similarity of Matrices :-
Let A and B are square matrices of order n. Then B is said to be similar to A it there exists a non singular matrix P such that $B=P^{-1} A P$.
Algebraic and Geometric multiplicities of a characteristic root :If λ be a characteristic root of a order 't' of the characteristic equation $|A-\lambda I|=0$, then t is called the "algebraic multiplicity" of λ i.e. the odder of the characteristic λ, is said to be "algebraic multiplicity". It is denoted by " t ".
If S is the number of linearly independent Eigen vectors corres. ponding to the Elgen value λ, then ' s ' is called the "geometric multi plicity" of λ ie The number of linearly independent Eigen vectors corresponding to the Eigen value λ, is said to be its geometric multiplicity. It is denoted by ' s '.
The geometric multiplicity of a characteristic root cannot exceed its algebraic multiplicity i.e $s \leq t$.

Note:-
(i) If A is similar to a diagonal matrix B then the diagonal elements of B are the eigen values of A.
(li) If A is a square matrix of order n is diagonalizable inf it possesses n linearly independent eigen vectors.
(ii) If the Eigen values of an $n \times n$ matrix are all distinct, then it is always similar to a diagonal matrix ie a diagonalizable matrix
(iv) If the Eigen values of a matrix are not distinct, then we have to verity the following condition or test for the diagonalization of a matrix.
Condition for the diagonalization:-
The necessary and sufficient condition for a square matrix A to be diagonalizable is that the geometric multiplicity of each of its Eigen values coincides with the algebraic multiplicity.
Modal and Spectral Matrices:-
If a square matrix A is diagonalizable then the matrix " P which transtorms A to the diagonal form D is called the modal matrix of A and the matrix D is called the spectral matrix of A.
Let x_{1}, x_{2}, x_{3} are Eigen vectors corresponding to the Eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of A respectively then the modal matrix of A is. $P=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$ and the spectral matrix of A is $D=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$ exists such that $P^{-1} A P=D$.

Working procedure to Diagonalize a square matrix A :-
Let the square matrix $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$
Step 1: - The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{ccc}
a_{11}-\lambda & a_{21} & a_{31} \\
a_{21} & a_{22}-\lambda & a_{32} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|=0
$$

Step 2: - Solve the characteristic equation and find the Eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of the given matrix A.

Step 3 :-
caselii:- The Eigen values of matrix A are distinct.
(a) Find the Eigen vectors x_{1}, x_{2}, x_{3} corresponding to the Eigen values λ_{1}, λ_{2} and λ_{3}.

Let $x_{1}=\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right] \quad x_{2}=\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right] \quad x_{3}=\left[\begin{array}{l}a_{3} \\ b_{3} \\ c_{3}\end{array}\right]$
(c) Find $p^{-1}=\frac{1}{|p|} \operatorname{Adj} P$.
(d) Find $P^{-1} A P$ which is the diagonal matrix of A :

$$
P^{-1} A P=D=\operatorname{Diag}\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Case(ii):- The Eigen values of matrix A are not distinct.
suppose $\lambda_{1}=\lambda_{2}$ and λ_{3} is distinct.
Here algebraic multiplicity of $\lambda_{1}=2$ and algebraic multiplicity of $\lambda_{3}=1$.
(a) Find the Figen vectors corresponding to the Eigen values λ_{1}, λ_{2} and λ_{3} Let x_{1}, x_{2} are the Eigen vectors corresponding to the Eigen Value λ_{1} and x_{3} is the Eigen vector corresponding to the Eigen value λ_{3}.

Let $x_{1}=\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right] \quad x_{2}=\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right] \quad x_{3}=\left[\begin{array}{c}a_{3} \\ b_{3} \\ c_{3}\end{array}\right]$
Geometric multiplicity of $\lambda_{1}=2$, Geometric multiplicity of $\lambda_{3}=1$.
$\therefore \quad$ Algebraic multiplicity of $\lambda_{1}=$ Geometric multiplicity of $\lambda_{1}=2$
Algebraic multiplicity of $\lambda_{3}=$ Geometric multiplicity of $\lambda_{3}=1$
(b) Consider the Modal matrix $P=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=\left[\begin{array}{lll}a_{1} & a_{2} & b_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]$
(C) Find $P^{-1}=\frac{1}{|p|}$ Adj P.
(d) Find $P^{-1} A P$ which is the diagonal matrix of A.

$$
P^{-1} A P=D=\operatorname{Diag}\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Case(iii) :- The Eigen values of matrix A are nut distinct. suppose $\lambda_{1}=\lambda_{2}$ and λ_{3} is distinct.
Here algebraic multiplicity of $\lambda_{1}=2$, algebraic multiplicity of $\lambda_{3}=1$.
(a) Find the Figen vectors Corresponding to the Eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

Let x_{1}, he the Eigen vector corresponding to Eigen value s_{1}
Let x_{3} be the Eigen vector corresponding to Eigen value λ_{3}.
Here Algebraic multiplicity of $\lambda_{1} \neq$ Geometric multiplicity of λ_{1}
$\therefore A$ is not diagonalizable.

Computation of positive integral powers of matrix A :-
Let A be a square matrix of order 3 . Then there exists a non singular matrix P such that $P^{-1} A P=D=\left[\begin{array}{ccc}\lambda_{1} & 0 & 0 \\ 0 & \lambda_{2} & 0 \\ 0 & 0 & \lambda_{3}\end{array}\right]$

Where $\lambda_{1}, \lambda_{2}, \lambda_{3}$ are Eigen values of A.

$$
\begin{align*}
& P^{-1} A P=D \\
&\left(P^{-1} A P\right)^{2}=D^{2} \\
&\left(P^{-1} A P\right)\left(P^{-1} A P\right)=D^{2} \\
& P^{-1} A\left(P P^{-1}\right) A P=D^{2} \\
& P^{-1} A I A P=D^{2} \\
& P^{-1} A^{2} P=D^{2} \\
& \text { Similarly } \cdot P^{-1} A^{3} P=D^{3} \\
& P^{-1} A^{n} P=D^{n} \tag{1}
\end{align*}
$$

Now pres multiplying the eq (1) with P and post multiplying with \bar{P}^{-1} we have $P\left(P^{-1} A^{n} P\right) P^{-1}=P D^{n} P^{-1}$

$$
\begin{aligned}
&\left(P P^{-1}\right) A^{n}\left(P P^{-1}\right)=P D^{-1} \\
& I A^{n} I=P D^{n} P^{-1} \\
& A^{n}=P D^{n} P^{-1} \\
& \therefore A^{n}=P D^{n} D^{-1} \quad \text { Where } D^{n}=\left[\begin{array}{lll}
\lambda_{1}^{n} & 0 & 0 \\
0 & \lambda_{2}^{n} & 0 \\
0 & 0 & \lambda_{3}^{n}
\end{array}\right]
\end{aligned}
$$

$\rightarrow \begin{aligned} & \text { Find the matrix } P \text { which transtorms the matrix } \quad A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right] \\ & \text { to the diagonal term. Hence evaluate } A^{4} \text {. }\end{aligned}$
Sol.- Given that $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ and λ is an eigen value of A.
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{align*}
& \text { eacteristic equation of } A \cdot e\left|\begin{array}{ccc}
1-\lambda & 0 & -1 \\
1 & 2-\lambda & 1 \\
2 & 2 & 3-\lambda
\end{array}\right|=0 \\
& \begin{array}{c}
(1-\lambda) \cdot[(2-\lambda)(3-\lambda)-2]-[2-2(2-\lambda)]=0 . \\
(1-\lambda)\left(6-5 \lambda+\lambda^{2}-2\right)-2 \lambda+2=0 \\
\lambda^{2}-5 \lambda+4-\lambda^{3}+5 \lambda^{2}-4 \lambda-2 \lambda+2=0 . \\
-\lambda^{3}+6 \lambda^{2}-11 \lambda+6=0 \\
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0
\end{array}
\end{align*}
$$

$\lambda=1$ is are of the roots of the equation (1).

$$
\begin{aligned}
& \lambda=1 \left\lvert\, \begin{array}{cccc}
1 & -6 & 11 & -6 \\
0 & 1 & -5 & 6 \\
\hline & -5 & 6 & 10 \\
(\lambda-1)\left(\lambda^{2}-5 \lambda^{\prime}+6\right)=0 \\
(\lambda-1)(\lambda-2)(\lambda-3)=0 \\
\lambda=1,2,3 .
\end{array} .\right.
\end{aligned}
$$

\therefore Elgen values of A are $\lambda=1,2,3$.
The Eigen values of A are distinct.
\therefore The matrix A is diagonalizable.
Now we have to find Eigen vectors $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ corresponding to
Elgen value λ are obtained by solving the homogeneous system

$$
(A-\lambda I) x=0
$$

$$
\text { i.e. }\left[\begin{array}{ccc}
1-\lambda & 0 & -1 \tag{2}\\
1 & 2-\lambda & 1 \\
2 & 2 & 3-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \text {. }
$$

Case (i):- Eigen vector corresponding to Eigen value $\lambda=1$:-
For $\lambda=1$, The system (1) can be written as.

$$
\left[\begin{array}{ccc}
0 & 0 & -1 \\
1 & 1 & 1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the co eff. matrix into echelon form by applying E-row operations only and hence determine rank of coeff. matrix.

$$
\begin{aligned}
& R_{1} \leftrightarrow R_{2} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -1 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-2 R_{1} \\
& {\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .}
\end{aligned}
$$

Which is in echelon form.
Here rank of the coefficient matrix of the system is 2 ie $r=2$ Sothat the system has $n-\gamma=3-2=1$ L. I solution.
There is only ore L.I eigen vector. Corresponding to the Eigen value $\lambda=1$
To determine this we have to assign an arbitrary value for $n-r=$ $3-2=11$ variable.

From the above system, the equations can be written as

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =0 \\
-x_{3} & =0 \Rightarrow x_{3}=0 .
\end{aligned}
$$

Todetermine this we have to assign an arbitrary value for. $n-r=3-2=1$ variable.

From the above system, the equ's can be written as.

$$
\begin{aligned}
& \qquad \begin{array}{l}
\left(\begin{array}{l}
-x_{1}-x_{3}=0 \Rightarrow x_{1}+x_{3}=0 \\
\text { choose } x_{2}=k_{2} \\
x_{3}=2 x_{2} \\
x_{3}=2 k_{2}
\end{array}\right. \\
x_{1}=-x_{3}=-2 k_{2}
\end{array} \\
& {\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 k_{2} \\
k_{2} \\
2 k_{2}
\end{array}\right]=k_{2}\left[\begin{array}{c}
-2 \\
1 \\
2
\end{array}\right] \text { where } k_{2} \neq 0}
\end{aligned}
$$

$x_{2}=\left[\begin{array}{c}-2 \\ 1 \\ 2\end{array}\right]$ is the linearly independent eigen vector corresponding to
case(iii) Eigen vector corresponding to the eigen value $\lambda=3$:-
For $\lambda=3$ The system (2) can be written as

$$
\left[\begin{array}{ccc}
-2 & 0 & -1 \\
1 & -1 & 1 \\
2 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the coeff matrix into echelon form by applying E-row operations only, and hence determine the coeff matrix.

$$
\begin{aligned}
R_{2} \rightarrow 2 R_{2}+R_{1} & R_{3}
\end{aligned} \rightarrow R_{3}+R_{1},\left[\begin{array}{ccc}
-2 & 0 & -1 \\
0 & -2 & 1 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Which is in echelon form.

$$
\begin{gathered}
x_{1}+x_{2}=0 \quad\left[\because x_{3}=0\right] \\
\text { choose } x_{2}=k_{1} \\
x_{1}=-x_{2}=-k_{1} . \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{r}
-k \\
k \\
0
\end{array}\right]=k_{1}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \text { where } k_{1} \neq 0 .}
\end{gathered}
$$

$\therefore x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]$ is the linearly independent eigen vector corresponding
Case(ii):- Eigen vector corresponding to the Eigen value $\lambda=2$:-
For $\lambda=2$, The system (2) can be written as

$$
\left[\begin{array}{rcr}
-1 & 0 & -1 \\
1 & 0 & 1 \\
2 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the coeff. matrix into echelon form by applying E-row operations only and hence determine rank of coeff. matrix.

$$
\begin{aligned}
& R_{2} \rightarrow R_{2}+R_{1}, R_{3} \rightarrow R_{3}+2 R_{1} \\
& {\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 0 & 0 \\
0 & 2 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{2} \leftrightarrow R_{3} \\
& {\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & 2 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Which is in echelon form.
Here the rank of the co.eff. matrix of the system is 2 ie $r=2$. sothat the system has $n-r=-2=1$ L.I solution.
There is only one L. I eigen vector corresponding to the eigen value $\lambda=2$.

Here the rank of the coeff. matrix of the system is 2.i.e $r=2$ The system has $n-r=3-2=1$ L.I solution.
There is only one linearly independent eigen vector corresponding to the eigen value $\lambda=3$.
To determine this we have to assign an arbitrary value for $n-r=$ $3-2 \Rightarrow$ variable.

From the above system, the equ's can be written os

$$
\begin{aligned}
& -2 x_{1}-x_{3}=0 \Rightarrow 2 x_{1}+x_{3}=0 \\
& -2 x_{2}+x_{3}=0 \Rightarrow 2 x_{2}-x_{3}=0
\end{aligned}
$$

choose $x_{1}=k_{3}$ Then $x_{3}=-2 k_{3}$

$$
\begin{aligned}
2 x_{2}=x_{3} \text { Then } \begin{aligned}
2 x_{2} & =-2 k_{3} \\
x_{2} & =-k_{3}
\end{aligned} \text { 位 }
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
k_{3} \\
-k_{3} \\
2 k_{3}
\end{array}\right]=k_{3}\left[\begin{array}{c}
1 \\
-1 \\
2
\end{array}\right] \text { where } k_{3} \neq 0
$$

$x_{3}=\left[\begin{array}{c}1 \\ -1 \\ 2\end{array}\right]$ is the linearly independent eigen vector corresponding to the eigen value $\lambda=3$.
consider $P=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & -2 & 1 \\ 1 & 1 & -1 \\ 0 & 2 & -2\end{array}\right]$
Which is the modal matrix.

$$
\begin{aligned}
& |p|=-1(-2+2)+2(-2-0)+1(2-0) \\
& |p|=-2 \\
& p^{-1}=\frac{1}{|p|} \operatorname{adj} p=\frac{-1}{2}\left[\begin{array}{ccc}
0 & -2 & 1 \\
2 & 2 & 0 \\
2 & 2 & 1
\end{array}\right] \\
& p^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & -2 & 0 \\
-2 & 2 & -1
\end{array}\right]
\end{aligned}
$$

Thus the matrix P transforms the matrix A to the diagonal form which is given by $P^{-1} A P=D$.

$$
\begin{aligned}
P^{-1} A & =\frac{1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & -2 & 0 \\
-2 & -2 & -1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right]=\frac{1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
-4 & -4 & 0 \\
-6 & -6 & -3
\end{array}\right] \\
P^{-1} A P & =\frac{1}{2}\left[\begin{array}{ccc}
0 & 2 & -1 \\
-4 & -4 & 0 \\
-6 & -6 & -3
\end{array}\right]\left[\begin{array}{ccc}
-1 & -2 & 1 \\
1 & 1 & -1 \\
0 & 2 & -2
\end{array}\right] \\
& =\frac{1}{2}\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 6
\end{array}\right] \\
P^{-1} A P & =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 3
\end{array}\right]=\operatorname{Diag}(1,2,3)=D .
\end{aligned}
$$

Hence $P^{-1} A P$ is a diagonal matrix.
Where $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$ is the spectral matrix.
To find A^{4} :-
We have $\hat{A}=P \hat{D} P^{-1}$

$$
\begin{aligned}
n=4, A^{4} & =P D^{4} P^{-1} \\
A^{4} & =\frac{1}{2}\left[\begin{array}{rrc}
-1 & -2 & 1 \\
1 & 1 & -1 \\
0 & 2 & -2
\end{array}\right]\left[\begin{array}{lll}
1^{4} & 0 & 0 \\
0 & 2^{4} & 0 \\
0 & 0 & 3^{4}
\end{array}\right]\left[\begin{array}{ccc}
0 & 2 & -1 \\
-2 & -2 & 0 \\
-2 & -2 & -1
\end{array}\right] \\
A^{4} & =\left[\begin{array}{rrr}
-49 & -50 & -40 \\
65 & 66 & 40 \\
130 & 130 & 81
\end{array}\right] .
\end{aligned}
$$

\rightarrow Diagonalize the matrix $A=\left[\begin{array}{ccc}3 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -2 & -1\end{array}\right]$ and Hence find A^{4}.
Sol. Given that $A=\left[\begin{array}{ccc}3 & 2 & 2 \\ 1 & 2 & 1 \\ -2 & -2 & -1\end{array}\right]$ and λ is an eigen value of A
The characteristic eqn. of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
3-\lambda & 2 & 2 \\
1 & 2-\lambda & 1 \\
-2 & -2 & -1-\lambda
\end{array}\right|=0 \\
& R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
& \left|\begin{array}{ccc}
2-\lambda & 2-\lambda & 2-\lambda \\
1 & 2-\lambda & 1 \\
-2 & -2 & -1-\lambda
\end{array}\right|=0 \\
& (2-\lambda)\left|\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2-\lambda & 1 \\
-2 & -2 & -1-\lambda
\end{array}\right|=0 \\
& c_{2} \rightarrow c_{2}-c_{1}, c_{3} \rightarrow c_{3}-c_{1} \\
& (2-\lambda)\left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1-\lambda & 0 \\
-2 & 0 & 1-\lambda
\end{array}\right|=0 \\
& (2-\lambda)(1-\lambda)^{2}\left|\begin{array}{cc}
1 & 0 \\
1 & 1 \\
-2 & 0 \\
1
\end{array}\right|=0 \\
& (2-\lambda)(1-\lambda)^{2}=0 \\
& \lambda=1,1,2
\end{aligned}
$$

\therefore Eigen values of A are $\lambda=1,1,2$.
The Algebraic multiplicities of each eigen values 1 and 2 are 2 and 1 .

Now the Eigen vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ corresponding to the eigen value λ are obtained by solving the homogeneous system $(A-\lambda I) x=0$

$$
\text { ie }\left[\begin{array}{ccc}
3-\lambda & 2 & 2 \tag{1}\\
1 & 2-\lambda & 1 \\
-2 & -2 & -1-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-
$$

Case (i):- Eigen vector corresponding to the Eigen value $\lambda=1$:
For $\lambda=1$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
2 & 2 & 2 \\
1 & 1 & 1 \\
-2 & -2 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the coff matrix into echelen form by using E-row operations only.

$$
\begin{aligned}
& \text { nat ix into echo } \\
& \qquad\left[\begin{array}{lll}
2 & 2 & 2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

Which is in echelon form.
Here the rank of the coeff-matrix of the system is 1 ie $\gamma=1$ so that the system has $n-r=3-1=2 L$. I solutions.
There are two linearly independent eigen vectors corresponding to the eigen value $\lambda=1$.
To determine this we have to assign an arbitrary value for $n-\gamma=$ $3-1=2$ variable.

From the above system, the equ's can be written as

$$
2 x_{1}+2 x_{2}+2 x_{3}=0 \text { i.e } x_{1}+x_{2}+x_{3}=0
$$

choose $x_{2}=k_{1}, \quad x_{3}=k_{2}$

$$
\begin{array}{r}
x_{1}=-x_{2}-x_{3}=-k_{1}-k_{2} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-k_{1}-k_{2} \\
k_{1} \\
k_{2}
\end{array}\right]=k_{1}\left[\begin{array}{r}
-1 \\
1 \\
0
\end{array}\right]+k_{2}\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right]}
\end{array}
$$

$x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right] \quad x_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]$ are two linearly independent eigen vectors.
Corresponding to the eigen value $\lambda=1$.
The geometric multiplicity of the eigen value $\lambda=1$ is 2 .
case (ii) Eigen vector corresponding to the Eigen value $\lambda=2$:-
For $\lambda=2$, The system (i) can be written of

$$
\left[\begin{array}{ccc}
1 & 2 & 2 \\
1 & 0 & 1 \\
-2 & -2 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now reduce the co eff. matrix into echelon from by applying E-row operations only and hence determine the rank of coeft. matrix

$$
\begin{gathered}
\text { and hence } \\
R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}+2 R_{1} \\
{\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & -2 & -1 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
R_{3} \rightarrow R_{3}+R_{2} \\
{\left[\begin{array}{ccc}
1 & 2 & 2 \\
0 & -2 & -1 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Which is in echelon form.
Here the rank of the coeff. matrix of the system is 2 i.e $r=2$ so that the system has $n-\gamma=3-2=1$ linearly independent sol.
There is only one linearly independent eigen vector corresponding to the eigen value $\lambda=2$.
To determine this we have to assign an arbitraly value for $n-\gamma=$ $3-2=1$ variable
From the above system, The equations can be written as

$$
\begin{aligned}
x_{1}+2 x_{2}+2 x_{3} & =0 \\
-2 x_{2}-x_{3} & =0 \Rightarrow 2 x_{2}+x_{3}=0
\end{aligned}
$$

choose $x_{2}=k_{3}$

$$
\begin{gathered}
x_{3}=-2 x_{2}=-2 k_{3} \\
x_{1}=-2 x_{2}-2 x_{3} \\
x_{1}=-2 k_{3}+4 k_{3} \\
x_{1}=2 k_{3} \\
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 k_{3} \\
k_{3} \\
-2 k_{3}
\end{array}\right]=k_{3}\left[\begin{array}{c}
2 \\
1 \\
-2
\end{array}\right] \text { Where } k_{3} \neq 0 .}
\end{gathered}
$$

$x_{3}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$ is the L.I eigen vector corresponding to the eigen value $\lambda=2$.

The geometric multiplicity of the eigen value $\lambda=2$ is 1 .
Since the geometric multiplicity of each eigen value of A coincides with the algebraic multiplicity
$\therefore A$ is diagonalizable matrix.
The modal matrix $P=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=\left[\begin{array}{ccc}-1 & -1 & 2 \\ 1 & 0 & 1 \\ 0 & 1 & -2\end{array}\right]$

$$
\begin{aligned}
& |P|=\left|\begin{array}{ccc}
-1 & -1 & -2 \\
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right| \\
& |P|=-1(0-1)+1(-2-0)+2(1-0) \\
& |P|=1 \\
& P^{\prime}=\frac{1}{|P|} \text { adj } p . \\
& \text { cotactor matrix of } P=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
0 & 2 & 1 \\
-1 & 3 & 1
\end{array}\right] \\
& \text { Adj } p=[\text { cotactor matrix of } p]^{T}=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]
\end{aligned}
$$

$$
p^{-1}=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]
$$

Thus the matrix P transtorms the matrix A to the diagonal form which is given by $P^{-1} A P=D$

$$
\begin{aligned}
& P^{-1} A=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
1 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 2 & 2 \\
1 & 2 & 1 \\
-2 & -2 & -1
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
2 & 2 & 2
\end{array}\right] \\
& P^{-1} A=\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
2 & 2 & 2
\end{array}\right]\left[\begin{array}{ccc}
-1 & -1 & 2 \\
1 & 0 & 1 \\
0 & 1 & -2
\end{array}\right] \\
& P^{-1} A P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]=D=\operatorname{Diag}(1,1,2)
\end{aligned}
$$

Hence PAP is diagonal matrix.
Where $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$ is the spectral matrix.
To find A^{4} :-
We have $A^{n}=P D^{n} P^{-1}$

$$
\begin{aligned}
n=4, A^{4} & =P D^{4} P^{-1} \\
A^{4} & =\left[\begin{array}{ccc}
-1 & -1 & 2 \\
1 & 0 & 1 \\
0 & -1 & -2
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 16
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
1 & 1 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
-1 & -1 & 32 \\
1 & 0 & 16 \\
0 & 1 & -32
\end{array}\right]\left[\begin{array}{ccc}
-1 & 0 & -1 \\
2 & 2 & 3 \\
1 & 1 & 1
\end{array}\right] \\
A^{4} & =\left[\begin{array}{ccc}
32 & 30 & 30 \\
15 & 16 & 15 \\
-30 & -30 & -29
\end{array}\right]
\end{aligned}
$$

Find an orthogonal matrix that will diagonalize the real symmetric matrix $A=\left[\begin{array}{rrr}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$. Also find the resulting diagonal matrix.
Sol: - Given that $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ -2 & -1 & 3\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$.

$$
\begin{aligned}
& \text { ie }\left|\begin{array}{ccc}
6-\lambda & -2 & 2 \\
-2 & 3-\lambda & -1 \\
2 & -1 & 3-\lambda
\end{array}\right|=0 \\
& R_{2} \rightarrow R_{2}+R_{3} \\
& \left|\begin{array}{ccc}
6-\lambda & -2 & 2 \\
0 & 2-\lambda & 2-\lambda \\
2 & -1 & 3-\lambda
\end{array}\right|=0 \\
& (2-\lambda)\left|\begin{array}{ccc}
6-\lambda & -2 & 2 \\
0 & 1 & 1 \\
2 & -1 & 3-\lambda
\end{array}\right|=0 \\
& c_{3} \rightarrow c_{3}-c_{2} \\
& (2-\lambda)\left|\begin{array}{ccc}
6-\lambda & -2 & 4 \\
0 & 1 & 0 \\
2 & -1 & 4-\lambda
\end{array}\right|=0
\end{aligned}
$$

Expanding by R_{2}, we have.

$$
\begin{aligned}
& (2-\lambda)[(6-\lambda)(4-\lambda)-8]=0 \\
& (2-\lambda)\left(\lambda^{2}-10 \lambda+16\right)=0 . \\
& (2-\lambda)(\lambda-2)(\lambda-8)=0 \\
& \lambda=2,2,8 .
\end{aligned}
$$

\therefore The Eigen values of. A are $2,2,8$. Which are not distinct. The algebraic multiplicities of each eigen values 2 and 8 are 2 and 1 .

Now the Elgen Vector corrosponding to the Eigen Values λ ass obtained by solving the system of equations $(A-\lambda I) x=0$ case li):- Elgen Vector corrosponding to the Eigen Value $\lambda=2$:-

For $\lambda=2$ The system (1) can be written as

$$
\left[\begin{array}{ccc}
4 & -2 & 2 \\
-2 & 1 & -1 \\
2 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Reduce the coeff. matrix into echelon tom by applying E-row operations only.

$$
\cdot R_{2} \rightarrow 2 R_{2}+R_{1} \quad R_{3} \rightarrow 2 R_{3}-R_{1}
$$

$$
\left[\begin{array}{ccc}
4 & -2 & 2 \\
-Q & 0 & - \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

The Rank of the co efficient matrix of the system is $2 \mathrm{i} \cdot \mathrm{er}=2$.
There is so that the homogeneous system has $n-r=3-2=1$ linearly independent. solution. corrosponding to the eigen value There is only one linearly indepenteigen vector. $\lambda=2$.

To determine this: From the above system
The equations can be written as.

$$
\begin{aligned}
4 x_{1}-2 x_{2}+2 x_{3} & =0 \\
2 x_{1}-x_{2}+x_{3} & =0
\end{aligned}
$$

choose $x_{1}=k_{1} \quad x_{2}=k_{2}$

$$
\begin{gathered}
x_{3}=x_{2}-2 x_{1} \\
x_{3}=k_{2}-2 k_{1} \\
\therefore\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
k_{1} \\
k_{2} \\
k_{2}-2 k_{4}
\end{array}\right]=k_{1}\left[\begin{array}{c}
1 \\
0 \\
-2
\end{array}\right]+k_{2}\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right]
\end{gathered}
$$

$x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right] x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ are two linearly independent eigen vectors ir corresponding to the eigen value $\lambda=2$.
. So that the geometric multiplicity of the eigen value $\lambda=2$ is 2 .
Case (ii):- Eigen Vector corresponding to the Eigen value $\lambda=8$.
For $\lambda=8$, The system (1) can be written as,

$$
\left[\begin{array}{ccc}
-2 & -2 & 2 \\
-2 & -5 & -1 \\
2 & -1 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Reduce the coeff. matrix into echelon form by applying E-row $R_{2} \rightarrow R_{2}-R_{1}, R_{3} \rightarrow R_{3}+R_{1}$ operations only.

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & -3 & -3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
& R_{3} \longrightarrow R_{3}-R_{2} \\
& {\left[\begin{array}{ccc}
-2 & -2 & 2 \\
0 & -3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

$P(A)=2=$ The No. of Non zero rows equivalent to A.

$$
P(A)=2 \angle 3 \text { (No.of non zero rows) }
$$

So that the homogeneous system have $n-\gamma=3-2=1$ linearly - independent solutions.

There is only one linearly independent eigen vector corrosponding to the eigen value $\lambda=8$.

To determine this, we have to assign an arbitrary value for one variable.
from the above system the linear equations are

$$
\begin{array}{r}
x_{1}+x_{2}-x_{3}=0 \\
x_{2}+x_{3}=0
\end{array}
$$

choose $x_{3}=k_{3}$

$$
\begin{gathered}
x_{2}=-x_{3}=-k_{3} \\
x_{1}=x_{3}-x_{2}=+k_{3}+k_{3}=2 k_{3} \\
x_{3}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
2 k_{3} \\
-k_{3} \\
k_{3}
\end{array}\right]=k_{3}\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right] .
\end{gathered}
$$

$x_{3}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ is the linearly independent eigen vector corrosponding to the eigen value $x=8$.
so that the geometric multiplicity of $\lambda=8$ is 1 .
since the geometric multiplicity of each eigen value of A coincides with the algebraic multiplicity.
$\therefore A$ is diagonalizable matrix.
$x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right] x_{2}=\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ and $x_{3}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ are the elgen vectors corrosponding to the eigen values $\lambda=2,2,8$.

Here the eigen vectors x_{1} and x_{2} are not pairwise cothogonal. Now we have to find the anothere linearly independent eigen vector x_{2} pairwise orthogonal to x_{1} and x_{3}.
Let $x_{e}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be the another linearly independent eigenvector. corrosponding to $\lambda=2$ and is orthogonal to x_{1} and x_{3}.
x_{1}, x_{2} are pairwise orthogonal it $a+0 \cdot b-2 c=0$; x_{2}, x_{3} are pairwise orthogonal if $2 a-b+c=0$.
solving above two equations, we get

$$
\left.\begin{array}{ll}
\frac{a}{-2}=\frac{b}{-5}=\frac{c}{-1} & 0
\end{array}-2 \begin{array}{ccc}
-2 & 1 & -1 \\
-1 & 1 & 2
\end{array}\right]
$$

\therefore The Eigen vectors $x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -2\end{array}\right] x_{2}=\left[\begin{array}{c}-2 \\ -5 \\ -1\end{array}\right]$ and $x_{3}=\left[\begin{array}{c}2 \\ -1 \\ 1\end{array}\right]$ are pairwise orthogonal.

$$
\begin{aligned}
& \text { Pairwise orthogonal. } \\
& \text { Consider the modal matrix }\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & -2 & 2 \\
0 & -5 & -1 \\
-2 & -1 & 1
\end{array}\right] \\
& \left\|x_{1}\right\|=\sqrt{1+0+4}=\sqrt{5} \quad\left\|x_{2}\right\|=\sqrt{4+25+1}=\sqrt{30} \\
& \left\|x_{3}\right\|=\sqrt{4+1+1}=\sqrt{6} .
\end{aligned}
$$

Normalized modal matrix. $P=\left[\frac{x_{1}}{\left\|x_{1}\right\|} \frac{x_{2}}{\left\|x_{2}\right\|} \frac{x_{3}}{\left\|x_{3}\right\|}\right]$

$$
P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \\
0 & \frac{-5}{\sqrt{30}} & \frac{-1}{\sqrt{6}} \\
\frac{-2}{\sqrt{5}} & \frac{-1}{\sqrt{30}} & \frac{1}{\sqrt{6}}
\end{array}\right]
$$

Which is the orthogonal matrix.
By definition $\quad P p^{\top}=p^{\top} p=\Lambda \Rightarrow p^{-1}=p^{\top}$
The matrix P will reduce the matrix A to the diagonal. form which is given by $P^{-1} A P=D$ ie $P^{\top} A P=D$.

$$
\begin{aligned}
& P^{\top} A P= {\left[\begin{array}{ccc}
\frac{1}{\sqrt{5}} & 0 & \frac{-2}{\sqrt{5}} \\
\frac{-2}{\sqrt{30}} & \frac{-5}{\sqrt{30}} & \frac{-1}{\sqrt{30}} \\
\frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{6}}
\end{array}\right]\left[\begin{array}{ccc}
6 & -2 & 2 \\
-2 & 3 & -1 \\
2 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{5}} & \frac{-2}{\sqrt{30}} & \frac{2}{\sqrt{6}} \\
0 & \frac{-5}{\sqrt{30}} & \frac{-1}{\sqrt{6}} \\
\frac{-2}{\sqrt{5}} & \frac{-1}{\sqrt{30}} & \frac{1}{\sqrt{6}}
\end{array}\right] } \\
& P_{A P}=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right]=0 \\
& D=\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 8
\end{array}\right] \text { is the spectral matrix. }
\end{aligned}
$$

DIAGONALIZATION OF A MATRIX.
1 Define Modal matrix
2 Define Spectral matrix
3 Define Similarity of matrices.
4 Explain Diagonalization of a Square matrix.
1 Show that the matrix $A=\left[\begin{array}{ccc}3 & 1 & -1 \\ -2 & 1 & 2 \\ 0 & 1 & 2\end{array}\right]$ is diagonalizable. Hence find
P such that $P^{-1} A P$ is a diagonal matrix. Then, obtain the matrix.

$$
\begin{aligned}
& P \text { Such that } P A P \text { is a diagonal matron. } \\
& B=A^{2}+5 A+3 I \text {. Ans :- } \lambda=1,2,3 ; x_{1}=\left[\begin{array}{ccc}
1 & -1 & 1
\end{array}\right]^{\top}, x_{2}=\left[\begin{array}{lll}
1 & 0 & 1
\end{array}\right]^{\top} \\
& x_{3}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]^{\top} \quad P=\left[\begin{array}{ccc}
1 & 1 & 0 \\
-1 & 0 & 1 \\
1 & 1 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
-1 & -1 & 1 \\
2 & 0 & -1 \\
-1 & 1 & 1
\end{array}\right] \quad B^{\prime}=\left[\begin{array}{ccc}
25 & 8 & -8 \\
-18 & 9 & 18 \\
-2 & 8 & 19
\end{array}\right]
\end{aligned}
$$

2 Show that the matrix $A=\left[\begin{array}{ccc}-3 & -2 & 1 \\ -2 & 0 & 4 \\ -6 & -3 & 5\end{array}\right]$ is diagonalizable. Find the matrix P such that $P^{-1} A P$ is a diagonal matrix.
Ans:- $\lambda=1, x_{1}=[1,-2,0]^{\top}, \lambda=-1, x_{2}=[3,-2,2]^{\top}, \lambda=2, x_{3}=[-1,3,1]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & 3 & -1 \\
-2 & -2 & 3 \\
0 & 2 & 1
\end{array}\right] \quad P^{-1}=\frac{1}{2}\left[\begin{array}{ccc}
-8 & -5 & 7 \\
2 & 1 & -1 \\
4 & -2 & 4
\end{array}\right]
$$

3 Show that the matrix $A=\left[\begin{array}{ccc}0 & 2 & 1 \\ 2 & 0 & 3 \\ 1 & -3 & 0\end{array}\right]$ is diagonalizable. Find the matrix P such that $P^{-1} A P$ is a diagonal matrix.
Ans: $\lambda=0, x_{1}=[3,1,-2]^{\top} ; \lambda=2 i, x_{2}=[3+i, 1+3 i,-4]^{\top} ; \lambda=-2 i$

$$
\begin{aligned}
& x_{3}=[3-i, 1-3 i,-4]^{\top} \\
& p=\left[\begin{array}{ccc}
3 & 3+i & 3-i \\
1 & 1+3 i & 1-3 i \\
-2 & -4 & -4
\end{array}\right] \quad p^{-1}=\frac{1}{32}\left[\begin{array}{ccc}
24 & -8 & 16 \\
2 i-6 & 2-6 i & -8 \\
-2 i-6 & 2+6 i & 8
\end{array}\right] \text {. } \\
& \text { ReNO - Q.NO } \\
& \mathrm{Cl} \text {-FO } 1,3,5,7,9,11,13,15 \text {, } \\
& \text { FI-Jo—— } 2,4,6,8,10,12,14,16 \text {. }
\end{aligned}
$$

4 Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & -1 & 1\end{array}\right]$ Hence determine A^{4}.
Ans:- $\lambda=0, x_{1}=[1,0,-1]^{\top} ; \lambda=1, x_{2}=[-1,-1,1]^{\top} ; \lambda=2, x_{3}=[1,1,0]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & -1 & 1 \\
-1 & 1 & 0
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
1 & -1 & 0 \\
1 & -1 & 1 \\
1 & 0 & 1
\end{array}\right]
$$

5 Diagonalize the matrix. $A=\left[\begin{array}{ccc}1 & 2 & -2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ Hence determine A^{3}
Ans:- $\lambda=1, x_{1}=[1,-1,-1]^{\top} ; \lambda=2, x_{2}=[0,1,1]^{\top} ; \lambda=-2 ; x_{3}=[8,-5,7]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & 0 & 8 \\
-1 & 1 & -5 \\
-1 & 1 & 7
\end{array}\right] \quad P^{-1}=\frac{1}{12}\left[\begin{array}{ccc}
12 & 8 & -8 \\
12 & 15 & -3 \\
0 & -1 & 1
\end{array}\right]
$$

6 Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 0 & 2 & 1 \\ -4 & 4 & 3\end{array}\right]$ Hence determine A^{5}.
Ans:- $\lambda=1, x_{1}=[+1,+2,-2]^{\top}, \lambda=2, x_{2}=[1,1,0]^{\top}, \lambda=3, x_{3}=[1,1,1]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & 1 & 1 \\
2 & 1 & 1 \\
-2 & 0 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
-1 & 1 & 0 \\
4 & -3 & -1 \\
-2 & 2 & 1
\end{array}\right] \quad A^{5}=\left[\begin{array}{ccc}
-359 & 391 & 211 \\
-360 & 392 & 211 \\
-484 & 484 & 243
\end{array}\right]
$$

7 Diagonalize the matrix $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3\end{array}\right]$ Hence determine A^{4}.
Ans:: $\lambda=2,2, x_{1}=[1,0,-1]^{\top} x_{2}=[-2,1,0]^{\top} \lambda=4, x_{3}=[1,0,1]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & -2 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & 2 & 0 \\
1 & 2 & 1
\end{array}\right] \frac{1}{2} .
$$

8 Diagonalize the matrix $A=\left[\begin{array}{ccc}5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4\end{array}\right]$ Hence determine A^{6}.
Ans:- $\lambda=1, x_{1}=[3,-1,3]^{\top} ; \lambda=2,2 \quad x_{2}=[2,0,1]^{\top} x_{3}=[2,1,0]^{\top}$

$$
P=\left[\begin{array}{ccc}
3 & 2 & 2 \\
-1 & 0 & 1 \\
3 & 1 & 0
\end{array}\right] \quad P^{-1}=\left[\begin{array}{ccc}
-1 & 2 & 2 \\
3 & -6 & -5 \\
-1 & 3 & 2
\end{array}\right] .
$$

9 Diagonalize the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 2 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ Hence determine A^{3}.

$$
\lambda=1,1 \quad x_{1}=[1,0,-1]^{\top} x_{2}=[0,1,-2]^{\top} ; \lambda=5, x_{3}=[1,1,1]^{\top}
$$

$$
P=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 1 \\
-1 & -2 & 1
\end{array}\right] \quad P^{-1}=[
$$

10 Diagonalize the matrix $A=\left[\begin{array}{ccc}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$ Hence determine A^{4}
Ans:- $\lambda=5, x_{1}=[1,2,-1]^{\top} ; \lambda=-3,-3, x_{2}=[-2,1,0]^{\top} x_{3}=[3,0,1]$

$$
P=\left[\begin{array}{ccc}
1 & -2 & 3 \\
2 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right] \quad P^{-1}=[\square]
$$

1) Diagonalize the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ Hence determine A^{5}

Ans:- $\lambda=2,2, x_{1}=[1,2,0]^{\top} x_{2}=[-1,0,2]^{\top} ; \lambda=8, x_{3}=[2,-1,1]^{\top}$.

$$
P=\left[\begin{array}{ccc}
1 & -1 & 2 \\
2 & 0 & -1 \\
0 & 2 & 1
\end{array}\right] \quad P^{-1}=[\square
$$

12 Diagonalize the matrix. $A=\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$ Hence determine A^{4}
Ans:- $\lambda=-1,-1, x_{1}=[1,0-1]^{\top} x_{2}=[0,1,-1]^{\top} ; \lambda=2, x_{3}=[1,1,1]^{\top}$.
13. Diagonalize, it possible $A=\left[\begin{array}{ccc}1 & 2 & 2 \\ 0 & 2 & 1 \\ -1 & 2 & 2\end{array}\right]$

Ans:- $\lambda=1 x_{1}=[1,1,-1]^{\top} \lambda=2,2, x_{2}=[2,1,0]^{\top}$ Not diagonalizable.
14 Diagonalize if possible $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 3 & 1 & 0 \\ -2 & 0 & 1\end{array}\right]$
Ans: $\lambda=1,1,1 \quad x=[0,3,-2]^{\top}$. Not diagonalizable.

15 Diagonalize if possible $A=\left[\begin{array}{ccc}1 & 3 & 3 \\ 1 & 4 & 3 \\ -1 & 3 & 4\end{array}\right]$
Ans:- $\lambda=1,1, x_{1}=[0,1,-1]^{\top} \quad \lambda=7, x_{2}=[6,7,5]^{\top}$ Not diagonalizable.
16 Diagonalize it possible $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ -1 & -3 & -3 \\ 2 & 4 & 4\end{array}\right]$
Ans:- $\lambda=0,0 \quad x_{1}=[0,1,-1]^{\top} \quad \lambda=2 \quad x_{2}=[1,-2,3]^{\top}$ Not diagonalizable.
17 Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & 1 & i \\ 1 & 0 & i \\ -i & -i & 1\end{array}\right]$ Hence determine A^{3}
Ans:- $\lambda=0, x_{1}=[i, 0,-1]^{\top} ; \lambda=1+\sqrt{3}, x_{2}=[1, \sqrt{3}-1,-i]^{\top}$

$$
\begin{aligned}
& \lambda=1-\sqrt{3} \quad x_{3}=[1,-(\sqrt{3}+1),-i]^{\top} \\
& P=\left[\begin{array}{ccc}
i & 1 & 1 \\
0 & \sqrt{3}-1 & -1 \sqrt{3} \\
-1 & -i & -i
\end{array}\right] \quad P^{-1}=[
\end{aligned}
$$

18 Diagonalize the matrix $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & 0 & 0 \\ -1 & 1 & -1\end{array}\right]$ Hence determine A^{4}
Ans:- $\lambda=0, x_{1}=[0,1,1]^{\top} ; \lambda=i, x_{2}=[1,-i,-1]^{\top} ; \lambda=-i, x_{3}=[1, i,-1]^{\top}$

$$
P=\left[\begin{array}{ccc}
0 & 1 & 1 \\
1 & -i & i \\
1 & -1 & -1
\end{array}\right] \quad P^{-1}=[\square]
$$

19 Diagonalize the matrix $A=\left[\begin{array}{ccc}-1 & 2 & -2 \\ 1 & 2 & 1 \\ -1 & -1 & 0\end{array}\right]$ Hence determine A^{5}
Ans:- $\lambda=1, x_{1}=[1,0,-1]^{\top} ; \lambda=\sqrt{5}, x_{2}=[\sqrt{5}-1,1,-1]^{\top} ; \lambda=-\sqrt{5}, x_{3}=[\sqrt{5}+1,-1,1]^{\top}$

$$
P=\left[\begin{array}{ccc}
1 & \sqrt{5}-1 & \sqrt{5}+1 \\
0 & 1 & -1 \\
-1 & -1 & 1
\end{array}\right] \quad P^{-1}=\left[\begin{array}{l}
\end{array}\right]
$$

20 Diagonalize the matrix $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & -1 & 0\end{array}\right]$ Hence determine A^{6}
Ans:- $\lambda=1,1, x_{1}=[1,1,0]^{\top} x_{2}=[1,0,1]^{\top} ; \lambda=-2, x_{3}=[-1,1,1]^{\top}$

$$
p=\left[\begin{array}{ccc}
1 & 1 & -1 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right] \quad p^{-1}=[\square
$$

\rightarrow Find the matrix A whose eigen values are $1,-1,2$ and cures ponding eigen vectors are $\left[\begin{array}{lll}1 & 1 & 0\end{array}\right]^{\top},\left[\begin{array}{lll}T & 0 & 1\end{array}\right]^{\top}$ and $\left[\begin{array}{lll}3 & 1 & 1\end{array}\right]^{\top}$

Sol: Glt an eigen values of A are $\lambda_{1}=1, \lambda_{2}=-1 \quad \lambda_{3}=2$

$$
\text { spectral matrix } D=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
\text { Modal matrix } p=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

$$
|P|=\left|\begin{array}{lll}
1 & 1 & 3 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right|
$$

$$
=1(0-1)-1(1-0)+3(1-0)
$$

$$
|p|=1
$$

$$
\begin{aligned}
& p^{-1}=\frac{1}{|p|} \operatorname{adj} p \\
& p^{-1}=\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & 1 & 2 \\
1 & -1 & -1
\end{array}\right]
\end{aligned}
$$

We have $A^{n}=P D^{n} P^{1}$

$$
\begin{gathered}
A=P D P^{-1} \\
A=\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 0 & 1 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{ccc}
-1 & 2 & 1 \\
-1 & 1 & 2 \\
1 & -1 & -1
\end{array}\right] \\
A=\left[\begin{array}{ccc}
6 & -5 & -7 \\
1 & 0 & -1 \\
3 & -3 & -4
\end{array}\right]
\end{gathered}
$$

DIAGONALIZATION OF A MATRIX
1 Find the matrix A whose eigen values and corresponding eigen vectors are as given below.
(a) Eigen values 2, 2, 4; Eigen vectors $[-2,1,0]^{\top},[-1,0,1]^{\top},[1,0,1]^{\top}$

Ans:- $A=\left[\begin{array}{lll}3 & 2 & 1 \\ 0 & 2 & 0 \\ 1 & 2 & 3\end{array}\right]$
(b) Eigen values $1,-1,2$; Eigen vectors. $[1,1,0]^{\top},[1,0,1]^{\top},[3,1,1]^{\top}$

Ans:- $A=\left[\begin{array}{rrr}6 & -5 & -7 \\ 1 & 0 & -1 \\ 3 & -3 & -4\end{array}\right]$
(c) Eigen values 1, 2, 3: Eigen vectors $[1,2,1]^{\top},[2,3,4]^{\top},[1,4,9]^{\top}$

Ans:- $A=\frac{1}{12}\left[\begin{array}{ccc}30 & -12 & 6 \\ 2 & 4 & 14 \\ -34 & 4 & 38\end{array}\right]$
(d) Eigen values $0,-1,1$; Eigen vectors. $[-1,1,0]^{\top},[1,0,-1]^{\top},[1,1,1]^{\top}$

Ans:- $\quad A=\frac{1}{3}\left[\begin{array}{ccc}0 & 0 & 3 \\ 1 & 1 & 1 \\ 2 & 2 & -1\end{array}\right]$
(e) Eigen values $0,0,3$; Eigen vectors $[1,3,-1]^{\top} ;[-2,1,0]^{\top},[3,0,1]^{\top}$

Ans:- $A=\frac{1}{8}\left[\begin{array}{llc}9 & 18 & 45 \\ 0 & 0 & 0 \\ 3 & 6 & 15\end{array}\right]$
(f) Eigen values 1, 1, 3: Eigen vectors $[1,0,-1]^{\top},[0,1,-1]^{\top},[1,1,0]^{\top}$.

Ans:- $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 1 & 2 & 1 \\ 0 & 0 & 1\end{array}\right]$

$$
\begin{array}{ll}
R \cdot N O & Q \cdot N O \\
C 1-E O & a, d \\
E I-G O & b, \\
G 1-J O- & c,
\end{array}
$$

Singular Value Decomposition
Given an $m \times n$ complex matrix A, there in general exist an $m \times m$ unitary matrix U, an $n \times n$ unitary matrix V and an $m \times n$ matrix $D=\left[d_{i j}\right]$ with $d_{i j}=0$ for $1 \neq j$ such that $A=U D V^{*}$
The representation of A as a product of U, D and V^{*} as given by expression (1) is known as the singular value Decomposition (or factorization) of A. The elements $d_{i i}$ in the matrix D are called the singular values of A, the columns of U are called the left singular vectors and the columns of V are called the right singular vectors.
When A is a real matrix, the matrices U and V are orthogonal matrices and D is a real matrix.
In this case, the expression (1) becomes. $A=U D V^{-1}=U D V^{\top}$
This expression is equivalent to the expression

$$
\begin{equation*}
D=U^{-1} A V=U^{\top} A V \tag{3}
\end{equation*}
$$

When U and V are known, this expression may be employed to obtain D.
Working Procedure:-
Step 1: Given the matrix A, obtain the matrices $B=A A^{\top}$ and $C=A^{\top} A$.
step 2: obtain the eigen values and corresponding eigen vectors of B. Deduce an orthonormal system from these eigen vectors. Form the orthgoral matrix whose. columns are the vectors of this orthonormal system. Denote this orthogonal matrix by u.
Step 3:- Proceed as in step 2 for the matrix C and obtain the orthogonal. matrix V.
step 4:- obtain the matrix D by using $D=U^{T} A V$.
Step 5: - with U, V and D as determined above, write down the singular. value decomposition. of A as $A=U D V^{\top}$.

Note:- In the singular value decomposition obtained by the above. mentioned working rule, the elements of D would be such that, for each, the element $d_{i i}^{2}=$ ane of the eigen values of B.
obtain a singular value decomposition of the matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]$
Sot- Given that $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]$

$$
\begin{aligned}
& B=A A^{\top}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \\
& C=A^{\top} A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

The characteristic equation of B is. $|B-\lambda I|=0$.

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & -\lambda & 0 \\
0 & 0 & 9-\lambda
\end{array}\right|=0 \\
& (1-\lambda)(-\lambda)(9-\lambda)=0 \\
& \lambda=0,1,9 .
\end{aligned}
$$

\therefore The eigen values of B are $\lambda_{1}=0, \lambda_{2}=1, \lambda_{3}=9$
Let $x=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$ Then the matrix equation $[B-\lambda I] x=0$.

$$
\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & -\lambda & 0 \\
0 & 0 & 9-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Case(i):- An elgen vector corresponding to the eqgen value $\lambda=0$:-

For $\lambda=0$, the system (1) can be written as.

$$
\begin{aligned}
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 9
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .} \\
& R_{2} \leftrightarrow R_{3} \\
& {\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 9 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

From this, $x=0, z=0$.
choose, $y=k_{1}$
$x_{1}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ k_{1} \\ 0\end{array}\right]=k_{1}\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is the linearly independent eigen vector corrosponding to eigen value $\lambda=0$.
$e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is the normalized eigen vector
Case(li): - An eigen vector corresponding to the eigen value $\lambda=1$
For $\lambda=1$, the system (1) can be written as.

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

from this, $y=0, z=0$.
choose $x=k_{2}$
$x_{2}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{2} \\ 0 \\ 0\end{array}\right]=k_{2}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is the linearly independent eigen vector corrospen -ding to eigen value $\lambda=1$.
$e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is the normalized eigen vector.

Caseliii) \because An eigen vector corrosponding to the eigen value $\lambda=9$
For $\lambda=9$, The system (i) can be written as.

$$
\left[\begin{array}{ccc}
-8 & 0 & 0 \\
0 & -9 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From this, $x=0, y=0$
choose. $z=k_{3}$.

$e_{3}=\frac{x_{3}}{\left\|x_{3}\right\|}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is the normalized eigen vector.
We observe that e_{1}, e_{2} and e_{3} are pairwise orthogonal and therefore these form an orthonormal system.

$$
u=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

For the matrix $c=A^{\top} A$, the characteristic equation is $|c-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 9-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right|=0 \quad \begin{gathered}
(1-\lambda)(9-\lambda)(-\lambda)=0 \\
\lambda=0,1,9 .
\end{gathered}
$$

\therefore The eigen values of the matrix c are $\lambda=0,1,9$.
If $x=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$, the matrix equation $\left[\begin{array}{c}c \\ -\lambda I\end{array}\right] x=0$

$$
\text { i.e }\left[\begin{array}{ccc}
1-\lambda & 0 & 0 \\
0 & 9-\lambda & 0 \\
0 & 0 & -\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Coselii:- An cigen vector coxrosponding to the eigen value $\lambda=0$.

For $\lambda=0$. The system (2) con be written as

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 9 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From this, $x=0, y=0$
choose $2=k_{1}$
$X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ x_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ is the linearly independent eigen vectis cozoospen -ding to the eigen value $\lambda=0$.
$e_{1}=\left[\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right.$ is the normalized eigen vectors.
Case. (ii):- An eigen vector corresponding to the eigen value $\lambda=1$.
For $\lambda=1$, The system (2) can be written as.

$$
\left[\begin{array}{ccc}
0 & 0 & 0 \\
0 & 8 & 0 \\
0 & 0 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From this, $y=0, \quad z=0$
choose $x=k_{2}$.
$x_{2}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{2} \\ 0 \\ 0\end{array}\right]=k_{2}\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is the linearly independent eigen vector corrosparding $e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ is the normalized eigen vector.
Case(iii):- An eigen vector corrosponding to the eigen value $\lambda=9$.
For $\lambda=9$, The system (2) can be written as.

$$
\left[\begin{array}{ccc}
-8 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & -7
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

From this, $x=0, z=0$.
choose $y=k_{3}$.
$x_{n}=\left[\begin{array}{l}x^{\prime} \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ k_{1} \\ 0\end{array}\right]=k_{3}\left[\begin{array}{l}0^{\circ} \\ 1 \\ 0\end{array}\right]$ is the livoasly indopendart eigen vector corsospued -ing to the eigen value $\lambda=$?
$A_{3}=\frac{x_{3}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ is the normalized ripen vets.
We observe that c_{1}, c_{2}, c_{3} ado paiqure athegenal
Therefore, there term an asthenermal system.

$$
V=\left[\begin{array}{lll}
c_{1} & c_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] .
$$

We find that $D=U^{\top} A V=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 3 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right]$.

$$
\begin{aligned}
& =\left[\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 3 & 0
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right] \\
& D=\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 3
\end{array}\right] .
\end{aligned}
$$

$A=U D V^{\top}$ represents the singular value. de composition of the given vratrit A. Obtain the singular value decomposition of the matrix $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]$
Sol: Given that $A=\left[\begin{array}{ccc}3 & 1 & 1 \\ -1 & 3 & 1\end{array}\right]$.

$$
\begin{aligned}
& B=A A^{\top}=\left[\begin{array}{lll}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right]\left[\begin{array}{cc}
3 & -1 \\
1 & 3 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
11 & 1 \\
1 & 11
\end{array}\right] \\
& C=A^{\top} A=\left[\begin{array}{cc}
3 & -1 \\
1 & 3 \\
1 & 1
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right]=\left[\begin{array}{ccc}
10 & 0 & 2 \\
0 & 10 & 4 \\
2 & 4 & 2
\end{array}\right]
\end{aligned}
$$

For the matrix B, the characteristic equation is $|B-\lambda I|=0$.

$$
\begin{aligned}
& \text { 1.e }\left|\begin{array}{cc}
11-\lambda & 1 \\
1 & 11-\lambda
\end{array}\right|=0 \\
& \begin{array}{c}
(11-\lambda)^{2}-1=0 \Rightarrow \lambda^{2}-22 \lambda+120=0 \\
1 \lambda=12,10 .
\end{array}
\end{aligned}
$$

\therefore The Eigen values of the matrix B ale $\lambda_{1}=12, \lambda_{2}=10$.

Let $x=\left[\begin{array}{ll}x & y\end{array}\right]^{\top}$. Then the matrix equation $(B-\lambda I) x=0$

$$
\text { i.e }\left[\begin{array}{cc}
11-\lambda & 1 \\
1 & 11-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \text {. }
$$

Caseli):- An eigen vector corrosponding to the eigen value $\lambda=12$.
For $\lambda=12$, The system (1) can be written as.

$$
\begin{aligned}
& {\left[\begin{array}{rr}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}+R_{1} \\
& {\left[\begin{array}{rr}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

From this, $-x+y=0$.
choose $y=k_{1}$

$$
x=y=k_{1}
$$

$x_{1}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right]$ is the linearly independent eigen vector corrosponding to the eigen value $\lambda=12$

$$
\|x,\|=\sqrt{1+1}=\sqrt{2}
$$

$e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ is the normalized eigen vector.
Case(iii:- An eigen vector corresponding to the eigen value $\lambda=10$
For $\lambda=10$, The system (1) can be written as

$$
\begin{aligned}
& {\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-R_{1} \\
& {\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

From this, $x+y=0$
choose $x=k_{2}$

$$
y=-x=-k_{2}
$$

$x_{2}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}k_{2} \\ -k_{2}\end{array}\right]=k_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is the linearly independent eigen vector corrosponding to the eigen value $\lambda=10$.

$$
\left\|x_{2}\right\|=\sqrt{1+1}=\sqrt{2} \text {. }
$$

$e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$ is the linearly independent eigen vector normalized.

We observe that the eigen vectors e_{1} and e_{2} are cothogonal.
Therefore these form an orthonormal system,

$$
U=\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]
$$

\rightarrow For the matrix $C=A^{\top} A$, the characteristic equation is $|C-\lambda I|=0$

$$
\begin{gathered}
\left|\begin{array}{ccc}
10-\lambda & 0 & 2 \\
0 & 10-\lambda & 4 \\
2 & 4 & 2-\lambda
\end{array}\right|=0 \\
(10-\lambda)[(10-\lambda)(2-\lambda)-16]+2[0-2(10-\lambda)]=0 \\
(10-\lambda)(\lambda-12 \lambda)=0 \\
\lambda=12,10,0
\end{gathered}
$$

\therefore The eigen values of the matrix 16 are $12,10,0$.
Let $x=\left[\begin{array}{lll}x & y & z\end{array}\right]^{\top}$ Then the matrix equation $[C-\lambda I]\{x=0$.

$$
\text { i.e }\left[\begin{array}{ccc}
10-\lambda & 0 & 2 \tag{2}\\
0 & 10-\lambda & 4 \\
2 & 2 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]-
$$

Case (i): An eigen vector corrosponding to the eigen value $\lambda=12:-$
For $\lambda=12$, The system (2) can be written as

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -2 & 4 \\
2 & 4 & -10
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+R_{1} \\
& {\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -2 & 4 \\
0 & 4 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{3} \rightarrow R_{3}+2 R_{R} \\
& {\left[\begin{array}{ccc}
-2 & 0 & 2 \\
0 & -2 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

From this,

$$
\begin{aligned}
& -x+z=0 \\
& -y+2 z=0
\end{aligned}
$$

choose $2=K_{1}$

$$
\begin{aligned}
& x=2=k_{1} \\
& y=22=2 k_{1}
\end{aligned}
$$

$x_{1}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}k_{1} \\ 2 k_{1} \\ k_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right]$ is the linearly independent eigen vector corresponding to the eigen value $\lambda=1.2$

$$
\left\|x_{1}\right\|=\sqrt{1+4+1}=\sqrt{6}
$$

$e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{c}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right]$ is the normalized eigen vector.
Caselii): An eigen vector corrosponding to the eigen value $\lambda=10:$ -
For $\lambda=10$, The system (1) can be written as

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 0 & 2 \\
0 & 0 & 4 \\
2 & 4 & -8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& R_{1} \leftrightarrow R_{3} \\
& {\left[\begin{array}{ccc}
2 & 4 & -8 \\
0 & 0 & 4 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
& R_{3} \rightarrow 2 R_{3}-R_{2} \\
& {\left[\begin{array}{ccc}
2 & 4 & -8 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

From this, $\quad x+2 y-4 z=0$

$$
\begin{aligned}
z & =0 \\
x+2 y & =0
\end{aligned}
$$

choose $y=k_{2}$

$$
x=-2 y=-2 k_{2}
$$

$x_{2}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}-2 k_{2} \\ k_{2} \\ 0\end{array}\right]=-k_{2}\left[\begin{array}{c}2 \\ -1 \\ 0\end{array}\right] \quad \begin{gathered}\text { is the linearly independent eigen vector. } \\ \text { corrosponding to the eigen value } \lambda=10\end{gathered}$

$$
\left\|x_{2}\right\|=\sqrt{4+1+0}=\sqrt{5}
$$

$e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{c}2 / \sqrt{5} \\ -1 / \sqrt{5} \\ 0\end{array}\right]$ is the normalized eigen vector.
case(iii): An eigen vector corrosponding to the eigen value $\lambda=0$ ir
For $\lambda=0$, The system (2) can be written as

$$
\begin{aligned}
{\left[\begin{array}{ccc}
10 & 0 & 2 \\
0 & 10 & 4 \\
2 & 4 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
R_{3} \rightarrow 5 R_{3}-R_{1} \\
{\left[\begin{array}{ccc}
10 & 0 & 2 \\
0 & 10 & 4 \\
0 & 20 & 8
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] } \\
R_{3} \rightarrow R_{3}-2 R_{2} \\
{\left[\begin{array}{ccc}
10 & 0 & 2 \\
0 & 10 & 4 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] }
\end{aligned}
$$

From this,

$$
\begin{aligned}
& 5 x+z=0 \\
& 5 y+2 z=0 .
\end{aligned}
$$

choose $x=k_{3}$

$$
\begin{gathered}
z=-5 x=-5 k_{3} \\
5 y=-2 z=10 k_{3} \\
y=2 k_{3}
\end{gathered}
$$

$x_{3}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}k_{3} \\ 2 k_{3} \\ -5 k_{3}\end{array}\right]=k_{3}\left[\begin{array}{c}1 \\ 2 \\ -5\end{array}\right]$ is the linearly independent eigen vector corrosponding to the eigen value $\lambda=a$.

$$
\left\|x_{3}\right\|=\sqrt{1+4+25}=\sqrt{30}
$$

$e_{3}=\frac{x_{3}}{\left\|x_{3}\right\|}=\left[\begin{array}{c}1 / \sqrt{30} \\ 2 / \sqrt{30} \\ -5 \mid \sqrt{30}\end{array}\right]$ is the normalized eigen vector.
We observe that $e_{1}, e_{2} e_{3}$ are pairwise orthogonal
Therefore they form an orthonormal system.

$$
v=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{6} & 21 \sqrt{5} & 1 / \sqrt{30} \\
21 \sqrt{6} & -11 \sqrt{5} & 2 / \sqrt{30} \\
1 / \sqrt{6} & 0 & -5 / \sqrt{30}
\end{array}\right]
$$

$$
\text { - } \begin{aligned}
D & =U^{T} A V \\
& =\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 1 \\
-1 & 3 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{6} & 2 / \sqrt{5} & 1 / \sqrt{30} \\
21 \sqrt{6} & -1 / \sqrt{5} & 2 / \sqrt{30} \\
1 / \sqrt{6} & 0 & -5 / \sqrt{30}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\begin{array}{ccc}
\sqrt{2} & 2 \sqrt{2} & \sqrt{2} \\
2 \sqrt{2} & -\sqrt{2} & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / \sqrt{6} & 2 / \sqrt{5} & 1 / \sqrt{30} \\
21 \sqrt{6} & -1 / \sqrt{5} & 2 / \sqrt{30} \\
1 \sqrt{6} & 0 & -5 / \sqrt{30}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\sqrt{12} & 0 & 0 \\
0 & \sqrt{10} & 0
\end{array}\right]
\end{aligned}
$$

Thus for the given matrix A, the singular value de composition is

$$
A=U D V^{\top}
$$

Obtain the singular value Decomposition of the matrix $A=\left[\begin{array}{cc}1 / \sqrt{2} & -\sqrt{3} / 2 \\ \sqrt{2} & 0\end{array}\right]$
Sol:- Given that $A=\left[\begin{array}{cc}1 / \sqrt{2} & -\sqrt{312} \\ \sqrt{2} & 0\end{array}\right]$

$$
\begin{aligned}
& B=A A^{\top}=\left[\begin{array}{cc}
1 / \sqrt{2} & -\sqrt{3 / 2} \\
\sqrt{2} & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & \sqrt{2} \\
-\sqrt{3 / 2} & 0
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right] \\
& C=A^{T} A=\left[\begin{array}{cc}
1 / \sqrt{2} & \sqrt{2} \\
-\sqrt{3 / 2} & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & -\sqrt{3 / 2} \\
\sqrt{2} & 0
\end{array}\right]=\left[\begin{array}{cc}
5 / 2 & -\sqrt{3} / 2 \\
-\sqrt{3} / 2 & 3 / 2
\end{array}\right]
\end{aligned}
$$

The characteristic equation of B is $|B-\lambda I|=0$ i.e $\left|\begin{array}{cc}2-\lambda & 1 \\ 1 & 2-\lambda\end{array}\right|=0$.

$$
\begin{gathered}
(2-\lambda)^{2}-1=0 \Rightarrow \lambda^{2}-4 \lambda+3=0 \\
(\lambda-3)(\lambda-1)=0 \\
\lambda=3,1
\end{gathered}
$$

\therefore The elgon values of the matrix B are $\lambda_{1}=3, \lambda_{2}=1$.
Let $x=\left[\begin{array}{ll}x & y\end{array}\right]^{\top}$ Then the matrix equation $[B-\lambda I] x=0$.

$$
\text { ie }\left[\begin{array}{cc}
2-\lambda & 1 \tag{1}\\
1 & 2-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
0 \\
0
\end{array}\right]-
$$

Case 11:- An eigen vector corrosponding to the eigen value $\lambda_{1}=3$:-
For $\lambda=3$, The system (1) can be written as

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & 1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}+R_{1} \\
& {\left[\begin{array}{cc}
-1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .}
\end{aligned}
$$

From this, $-x+y=0$
choose $y=k_{1}$

$$
x=y=k_{1} .
$$

$x_{1}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k_{1} \\ k_{1}\end{array}\right]=k_{1}\left[\begin{array}{l}1 \\ 1\end{array}\right] \begin{aligned} & \text { is an eigen vector corrosponding to the eigen } \\ & \text { value } \lambda=3 .\end{aligned}$

$$
\|x,\|=\sqrt{1+1}=\sqrt{2}
$$

$e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$ is a normalized eigen vector.
Case (i):- An eigen vector corresponding to the eigen value $\lambda=1$:-
For $\lambda=1$, The system (1) can be written as

$$
\begin{aligned}
{\left[\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] } \\
R_{2} \rightarrow R_{2}-R_{1} \\
{\left[\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] }
\end{aligned}
$$

From this, $x+y=0$
choose $x=k 2$

$$
y=-x=-k_{2}
$$

$x_{2}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{l}k_{2} \\ -k_{2}\end{array}\right]=k_{2}\left[\begin{array}{c}1 \\ -1\end{array}\right]$ is the linearly independent eigen vector corrospon -ding to the eigen value $\lambda=1$.

$$
\left\|x_{2}\right\|=\sqrt{1+1}
$$

$e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$ is the normalized eigen vector.
We observe that e_{1} and e_{2} are orthogonal and therefore they form an orthonormal system.

$$
u=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] \text {. }
$$

\rightarrow The characteristic equation of the matrix $C=A^{\top} A$ is $|C-\lambda I|=0$

$$
\begin{gathered}
\text { ie }\left|\begin{array}{cc}
\frac{5}{2}-\lambda & -\frac{\sqrt{3}}{2} \\
-\frac{\sqrt{3}}{2} & \frac{3}{2}-\lambda
\end{array}\right|=0 \text { i.e }\left|\begin{array}{cc}
5-2 \lambda & -\sqrt{3} \\
-\sqrt{3} & 3-2 \lambda
\end{array}\right|=0 \\
(5-2 \lambda)(3-2 \lambda)-3=0 \\
4 \lambda^{2}-16 \lambda+12=0 \\
\lambda^{2}-4 \lambda+3=0 \\
(\lambda-1)(\lambda-3)=0 \\
\lambda=3,1
\end{gathered}
$$

\therefore The eigen values of the matrix c is are $\lambda=3, \lambda=1$.
Let $x=\left[\begin{array}{ll}x & y\end{array}\right]^{\top}$ Then the matrix equation $[C-\lambda I]_{[} x=0$.

$$
\text { i.e }\left[\begin{array}{cc}
5-2 \lambda & -\sqrt{3} \tag{2}\\
-\sqrt{3} & 3-2 \lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Case (i): - An eigen vector corresponding to the eigen value $\lambda=3:$
For $\lambda=3$. Then system (2) Can be written as

$$
\begin{aligned}
& {\left[\begin{array}{cc}
-1 & -\sqrt{3} \\
-\sqrt{3} & -3
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}-\sqrt{3} R_{1} \\
& {\left[\begin{array}{cc}
-1 & -\sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Frown this

$$
-x+\sqrt{3} y=0
$$

choose $y=k$

$$
x=-\sqrt{3} y=-\sqrt{3} k 4
$$

$x_{1}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-\sqrt{3} \\ k_{1} \\ k_{1}\end{array}\right]=-k_{1}\left[\begin{array}{c}\sqrt{3} \\ -1\end{array}\right]$ is the linearly independent eigen vector corrosponding to the elgen value $\lambda=3$.

$$
\left\|x_{1}\right\|=\sqrt{3+1}=2
$$

$e_{1}=\frac{x_{1}}{\|x\| \|}=\left[\begin{array}{c}\sqrt{3} / 2 \\ 1 / 2\end{array}\right]$ is the normalized eigen vector.

Care (ii) An eigen vector corrosponding to the eigen value $\lambda=1:$ -
For $\lambda=1$, The system (2) Can be written as.

$$
\begin{aligned}
& {\left[\begin{array}{cc}
3 & -\sqrt{3} \\
-\sqrt{3} & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]} \\
& R_{2} \rightarrow R_{2}+\frac{1}{\sqrt{3}} R_{1} \\
& {\left[\begin{array}{cc}
3 & -\sqrt{3} \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]}
\end{aligned}
$$

From this, $\sqrt{3} x-y=0$.
choose $x=k_{2}$

$$
y=\sqrt{3} x=\sqrt{3} k_{2}
$$

$x_{2}=\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}k_{2} \\ \sqrt{3} \\ k_{2}\end{array}\right]=k_{2}\left[\begin{array}{c}1 \\ \sqrt{3}\end{array}\right]$ is the linearly independent eigen vector corrospon -ding to the eigen value $\lambda=1$.

$$
\left\|x_{2}\right\|=\sqrt{1+3}=2
$$

$e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{c}ע / 2 \\ \sqrt{3} / 2\end{array}\right]$ is the normalized eigen vector.
We observe that e_{1} and e_{2} are orthogonal and therefore they form an orthonormal system.

$$
v=\left[\begin{array}{ll}
e_{1} & e_{2}
\end{array}\right]=\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right]
$$

We find that $D=U^{\top} A V$

$$
\begin{aligned}
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & -\frac{\sqrt{3}}{\sqrt{2}} \\
\sqrt{2} & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{\sqrt{3}}{2} & \frac{1}{2} \\
\frac{-1}{2} & \frac{\sqrt{3}}{2}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{cc}
\sqrt{\frac{3}{2}} & \frac{-1}{\sqrt{2}} \\
\sqrt{\frac{3}{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& =\left[\begin{array}{cc}
\sqrt{3} & 0 \\
0 & -1
\end{array}\right]
\end{aligned}
$$

With U, V and D as determined above $A=U D V^{\top}$ gives singular value decomposition.

Sylvester's Theorem: \qquad
This theorem is useful to find the approximate value of a matrix to a higher power and functions of matrices.
If the square matrix A has n distinct eigen values $\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ and $P(A)$ is a polynomial of the form.

$$
P(A)=C_{0} A^{n}+C_{1} A^{n-1}+C_{2} A^{n-2}+\cdots+C_{n-1} A+C_{n} I_{n} \text {. }
$$

Where $c_{0} C_{1} C_{2} \ldots C_{n}$ are constants then the polynomial $P(A)$ can be expressed in the following form.

$$
\begin{aligned}
& \text { expressed in the following form. } \\
& P(A)=\sum_{r=1}^{n} P\left(\lambda_{\gamma}\right) \cdot z\left(\lambda_{\gamma}\right)=p\left(\lambda_{1}\right) z\left(\lambda_{1}\right)+P\left(\lambda_{2}\right) z\left(\lambda_{2}\right)+\cdots+p\left(\lambda_{n}\right) z\left(\lambda_{n}\right) \text {. } \\
&
\end{aligned}
$$

Where $z\left(\lambda_{\gamma}\right)=\frac{\left[f\left(\lambda_{\gamma}\right)\right]}{f^{\prime}\left(\lambda_{\gamma}\right)}$.
Here $f(\lambda)=|\lambda I-A|$

$$
\begin{aligned}
& f(\lambda)=|\lambda I-A| \\
& {[f(\lambda)]=\text { Adjoint of the matrix }[\lambda I-A]}
\end{aligned}
$$

and $f^{\prime}(\lambda \gamma)=\left(\frac{d t}{d \lambda}\right)_{\lambda=\lambda \gamma}$.
(1) If $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]$, find A^{50}.

So:- Consider the polynomial $P(A)=A^{50}$.
Now $[\lambda I-A]=\left[\begin{array}{ll}\lambda & 0 \\ 0 & \lambda\end{array}\right]-\left[\begin{array}{ll}1 & 0 \\ 0 & 3\end{array}\right]=\left[\begin{array}{cc}\lambda-1 & 0 \\ 0 & \lambda-3\end{array}\right]$

$$
\begin{gather*}
f(\lambda)=|\lambda I-A|=\left|\begin{array}{cc}
\lambda-1 & 0 \\
0 & \lambda-3
\end{array}\right| \\
f(\lambda)=(\lambda-1)(\lambda-3)=\lambda^{2}-4 \lambda+3 \tag{1}
\end{gather*}
$$

\therefore Eigen values of $f(\lambda)$ are $\lambda_{1}=1$ and $\lambda_{2}=3$.
From (1) $\quad f^{\prime}(\lambda)=2 \lambda-4$

$$
\begin{align*}
& f^{\prime}\left(\lambda_{1}\right)=f^{\prime}(1)=-2 \tag{2}\\
& f^{\prime}\left(\lambda_{e}\right)=f^{\prime}(3)=6-4=2
\end{align*}
$$

$[f(\lambda)]=$ Adjoint matrix of the matrix $[\lambda I-A]$

$$
\begin{align*}
& {\left[f\left(\lambda_{1}\right)\right] }=\left[\begin{array}{cc}
\lambda-3 & 0 \\
0 & \lambda_{-1}
\end{array}\right] \tag{3}\\
& z\left(\lambda_{\gamma}\right)=\frac{\left[f\left(\lambda_{\gamma}\right)\right]}{f^{\prime}\left(\lambda_{\gamma}\right)} \quad \gamma=1,2, \text { wegct } \\
& z\left(\lambda_{1}\right)=\frac{\left[f\left(\lambda_{1}\right)\right]}{f^{\prime}\left(\lambda_{1}\right)} \quad z\left(\lambda_{2}\right)=\frac{\left[f\left(\lambda_{2}\right)\right]}{f^{\prime}\left(\lambda_{2}\right)} \\
& \therefore z\left(\lambda_{1}\right)= z(1)=\frac{[f(1)]}{f^{\prime}(1)}=\frac{-1}{2}\left[\begin{array}{cc}
1-3 & 0 \\
0 & 1-1
\end{array}\right] \\
& z\left(\lambda_{1}\right)=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \\
& z\left(\lambda_{2}\right)= z(3)=\frac{[f(3)]}{f^{\prime}(3)}=\frac{1}{2}\left[\begin{array}{cc}
3-3 & 0 \\
0 & 3-1
\end{array}\right] \\
&=\frac{1}{2}\left[\begin{array}{ll}
0 & 0 \\
0 & 2
\end{array}\right]=\left[\begin{array}{cc}
0 & 0 \\
0 & 1
\end{array}\right]
\end{align*}
$$

\therefore By Sylvester's theorem, we get

$$
\begin{aligned}
& P(A)=P\left(\lambda_{1}\right) z\left(\lambda_{1}\right)+P\left(\lambda_{2}\right) z\left(\lambda_{2}\right) \\
& A^{50}=\lambda_{1}^{50}\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+3^{50}\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right] \\
& A^{50}=\left[\begin{array}{ll}
1 & 0 \\
0 & 3^{50}
\end{array}\right]
\end{aligned}
$$

Theorem : - The sum of the eigen values of a square matrix is equal to its trace.
proof: We shall prove this theorem by considering a square matrix of order 3.
Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ be a square matrix of order .3 and λ be its eigen value.

We prove that $\lambda_{1}+\lambda_{2}+\lambda_{3}=a_{11}+a_{22}+a_{33}$.
The characteristic polynomial of A is

$$
|A-\lambda I|=\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|
$$

Expand it by using R_{1}, we have.

$$
\begin{aligned}
& \text { Expand it by using } R_{1} \text {, we have. } \\
& |A-\lambda I|=\left(a_{11}-\lambda\right)\left[\left(a_{22}-\lambda\right)\left(a_{33}-\lambda\right)-a_{32} a_{23}\right]-a_{12}\left[a_{21}\left(a_{33}-\lambda\right)-a_{31} a_{23}\right] \\
& \\
& +a_{13}\left[a_{21} a_{32}-a_{31}\left(a_{22}-\lambda\right)\right]
\end{aligned}
$$

$$
+a_{13}\left[a_{21} a_{32}-a_{31}\left(a_{22}-\lambda\right)\right]
$$

$$
\begin{gathered}
+a_{13}\left[a_{21} a_{32}-a_{31}\left(a_{22}-\lambda\right)\right] \\
=\left(a_{11}-\lambda\right)\left[a_{22} a_{33}-a_{22} \lambda-a_{33} \lambda+\lambda^{2}-a_{32} a_{23}\right]-a_{12}\left[a_{21} a_{33}-a_{21} \lambda\right.
\end{gathered}
$$

$$
\left.-a_{31} a_{23}\right]+a_{13}\left[a_{21} a_{32}-a_{31} a_{22}+a_{31} \lambda\right]
$$

$$
=a_{11} a_{22} a_{33}-a_{11} a_{22} \lambda-a_{11} a_{33} \lambda+a_{11} \lambda^{2}-a_{11} a_{23} a_{32}-a_{22} a_{33} \lambda
$$

$$
\begin{aligned}
& a_{11} a_{22} a_{33}-a_{11} a_{22} \lambda-a_{11} a_{33} \lambda \\
& +a_{22} \lambda^{2}+a_{33} \lambda^{2}-\lambda^{3}+a_{23} a_{32} \lambda-a_{12} a_{21} a_{33}+a_{12} a_{21} \lambda-a_{31} a_{23} a_{22} \\
& +a_{12} a_{31} \lambda
\end{aligned}
$$

$$
+a_{13} a_{32} a_{21}-a_{13} a_{31} a_{22}+a_{13} a_{31} \lambda
$$

$$
\begin{aligned}
& +a_{13} a_{32} a_{21}-a_{13} a_{31} a_{22}+\lambda^{3}+\lambda^{2}\left(a_{11}+a_{22}+a_{33}\right)-\lambda\left(a_{11} a_{22}+a_{11} a_{33}+a_{22}-a_{33}-a_{23} a_{32}\right. \\
& \left.=-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}\right)
\end{aligned}
$$

$$
\begin{aligned}
& -\lambda^{3}+\lambda^{2}\left(a_{11}+a_{22}+a_{33}\right)-\lambda\left(a_{11} a_{22}\right. \\
& \left.-a_{12} a_{21}-a_{13} a_{31}\right)+\left(a_{11} a_{22} a_{33}-a_{11} a_{23} a_{32}-a_{12} a_{21} a_{33}\right)
\end{aligned}
$$

$$
\begin{equation*}
\left.+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}-a_{13} a_{31} a_{22}\right) \tag{1}
\end{equation*}
$$

If $\lambda_{1} \lambda_{2} \lambda_{3}$ are the eigen values of A then.

$$
\begin{align*}
& |A-\lambda I|=(-1)^{3}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right) \\
& |A-\lambda I|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right)\left(\lambda_{3}-\lambda\right) \tag{2}
\end{align*}
$$

$$
\begin{align*}
|A-\lambda I| & =\left[\lambda_{1} \lambda_{2}-\lambda_{1} \lambda-\lambda_{2} \lambda+\lambda^{2}\right]\left(\lambda_{3}-\lambda\right) \\
& =\lambda_{1} \lambda_{2} \lambda_{3}-\lambda_{1} \lambda_{3}-\lambda_{2} \lambda_{3}+\lambda^{2} \lambda_{3}-\lambda_{1} \lambda_{2}+\lambda^{2} \lambda_{1}+\lambda^{2} \lambda_{2}-\lambda^{3} \\
|A-\lambda I| & =-\lambda^{3}+\lambda^{2}\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)-\lambda_{1}\left(\lambda_{1} \lambda_{2}-\lambda_{2} \lambda_{3}-\lambda_{3} \lambda_{1}\right)+\lambda_{1} \lambda_{2} \lambda_{3} \tag{3}
\end{align*}
$$

Equating the R.H.S of (1) and (3) and comparing the coefficients of λ^{2}, we have.

$$
\lambda_{1}+\lambda_{2}+\lambda_{3}=a_{11}+a_{22}+a_{33}
$$

i.e The sum of the eigen values of $A=$ The sum of the elements of the principal diagonal of A.
Hence The sum of the eigen values of a matrix A is equal to the trace of the matrix A.
(OR)
Another Proof:-
Let A be square matrix of order n.
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { fistic equation of } A \text { is }\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & a_{13} & \cdots \\
a_{21} & a_{22}-\lambda & a_{23} & \cdots \\
a_{1 n} \\
a_{n 1} & a_{n 2} & a_{n 3} & \cdots \\
a_{n n}-\lambda
\end{array}\right|=0
\end{aligned}
$$

Expanding this, we get
$\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)-a_{12}($ a polynomial of degree $n-2)$
$+a_{13}$ (a polynomial of degree $\left.n-2\right)+\cdots=0=$
$(-1)^{n}\left(\lambda-a_{11}\right)\left(\lambda-a_{22}\right) \cdots\left(\lambda-a_{n n}\right)+$ a polynomial of degree $(n-2)=0$.
$(-1)^{n}\left[\lambda^{n}-\left(a_{11}+a_{22}+a_{33}+\cdots+a_{n n}\right)^{n-1}+\right.$ a polynomial of degree $(n-2)$

$$
\text { in } \lambda=0
$$

$(-1)^{n} \lambda^{n}+(-1)^{n+1}\left(\right.$ Trace A) $\lambda^{n-1}+$ a polynomial of degree $(n-2)$ in $\lambda=0$.

If $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \lambda_{n}$ are the roots of this equation

$$
a=(-1)^{n} \quad b=(-1)^{n+1} \text {. Trace } A
$$

$$
\begin{aligned}
& \text { Sum of the roots }=\frac{-b}{a} \\
&=\frac{-(-1)^{n+1} \text { Trace } A}{(-1)^{n}}=\text { Trace } A \\
&\left.\therefore \lambda_{1}+\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n}\right)=\text { Trace } A
\end{aligned}
$$

Hence The sum of eigen values of a matrix A is equal to the trace. of the matrix A.
Theorem: The Product of the eigen values of a matrix is equal to its determinant.
Proof:- Let $\lambda_{1}, \lambda_{2}, \lambda_{3} \ldots \lambda_{n}$ be the eigen values of square matrix A of order n.

We prove that $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}=\operatorname{det} A$
The characteristic polynomial of A is

$$
\begin{equation*}
|A-\lambda I|=(-1)^{n}\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right) \ldots\left(\lambda-\lambda_{n}\right) . \tag{1}
\end{equation*}
$$

Taking $\lambda=0$ in (1), we have.

$$
\begin{aligned}
& |A|=(-1)^{n}\left(0-\lambda_{1}\right)\left(0-\lambda_{2}\right) \cdots\left(0-\lambda_{n}\right) \\
& |A|=(-1)^{n}(-1)^{n} \lambda_{1} \lambda_{2} \lambda_{3} \cdots \lambda_{n} \\
& |A|=(-1)^{2 n} \lambda_{1} \lambda_{2} \lambda_{3} \cdots \lambda_{n} \\
& |A|=\lambda_{1} \lambda_{2} \lambda_{3} \cdots \lambda_{n} \quad\left[\because(-1)^{2 n}=1\right]
\end{aligned}
$$

i.e. The et of $A=$ The product of the eigen values of A.

Hence the product of the eigen values of A is equal to its deter -minant.

Note: - (i) If one of the eigen values of a matrix A is zero then $\operatorname{det} A=0$ i.e A is singular matrix and vice versa.
(ii) If all the eigen values of a matrix A are non zero then $\operatorname{det} A \neq 0$ i.e A is non singular matrix and vice versa.
*-Theorem 3: If λ is an eigen value of A corresponding to the eigen vector x then λ^{n} is an eigen value of A^{n} corrosponding to the eigen vector x.
Proof: - Given that λ is an eigen value of a matrix A and x be its corrosponding eigen vector.
We PIT λ^{n} is an eigen value of A^{n} corresponding to the eigen vector x.
We prove this by using mathematical induction.
By definition, λ is an eigenvalue of A if there exists non zero vector such that $A x=\lambda x$

The Result is true for $n=1$.
Pre multiplying en (1) both sides with A, we gel

$$
\begin{align*}
A(A x) & =A(\lambda x) \\
A^{2} x & =\lambda(A x) \\
A^{2} x & =\lambda(\lambda x) \\
A^{2} x & =\lambda^{2} x \tag{2}
\end{align*}
$$

Hence λ^{2} is an eigen value of A^{2} with" $x^{\prime \prime}$ itself as the corrospondio eigen vector.

Thus the theorem is true for $n=2$
Let the result is true tor $n=k$.

$$
\begin{equation*}
A^{k} x=\lambda^{k} x \tag{3}
\end{equation*}
$$

Prem multiplying en (3) bothsides with A, we get.

$$
\begin{gathered}
A\left(A^{k} x\right)=A\left(\lambda^{k} x\right) . \\
A^{k+1}=\lambda^{k}(A x)
\end{gathered}
$$

$$
A^{k+1} x=\lambda^{k+1} x .
$$

Which implies that λ^{k+1} is an eigen value of A^{k+1} with x itself as the corrosponding eigen vector.
Hence by the principle of mathematical induction, the theorem is true ter all positive integer n.
Hence λ is an eigen value of A corrosponding to the eigen vector x then λ^{n} is an eigen value of A^{n} corrosponding to the eigenvector x
Theorem :- A square matrix A and its transpose A^{\top} have the same eigen values.
Proof: - Let λ be an eigen value of the matrix A.
We prove that λ is an eigen value of the matrix A^{\top}.
We know that for any square matrix $B, \quad|B|=\left|B^{\top}\right|$.

$$
(A-\lambda I)^{T}=A^{T}-\lambda I^{T}=A^{T}-\lambda I
$$

We have $|A-\lambda I|=\left|(A-\lambda I)^{\top}\right|$

$$
\begin{aligned}
& |A-\lambda I|=\left|A^{\top}-\lambda I\right| \\
& |A-\lambda I|=\left|A^{\top}-\lambda I\right|
\end{aligned}
$$

$\therefore|A-\lambda I|=0$ if and only if $\left|A^{\top}-\lambda I\right|=0$.
i.e λ is an eigen value of A it and only if λ is an eigen value of A^{\top} Hence the Eigen values of A and A^{\top} are same.

1) Verity that sum of the eigen values of the matrix $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$ is equal to its trace and also verity that product of the eigen values of the matrix A is equal to its determinant.
sol:- The characteristic equation of the matrix A is $|A-\lambda I|=0$ i.e.

$$
\left|\begin{array}{ccc}
1-\lambda & 0 & -1 \\
1 & 2-\lambda & 1 \\
2 & 2 & 3-\lambda
\end{array}\right|=0
$$

$$
\lambda^{3}-s_{1} \lambda^{2}+S_{2} \lambda-s_{3}=0
$$

Where $S_{1}=$ sum of the principal diagonal elements of $A=1+2+3=6$.
$S_{2}=S_{u m}$ of the minors of principal diagonal elements of A.

$$
\begin{aligned}
& =\left|\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right| \\
& =(6-2)+(3+2)+(2-0) \\
s_{2} & =11 \\
s_{3} & =\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 2 & 3
\end{array}\right| \\
& =1(6-1)-0-1(2-4) \\
s_{3} & =6
\end{aligned}
$$

Hence the characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$

$$
\lambda=1,2,3 .
$$

(i) Sum of the eigen values of A is $1+2+3=6$.

Trace of A is $1+2+3=6$

$$
\therefore \text { Sum of the eigen values }=\text { Trace of } A \text {. }
$$

(ii) Product of the eigen values of A is $1.2 .3=6$.

$$
\operatorname{det}(A)=6
$$

$$
\therefore \text { Product of eigen values }=\operatorname{det}(A) \text {. }
$$

2) Verity that an eigen values of A and A are same where $A=\left[\begin{array}{ccc}1 & 0 & -1 \\ 1 & 2 & 1 \\ 2 & 2 & 3\end{array}\right]$

Sol:- The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{ccc}
1-\lambda & 0 & -1 \\
1 & 2-\lambda & 1 \\
2 & 2 & 3-\lambda
\end{array}\right|=0
$$

Where $S_{1}=$ sumof the principal diagonal elements of $A=1+2+3=6$.
$S_{2}=$ Sum of the minors of principal diagonal elements of A. 4

$$
\begin{aligned}
&=\left|\begin{array}{ll}
2 & 1 \\
2 & 3
\end{array}\right|+\left|\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right|+\left|\begin{array}{ll}
1 & 0 \\
1 & 2
\end{array}\right| \\
&=(6-2)+(3+2)+(2-0) \\
& S_{2}=11 \\
& S_{3}=\operatorname{det}(A)=\left|\begin{array}{ccc}
1 & 0 & -1 \\
1 & 2 & 1 \\
2 & 3 & 3
\end{array}\right|=1(6-1)-0-1(2-4) \\
& S_{3}=6
\end{aligned}
$$

The characteristic equation is $\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0$

$$
\lambda=1,2,3 .
$$

$$
A^{\top}=\left[\begin{array}{ccc}
1 & 1 & 2 \\
0 & 2 & 2 \\
-1 & 1 & 3
\end{array}\right]
$$

The characteristic equation of A^{\top} is $\left|A^{\top}-\lambda I\right|=0$

$$
\begin{gathered}
\text { i.e }\left|\begin{array}{ccc}
1-\lambda & 1 & 2 \\
0 & 2-\lambda & 2 \\
-1 & 1 & 3-\lambda
\end{array}\right|=0 \\
(1-\lambda)[(2-\lambda)(3-\lambda)-2]-1[2-2(2-\lambda)]=0 \\
(1-\lambda)\left(\lambda^{2}-5 \lambda+4\right)-(2 \lambda-2)=0 \\
-\lambda^{3}+6 \lambda^{2}-11 \lambda+6=0 \\
\lambda^{3}-6 \lambda^{2}+11 \lambda-6=0 \\
\lambda=1,2,3
\end{gathered}
$$

We observe that eigen values of A and A^{\top} are same.
3) Find the eigen values of the matrix A^{2}, where $A=\left[\begin{array}{rr}2 & 4 \\ 1 & -1\end{array}\right]$
sol: The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{cc}
2-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right|=0
$$

$$
\begin{gathered}
(2-\lambda)(-1-\lambda)-4=0 \\
(1+\lambda)(\lambda-2)-4=0 \\
\lambda^{2}-\lambda-6=0 . \\
\lambda=3,-2
\end{gathered}
$$

We know that λ is an eigen value of A corrosponding to the eigen vector x then λ^{A} is an eigen value of A^{n} corresponding to the eigen vector x.
\therefore The eigen values of A^{2} are $3^{2},(-2)^{2}$ i.e 9,4 .
Theorem: - If $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of a matrix A then $k \lambda_{1}, k \lambda_{2}, \ldots k \lambda_{n}$ are the eigen values of the matrix $k A$ where k is a non zero scalar.
Proof: - Given that $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of matrix A We prove that $k \lambda_{1}, k \lambda_{2}, \ldots k \lambda_{n}$ are the eigen values of mat $x^{\prime} x A$. Let A be a square matrix of order n.

Then

$$
\begin{aligned}
|k A-\lambda k I| & =|k A-k \lambda I| \\
& =|k(A-\lambda I)| \\
|k A-\lambda k I| & =k^{n}|A-\lambda I| \quad\left(\because|k A|=k^{n}|A|\right)
\end{aligned}
$$

Since $k \neq 0$. Therefore $|k A-\lambda k I|=0$ if $|A-\lambda I|=0$.
ie $k \lambda$ is an eigen value of $k A$ if λ is an eigen value of A.
Thus $k \lambda_{1}, k \lambda_{2}, \ldots k \lambda_{n}$ are the eigen values of $k A$ if $\lambda_{1} \lambda_{2}, \lambda_{3} \ldots \lambda_{n}$ are the eigen values of A.

If $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ then find the eigen values of $2 A^{3}$.
Sol: - The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{gathered}
i \cdot e\left|\begin{array}{cc}
5-\lambda & 4 \\
1 & 2-\lambda
\end{array}\right|=0 \\
(5-\lambda)(2-\lambda)-4=0 \\
\lambda^{2}-7 \lambda^{2}+6=0 \\
\lambda=1,6
\end{gathered}
$$

We know that If λ is an eigen value of A then $k \lambda$ is an eigen value $K A$.
\therefore The eigen values of $2 A$ is 2λ i.e 2,12 .
Theorem: - If λ is an eigen value of the matrix A then $\lambda+k$ is an eigen value of the matrix $A+K I$.
Proof: Given that λ is an eigen value of the matrix A We prove that $x+k$ is an eigen value of the matrix $A+K I$.

Let λ be an eigen value of A and x be the corrosponding an esgen vector.

Then by the definition, $A x=\lambda x$ (D.
Now $(A+K I) x=A X+K I X$

$$
\left[\begin{array}{l}
\because A x=\lambda x \\
A x+k x=\lambda x
\end{array}\right.
$$

$$
=x x+k x
$$

$$
[A X+k I X=\lambda X+k X
$$

$$
\begin{aligned}
& =\lambda x+k x \\
(A+K I) x & =(\lambda+K) \times(\because \text { From(} 1))[(A+K I) x=(\lambda+K) x
\end{aligned}
$$

\because By def, From (2), This show that the scalar $\lambda+k$ is an eigen value of the matrix $A+K I$ and x is arrosponding eigen vector.

If $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ then find the eigen values of $A+30 I$.
sol:- The characteristic equation of A is $|A-\lambda I|=0$ i.e $\left|\begin{array}{cc}5-\lambda & 4 \\ 1 & 2-\lambda\end{array}\right|=0$

$$
\begin{gathered}
(5-\lambda)(2-\lambda)-4=0 \\
\lambda^{2}-7 \lambda+6=0 \\
\lambda=1,6
\end{gathered}
$$

$x=1,6$ are the eigen values of A.
We know that If λ is an eigen value of A then $\lambda+k$ is an eigen value of $A+K I$.
\therefore The eigen values of the matrix $A+30 I$ is $\lambda+30$

$$
\text { ie } 31,36
$$

Theorem: - If $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of A then $\lambda_{1}-k, \lambda_{2}-k, \lambda_{3}-k, \ldots \lambda_{n}-k$ are the eigen values of the matrix. $(A-K I)$ where k is a non zero scalar..
Proof:- Given that $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of A.
We prove that $\lambda_{1}-k, \lambda_{2}-k \ldots \lambda_{n}-k$ are the egien values of $A-K I$. The characteristic polynomial of A is.

$$
\begin{equation*}
|A-\lambda I|=\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \cdots\left(\lambda_{n}-\lambda\right) \tag{1}
\end{equation*}
$$

Thus the characteristic polynomial of $A-K I$ is

$$
\begin{aligned}
|A-K I-\lambda I| & =|A-(K+\lambda) I| \\
& =\left(\lambda_{1}-(\lambda+k)\right)\left(\lambda_{2}-(\lambda+k)\right) \cdots\left(\lambda_{n}-(\lambda+k)\right) \\
& =\left(\left(\lambda_{1}-k\right)-\lambda\right)\left(\left(\lambda_{2}-k\right)-\lambda\right) \cdots\left(\left(\lambda_{n}-k\right)-\lambda\right)
\end{aligned}
$$

This show that the eigen values of $A-k I$ are $\lambda_{1}-k, \lambda_{2}-k \cdots \lambda_{n}-k$.

Given that $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of the matrix A. We prove that $\lambda_{1}-k, \lambda_{2}-k \ldots \lambda_{n}-k$ are the eigen values of $A-K I$

Let λ be an eigen value of A and x be the corrosponding eigen vector.

Then by the definition, $A x=\lambda x$ (1).

$$
\text { by the definition, } \begin{align*}
A x & =\lambda x \\
\text { Now }(A-K I) x & =A x-k I x \\
& =\lambda x+k x \tag{2}\\
(A-K I) x & =(\lambda-k) x \text { (2). (2). }
\end{align*} \quad\left[\begin{array}{l}
\because A x=\lambda x \\
A x+k x=\lambda x+k x \\
A x+k I x=\lambda x+k x \\
(A-K I) x=(\lambda-k)\rangle
\end{array}\right.
$$

\because By def, From (20. This show that the scalar $\lambda-k$ is an eigen value of the matrix $A-K I$ and x is a corrosponding eigen vector. If $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ then find the eigen values of $A-44 I$ and $A+2 I$.
Sol: The characteristic equation of A is $|A-\lambda I|=0$ ie $\left|\begin{array}{cc}5-\lambda & 4 \\ 1 & 2-\lambda\end{array}\right|=0$

$$
\begin{gathered}
(5-\lambda)(2-\lambda)-4=0 \\
\lambda^{2}-7 \lambda+6=0 \\
\lambda=1,6 .
\end{gathered}
$$

$\lambda=1,6$ are the eigen values of A.
We know that If λ is an eigen value of A then $\lambda-k$ is an eigen value of $A-K I$.
\therefore The eigen values of the matrix $A-44 I$ is $\lambda-44$

$$
\text { i.e }-43,-38
$$

\therefore The eigen values of the matrix $A+2 I$ is $\lambda+2$

$$
\text { ie } 3,8 \text {. }
$$

Theorem:- If $\lambda_{1}, \lambda_{2}, \lambda_{3}, \ldots \lambda_{n}$ are the eigen values of A then $\left(\lambda_{1}-\lambda\right)^{2}\left(\lambda_{2}-\lambda\right)^{2} \cdots\left(\lambda_{1}-\lambda\right)^{2}$ are the eigen values of $(A-\lambda I)^{2}$.

Proof: - Given that $\lambda_{1} \lambda_{2} \lambda_{3} \ldots \lambda_{n}$ are the eigen values of A. We prove that $\left(\lambda_{1}-\lambda\right)^{2},\left(\lambda_{2}-\lambda\right)_{1}^{2} \cdots\left(\lambda_{n}-\lambda\right)^{2}$ are the eigen values of $(A-\lambda I)^{2}$ First we prove that $\lambda_{1}-\lambda_{1} \lambda_{2}-\lambda \cdots \lambda_{n}-\lambda$ are eigen values of $A-\lambda I$.
\therefore The characteristic polynomial of A is

$$
\begin{equation*}
|A-k I|=\left(\lambda_{1}-k\right)\left(\lambda_{2}-k\right) \cdots\left(\lambda_{n}-k\right) \tag{1}
\end{equation*}
$$

Where k is a scalar.
The characteristic polynomial of $(A-\lambda I)$ is

$$
\begin{aligned}
|A-\lambda I-K I| & =|A-(\lambda+K) I| \\
& =\left[\lambda_{1}-(\lambda+k)\right]\left[\lambda_{2}-(\lambda+k)\right] \cdots\left[\lambda_{n}-(\lambda+k)\right] \\
& =\left[\left(\lambda_{1}-\lambda\right)-k\right][(\lambda-\lambda)-k] \ldots\left[\left(\lambda_{n}-\lambda\right)-k\right]
\end{aligned}
$$

This shows that the eigen values of $A-\lambda I$ are $\lambda_{1}-\lambda, \lambda_{2}-\lambda \ldots \lambda_{n}-\lambda$.
Since by the known theorem, If the eigen values of A are $\lambda_{1} \lambda_{2} \ldots \lambda_{n}$ then the eigen values of A^{n} are $\lambda_{1}, \lambda_{2}, \ldots \lambda_{n}^{n}$.
Thus the eigen values of $(A-\lambda I)^{2}$ are $\left(\lambda_{1}-\lambda\right)^{2}\left(\lambda_{2}-\lambda\right)^{2} \cdots\left(\lambda_{n}-\lambda\right)^{2}$

* Theorem: - If λ is an eigen value of a non singular matrix A. corresponding to the eigen vector x then λ^{-1} is an eigen value of \vec{A}^{-1}. and corresponding rigen vector x itself. (OR). The eigen values of A^{-1} are the reciprocals to the eigen values of A.
Proof: - Given that A is a non singular matrix i.e $\operatorname{det} A \neq 0$.
We know that the product of the eigen values is equals to $\operatorname{det} A$ It follows that none of the eigen values of A is zero.

If λ is an eigen value of the non singular matrix A and x is the corresponding eigen vector then

$$
\begin{equation*}
A x=\lambda x \tag{1}
\end{equation*}
$$

Pore multiplying (1) by A^{-1}, we get

$$
\begin{aligned}
A^{-1}(A x) & =A^{-1}(\lambda x) \\
\left(A^{-1} A\right) x & =\lambda\left(A^{-1} x\right) \\
I x & =\lambda A^{-1} x \\
x & =\lambda A^{-1} x \\
\frac{1}{\lambda} x & =A^{-1} x \\
A^{-1} x & =\lambda^{-1} x
\end{aligned}
$$

Hence by the definition of the eigen vector.
It follows that λ^{-1} is an eigen value of A^{-1} and X is the corrospon - ding eigen vector.

Find the eigen values of the matrix A^{-1} where $A=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$.
Sol:- The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{gathered}
\text { i.e }\left|\begin{array}{cc}
2-\lambda & 4 \\
1 & -1-\lambda
\end{array}\right|=0 \\
(2-\lambda)(-1-\lambda)-4=0 \\
\lambda^{2}-\lambda-6=0 \\
\lambda=3,-2 .
\end{gathered}
$$

We know that λ is an eigen value of A corrosponding to the eigen vector x. then λ^{-1} is an eigen value of A^{-1} corresponding to the eigen vector x.
\therefore The eigen values of A^{-1} are $3^{-1},-2^{-1}$ ie $\frac{1}{3}, \frac{-1}{2}$.

Theorem: - If λ is an eigen value of an orthogonal matrix then $\frac{1}{\lambda}$ is also an eigen value
Proof:- Let A be an orthogonal matrix
λ is an eigen value of A.
We prove that $\frac{1}{\lambda}$ is an eigen value of A.
Since by the known theorem. If λ is an eigen value of a non singular matrix A Then $\frac{1}{\lambda}$ is an eigen value of A^{-1}.

Since A is an orthogonal matrix.

$$
\begin{gathered}
A^{\top} A=A A^{\top}=I \\
\therefore A^{-1}=A^{\top}
\end{gathered}
$$

$\therefore \lambda$ is an eigen value of A^{\top}
since by the known theorem. The square matrix A and its transpose. A^{\top} have the same eigen values.

Since determinants $|A-\lambda I|$ and $|A-\lambda I|$ are same
Hence $\frac{1}{\lambda}$ is also an elgen value of A.
Theorem:- If λ is an eigen value of a non singular matrix A then $\frac{|A|}{\lambda}$ is an eigen value of the matrix $\operatorname{Adj} A$.
Proof:- Given that λ is an eigen value of a non singular matrix.
Therefor $\lambda \neq 0$.
λ is an eigen value of A it there exists a non zero vector x such that $A X=\lambda x$

Pore multiply eqn (1) by $A \operatorname{dy} A$

$$
\begin{aligned}
(\operatorname{Adj} A) A x & =(\operatorname{Adj} A) \lambda x \\
{[(\operatorname{Adj} A) A] x } & =\lambda(\operatorname{Adj} A) x \\
|A| I x & =\lambda(\operatorname{Adj} A) x \\
|A| x & =\lambda(\operatorname{Adj} A) x
\end{aligned}
$$

$$
\begin{aligned}
& \frac{|A|}{\lambda} x=(\operatorname{Adj} A) x \\
& (\operatorname{Adj} A) x=\frac{|A|}{\lambda} x .
\end{aligned}
$$

\therefore By deft. It is clear that $\frac{|A|}{\lambda}$ is an eigen value of the matrix $\operatorname{Adj} A$

1) If eigen values of the matrix A are 2,3 and 4 then find the eigen values of $\operatorname{Adj} A$.
Sol:- Given that eigen values of A are 2,3 and 4 .
We know that If λ is an eigen value of A then $\frac{|A|}{\lambda}$ is an eigen value of $\operatorname{Adj} A$.

$$
|A|=2 \cdot 3 \cdot 4=24
$$

\therefore An eigen values of $\operatorname{Adj} A$ are $\frac{|A|}{\lambda}=\frac{24}{2}=12, \frac{24}{3}=8, \frac{24}{4}=6$
Theorem: - If A and P be square matrices of order n such that P is non singular. Then A and $P^{-1} A P$ hare the same eigen values.
Proust:- Given that A and P be square matrices of order n.
Let $C=P^{-1} A P$

$$
\begin{aligned}
& C-\lambda I=P^{-1} A P-\lambda I \\
&=P^{\prime} A P-\lambda P P \\
&=P^{-1}(A P-\lambda I P) \\
& C-\lambda I=P^{-1}(A-\lambda I) P \\
&|C-\lambda I|=\left|P^{-1}(A-\lambda I) P\right| \\
&=\left|P^{-1}\right||A-\lambda I||P| \\
&=\left|P^{-1}\right||P||A-\lambda I| \\
&=\left|P^{\prime} P\right||A-\lambda I| \\
&=|I||A-\lambda I| \\
& \therefore|C-\lambda I|=|A-\lambda I|
\end{aligned}
$$

Thus the characteristic polynomials of C and A are same Hence the eigen values of $P^{-1} A P$ and A are same.

Corollary:- If A and B are square matrices of order n and A is invertible then $A^{-1} B$ and $B A^{-1}$ have same eigen values
Proof:- Given that A and B are square matrices of order n.

$$
A \text { is invertible } \Rightarrow A^{-1} \text { is exists. }
$$

We prove that $A^{-1} B$ and $B A^{-1}$ have same eigen values.
We know that If A and P are square matrices of order n Such that P is non singular then A and $P^{-1} A P$ have same eigen values.

Taking $A=B A^{-1}$ and $P=A$, we have.
$B A^{-1}$ and $A^{-1}\left(B A^{-1}\right) A$ have same eigen values.
$B A^{-1}$ and $\left(A^{-1} B\right)\left(A^{-1} A\right)$ hove same eigen values.
$B A^{-1}$ and $\left(A^{-1} B\right)$ I have same eigen values.
$B A^{-1}$ and have same eigen values.
Corollary:- If A and B are non singular matrices of the same order then $A B$ and $B A$ have the same eigen values.
Proof:- Given that A and B are non singular matrices of same order.
A is invertible $\Longrightarrow A^{-1}$ exists.
B is invertible $\Rightarrow A^{B}$ exists.
We have to $\left.P\right|_{T} A B$ and $B A$ have same eigen values.
We know that If A and P are square matrices of ordeen such that P is non singular then A and $P^{-1} A P$ have same eigen values.

Taking $A=B A$ and $P=\bar{A}$, we have.
$B A$ and $\left(A^{-1}\right)^{-1}(B A) \cdot A^{-1}$ have the same eigen values $B A$ and $A(B A) \bar{A}^{-1}$ have the same eigen values. $B A$ and $(A B)\left(A A^{-1}\right)$ have the same eigen values. $B A$ and $(A B)$ I have the same eigen values.
$\therefore B A$ and $A B$ have same eigen values

If $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right]$ and $B=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$ then verity that $A B$ and $B A$ have the same elgen values.
So: : Given that $A=\left[\begin{array}{ll}5 & 4 \\ 1 & 2\end{array}\right] \quad B=\left[\begin{array}{cc}2 & 4 \\ 1 & -1\end{array}\right]$

$$
A B=\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]=\left[\begin{array}{cc}
14 & 16 \\
4 & 2
\end{array}\right]
$$

The characteristic equation of $A B$ is $|A B-\lambda I|=0$

$$
\begin{array}{r}
\text { ie }\left|\begin{array}{cc}
14-\lambda & 16 \\
4 & 2-\lambda
\end{array}\right|=0 \\
(14-\lambda)(2-\lambda)-64=0 \\
\lambda^{2}-16 \lambda-36=0 \\
\lambda=18,-2 \\
B A=\left[\begin{array}{cc}
2 & 4 \\
1 & -1
\end{array}\right]\left[\begin{array}{ll}
5 & 4 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
14 & 16 \\
4 & 2
\end{array}\right]
\end{array}
$$

The characteristic equation of $B A$ is $|B A-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{cc}
14-\lambda & 16 \\
4 & 2-\lambda
\end{array}\right|=0 .
$$

We observe that the eigen values of $A B$ and $B A$ are same.
Theorem:- The eigen values of a triangular matrix are just the diagonal elements of the matrix.

Let $A=\left[\begin{array}{ccccc}a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\ 0 & a_{22} & a_{23} & \cdots & a_{2 n} \\ \cdots & & & & a_{n n}\end{array}\right]_{n \times n}$ be a triangular matrix of arden
The characteristic equation of A is $|A-\lambda I|=0$

$$
i . e\left|\begin{array}{cccc}
a_{11}-\lambda & a_{12} & a_{13} & a_{1 n} \\
0 & a_{22}-\lambda & a_{23} & a_{2 n} \\
0 & 0 & 0 & a_{n n}-\lambda
\end{array}\right|=0
$$

$$
\begin{gathered}
\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)=0 \\
\lambda=a_{11}, a_{22} \ldots a_{n n}
\end{gathered}
$$

Hence the eigen values of A are $a_{11}, a_{22}, a_{33} \ldots a_{n n}$
Which are just the diagonal elements of A.
Note: - Similarly we can show that the eigen values of a diagonal. matrix are just the diagonal elements of the matrix.
Eg: Find the eigen values of the matrix $A=\left[\begin{array}{lll}2 & 4 & 3 \\ 0 & 44 & 4 \\ 0 & 0 & 30\end{array}\right]$ sol:- Given that $A=\left[\begin{array}{ccc}2 & 4 & 3 \\ 0 & 44 & 4 \\ 0 & 0 & 30\end{array}\right]$

The given matrix A is upper triangular matrix.
\therefore The eigen values are the diagonal elements of A
\therefore The eigen values of A are 2,44 and 30 .
Theorem : - The eigen values of a real symmetric matrixare always real or real numbers.
Prot: - Let A be real symmetric matrix $\Rightarrow A^{T}=A$.
Let λ be an eigen value of a real symmetric matrix A and let X be the corrospunding eigen vector.

Then $A x=\lambda x$
Take the conjugate $\bar{A} \bar{X}=\bar{\lambda} \bar{X}$
Take the transpose $(\bar{A} \bar{x})^{\top}=(\bar{\lambda} \bar{x})^{\top}$

$$
\begin{aligned}
& \bar{x}^{\top} \bar{A}^{\top}=\bar{\lambda}^{\top} \bar{x}^{\top} \\
& \bar{x}^{\top} A^{\top}=\bar{\lambda} \bar{x}^{\top} \quad \text { since } \bar{A}=A \\
& \bar{x}^{\top} A=\bar{\lambda} \bar{x}^{\top} \quad \text { since } A^{\top}=A
\end{aligned}
$$

Post multiply by x, we have.

$$
\begin{equation*}
\bar{x}^{\top} A x=\bar{x} \bar{x}^{\top} x \tag{24}
\end{equation*}
$$

Pere multiply (1) by \bar{x}^{\top}, we get

$$
\begin{equation*}
\bar{x}^{\top} A x=\bar{x}^{\top} \lambda x \tag{3}
\end{equation*}
$$

(2) - (3) gives

$$
\begin{array}{cc}
(\bar{\lambda}-\lambda) \bar{x}^{\top} x=0 & {\left[\begin{array}{ll}
\text { Since } x \text { is non zero vector } \\
\bar{\lambda}-\lambda=0 & \bar{x}^{\top} \text { is non zero vector } \\
\lambda=\bar{\lambda} & x \bar{x}^{\top} \neq 0
\end{array}\right.}
\end{array}
$$

$\Longrightarrow \lambda$ is real

Sol: The characteristic equation of A is $|A-\lambda I|=0$ ie $\left|\begin{array}{ccc}3-\lambda & 0 & -2 \\ 0 & 2-\lambda & 0 \\ -2 & 0 & 0-\lambda\end{array}\right|=$

$$
\begin{gathered}
\text { I.e }(3-\lambda)[(2-\lambda)(-\lambda)-0]-2[0+2(2-\lambda)]=0 \\
-\lambda^{3}+5 \lambda^{2}-2 \lambda-8=0 . \\
\lambda=-1,2,4 .
\end{gathered}
$$

We observe that the eigen values of real symmetric matrix are real.
Theorem: - For a real symmetric matrix. The eigen vectors cares - ponding to two distinct eigen values are orthogonal.

Proof:- Let A be a real symmetric matrix.
Let $\lambda_{1} \lambda_{2}$ be eileen values of a real symmetric matrix A.
Let $x_{1} x_{2}$ be the corresponding eigen vectors.
We have to prove that x_{1} is orthogonal to x_{2} i.e $x_{1}^{\top} x_{2}=0$.
since x_{1}, x_{2} are eigen vectors of A corresponding to the eigen values λ_{1} and λ_{2}

We have $A x_{1}=\lambda x_{1}$

$$
\begin{equation*}
A x_{2}=\lambda x_{2} \tag{1}
\end{equation*}
$$

Pre multiply (i) by x_{2}^{\top}, we get

$$
\begin{aligned}
& x_{2}^{\top} A x_{1}=x_{2}^{\top} \lambda_{1} x_{1} \\
& x_{2}^{\top} A x_{1}=\lambda_{1} x_{2}^{\top} x_{1} .
\end{aligned}
$$

Taking transpose, we get

$$
\begin{align*}
& \left(x_{2}^{\top} A x_{1}\right)^{\top}=\left(\lambda_{1} x_{2}^{\top} x_{1}\right)^{\top} \\
& x_{1}^{\top} A^{\top}\left(x_{2}^{\top}\right)^{\top}=\lambda_{1} x_{1}^{\top}\left(x_{2}^{\top}\right)^{\top} \\
& x_{1}^{\top} A x_{2}=\lambda_{1} x_{1}^{\top} x_{2} \tag{3}
\end{align*}
$$

Pore multiply (2) by x_{1}^{\top}, we get $x_{1}^{\top} A x_{2}=\lambda_{2} x_{1}^{\top} x_{2}$
(3) -(4), we get

$$
\begin{aligned}
& \left(\lambda_{1}-\lambda_{2}\right) x_{1}^{\top} x_{2}=0 \\
& \Rightarrow x_{1}^{\top} x_{2}=0 \quad \text { since } \lambda_{1} \neq \lambda_{2}
\end{aligned}
$$

$\therefore x_{1}$ is orthogonal to x_{2}.
Eg:- If $\left[\begin{array}{lll}1 & 0 & -1\end{array}\right]^{\top}\left[\begin{array}{lll}-1 & 2 & -1\end{array}\right]^{\top}$ are elgen vectors corrosponding to two distinct eigen values of real symmetric matrix A then find the third eigen vector.
sol: Let $x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \quad x_{2}=\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]$
Let $x_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be the eigen vector orthogonal to x_{1} and x_{2}.
$x_{1} x_{3}$ are orthogonal $\Longrightarrow a+0 . b-c=0$
$x_{2} x_{3}$ are orthogonal $\Longrightarrow-a+2 b-c=0$
solving (1) and (2), we get

$$
\begin{aligned}
& \begin{array}{llll}
0 & -1 & 1 & 0
\end{array} \\
& 2 \quad-1 \quad-1 \quad 2 \\
& \frac{a}{2}=\frac{b}{2}=\frac{c}{2} \Rightarrow \frac{a}{1}=\frac{b}{1}=\frac{c}{1} .
\end{aligned}
$$

$\therefore x_{3}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ be the required third eigen vector.

Theorem: - The two eigen vectors corrosponding to the two different eigen values are linearly independent

Proof: - Let A be a square matrix.
Let x_{1} and x_{2} be the two eigen vectors of A corresponding to two distinct eigen values λ_{1} and λ_{2}. Then.

$$
\begin{equation*}
A x_{1}=\lambda_{1} x_{1} \quad \text { and } A x_{2}=\lambda_{2} x_{2} \tag{i}
\end{equation*}
$$

We prove that the eigen vectors x_{1} and x_{2} are L.I.
Let us assume that the eigen vectors x_{1} and x_{2} are L.D By deft. Then for two scalars k_{1} and k_{2} are not both zeros. such that $k_{1} x_{1}+k_{2} x_{2}=0$

Multiply bothsides of (2) by A, we get

$$
\begin{gather*}
A\left(k_{1} x_{1}+k_{2} x_{2}\right)=A(0)=0 \\
k_{1}\left(A x_{1}\right)+k_{2}\left(A x_{2}\right)=0 \\
k_{1}\left(\lambda_{1} x_{1}\right)+k_{2}\left(\lambda_{2} x_{2}\right) \tag{3}
\end{gather*}
$$

(3) $-\lambda_{2}$ (2), gives

$$
\begin{aligned}
& k_{1}\left(\lambda_{1}-\lambda_{2}\right) x_{1}=0 . \\
& k_{1}=0 \quad\left[\because \lambda_{1} \neq \lambda_{2} \quad \text { and } x_{1} \neq 0\right] \\
& \Rightarrow k_{2}=0 .
\end{aligned}
$$

This is contradiction to our assumption that k_{1}, k_{2} are not zeros.
Hence our assumption x_{1} and x_{2} are linearly dependent is wrong
$\therefore x_{1}$ and x_{2} are Linearly independent..

Theorem : - If λ is an eigen value of A then the eigen value of

$$
B=a_{0} A^{2}+a_{1} A+a_{2} I \text { is } a_{0} \lambda^{2}+a_{1} \lambda+a_{2}
$$

Proof:- If x be an eigen vector corresponding to the eigen value λ then $A x=\lambda x$

Pre multiply by A on bothsides.

$$
\begin{aligned}
A(A X) & =A(\lambda x) \\
A^{2} x & =\lambda(A X) \\
A^{2} x & =\lambda^{2} x \quad(\because \operatorname{trom}(1))
\end{aligned}
$$

By the det. This shows that λ^{2} is an eigen value of A^{2}
We have

$$
\begin{aligned}
B & =a_{0} A^{2}+a_{1} A+a_{2} I \\
B X & =\left(a_{0} A^{2}+a_{1} A+a_{2} I\right) x \\
& =a_{0} A^{2} x+a_{1} A x+a_{2} \times I \\
& =a_{0} \lambda^{2} x+a_{1} \lambda x+a_{2} x \\
B X & =\left(a_{0} \lambda^{2}+a_{1} \lambda+a_{2}\right) x
\end{aligned}
$$

\therefore By deft. This show that $a_{0} \lambda^{2}+a_{1} \lambda+a_{2}$ is an eigen value of B and the corresponding eigen vector of B is x.
Note: - If λ is an elgen value of A and $f(A)$ is any polynomial in A then the eigen value of $f(A)$ is $f(\lambda)$.
Eg:- For the matrix $A=\left[\begin{array}{ccc}1 & 2 & -3 \\ 0 & 3 & 2 \\ 0 & 0 & -2\end{array}\right]$ Find the eigen values $3 A^{3}+5 A^{2}-6 A+2 I$.
Sol: The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { i.e. } \begin{array}{r}
\left|\begin{array}{ccc}
1-\lambda & 2 & -3 \\
0 & 3-\lambda & 2 \\
0 & 0 & -2-\lambda
\end{array}\right|=0 \\
(1-\lambda)(3-\lambda)(-2-\lambda)=0 \\
\lambda=1,3,-2 .
\end{array}
$$

We know that if λ is an eigen value of A and $f(A)$ is a polyno mial in A then the eigen value of $f(A)$ is $f(\lambda)$.

Let $f(A)=3 A^{3}+5 A^{2}-6 A+2 I$.
Eigen values of $f(A)$ are $f(1), f(3)$ and $f(-2)$.

$$
f(1)=3(1)^{3}+5(1)^{2}-6(1)+2(1)=4
$$

[\because The eigen values of I are $1,1,1$]

$$
\begin{aligned}
& f(3)=3 \cdot 3^{3}+5 \cdot 3^{2}-6 \cdot 3+2 \cdot 1=110 . \\
& f(-2)=3(-2)^{3}+5(-2)^{2}-6(-2)+2 \cdot 1=10 .
\end{aligned}
$$

\therefore Ejgen values of $3 A^{3}+5 A^{2}-6 A+2 I$ are $4,110,10$.
Theorem: - zero is an eigen value of a matrix ifs it is singular
Proof: - Let $\lambda=0$ is an eigen value of the matrix A
The characteristic equation of A is $|A-\lambda I|=0$
$\lambda=0$ is satisfies this equation

$$
\begin{aligned}
& |A-0 . I|=0 \\
& |A|=0
\end{aligned}
$$

$\Rightarrow A$ is singular
Converse: - A is singular

$$
\Rightarrow \quad|A|=0 .
$$

$\lambda=0$ satisfies the equation (1).
$\lambda=0$ is an eigen value of A.
Theorem: - If x is an eigen vector of a square matrix A, then x can not be corresponds to more than one eigen value of A.
Proof :- If possible x corresponds to two eigen values λ_{1}, and λ_{2} of A then we have $A x=\lambda_{1} x$ (i) and $A x=\lambda_{2} x$

$$
\begin{array}{ll}
\lambda_{1} x=\lambda_{2} x \\
\left(\lambda_{1}-\lambda_{2}\right) x=0 & {[\because x \neq 0} \\
\lambda_{1}-\lambda_{2}=0 & \text { Eigen vector is must be non } \\
\lambda_{1}=\lambda_{2} & \text { zero vector }]
\end{array}
$$

Theorem: - λ is a characteristic root of a square matrix A ifs there exists a non zero vector x such that $A x=\lambda x$.

Proof: - Let x be a characteristic root of A

$$
\therefore|A-\lambda I|=0
$$

$\Longrightarrow A-\lambda I$ is a singular matrix.
\therefore The homogeneous system of equations ($A-\lambda I) x=0$ posseses non zero solution
i.e. There exists a non zero vector x such that $(A-\lambda I) x=0$.

$$
\begin{gathered}
A x-\lambda I x=0 \\
A x=\lambda x
\end{gathered}
$$

Converse: -

$$
\begin{aligned}
& A x=\lambda x \\
& (A-\lambda I) x=0
\end{aligned}
$$

Where x is a non zero vector.
\therefore The system of homogeneous equations $(A-\lambda I) x \Rightarrow$ has a non zero solution.

Hence the coefficient matrix $A-\lambda I$ is singular

$$
\text { i.c }|A-\lambda I|=0
$$

This shows that λ is an elgen value of A

If 2 is an eigen value of the matrix $A=\left[\begin{array}{ccc}2 & -2 & 2 \\ 1 & 1 & 1 \\ 1 & 3 & -1\end{array}\right]$ find the other two eigen values.

Sol: Let $\lambda_{1} \lambda_{2} \lambda_{3}$ be the eigen values of the matrix A.

$$
\lambda_{1}=2
$$

sum of the eigen values of $A=$ sum of principal diagonal elements of A.

$$
\begin{gather*}
2+\lambda_{2}+\lambda_{3}=2+1-1 \\
\lambda_{2}+\lambda_{3}=0 \tag{1}
\end{gather*}
$$

Product of the eigen values of $A=$ Determinant of A.

$$
\begin{aligned}
2 \lambda_{2} \lambda_{3} & =\left|\begin{array}{ccc}
2 & -2 & 2 \\
1 & 1 & 1 \\
1 & 3 & -1
\end{array}\right| \\
\cdot 2 \lambda_{2} \lambda_{3} & =-8 \\
\lambda_{2} \lambda_{3} & =-4
\end{aligned}
$$

Solving (1) and (2), we get

$$
\lambda_{2}=2 \quad \lambda_{3}=-2 .
$$

Hence the other two eigen values are $2,-2$.
If 2,3 are the eigen values of $\left[\begin{array}{lll}2 & 0 & 1 \\ 0 & 2 & 0 \\ a & 0 & 2\end{array}\right]$ find the value of a.
Sol: Let $\lambda_{1} \lambda_{2} \lambda_{3}$ be the eigen values of the matrix A.

$$
\lambda_{2}=2 \quad \lambda_{3}=3
$$

Sum of the eigen values of $A=$ sum of principal diagonal elements of A

$$
\begin{aligned}
2+3+\lambda_{3} & =2+2+2 \\
\lambda_{3} & =1 .
\end{aligned}
$$

Product of the eigen values of $A=$ Determinant of A

$$
\begin{aligned}
\lambda_{1} \lambda_{2} \lambda_{3} & =|A| \\
2 \cdot 3 \cdot 1 & =\left|\begin{array}{lll}
2 & 0 & 1 \\
0 & 2 & 0 \\
a & 0 & 2
\end{array}\right| \Rightarrow 6=8-2 a . \\
a & =1 .
\end{aligned}
$$

Form the matrix whose eigen values are $\alpha-5, \beta-5, r-5$ whee r α, β, r are the eigen values of $A=\left[\begin{array}{ccc}-1 & -2 & -3 \\ 4 & 5 & -6 \\ 7 & -8 & 9\end{array}\right]$
Sa:: If $\lambda_{1} \lambda_{2}$ and λ_{3} are eigen values of the matrix A then $\lambda_{1}-k, \lambda_{2}-k$ and $\lambda_{3}-k$ are eigen values $A-K I$.

$$
\begin{aligned}
\text { Required matrix } & =A-5 I
\end{aligned}=\left[\begin{array}{ccc}
-1 & -2 & -3 \\
4 & 5 & -6 \\
7 & -8 & 9
\end{array}\right]-5\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Two eigen values of the matrix $A=\left[\begin{array}{lll}2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2\end{array}\right]$ are equal and are $\frac{1}{5}$ times to the third. Find the eigen values.
Sol:- Let $\lambda_{1} \lambda_{2} \lambda_{3}$ be the eigen values of the matrix A.

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2} \\
& \lambda_{1}=\frac{\lambda_{3}}{5} \\
& \lambda_{2}=\frac{\lambda_{3}}{5}
\end{aligned}
$$

Sum of the eigen values of $A=$ sum of principal diagonal elements of A.

$$
\begin{aligned}
\lambda_{1}+\lambda_{2}+\lambda_{3} & =2+3+2 \\
\frac{1}{5} \lambda_{3}+\frac{1}{5} \lambda_{3}+\lambda_{3} & =7 \\
\frac{7}{5} \lambda_{3} & =7 \\
\lambda_{3} & =5 \\
\lambda_{1} & =\lambda_{2}=1
\end{aligned}
$$

Hence the eigen values of A are $1,1,5$.

Theorem: The eigen values of a real symmetric matrix are real.
Proof: - Let A be a real symmetric matrix so that $A^{\top}=A$
Now $\bar{A}=A$ since A is real.

$$
\begin{aligned}
& A=\bar{A} \text { and } A=A^{\top} \Longrightarrow \bar{A}=A^{\top} \\
& \Rightarrow(\bar{A})^{\top}=\left(A^{\top}\right)^{\top}=A \\
& \Longrightarrow A^{\theta}=A \text {. }
\end{aligned}
$$

$\Rightarrow A$ is Hermitian matrix.
The eigen values of a Hermitian matrix are real.
Hence the eigen values of a real symmetric matrix A are real.
Theorem: - The eigen values of a real skew symmetric matrix are all purely imaginary os zero.
Proof: Let A be a skew symmetric matrix so that $A=-A$.

$$
\begin{aligned}
A \text { is real } & \Longrightarrow \vec{A}=A \\
& \Rightarrow(\bar{A})^{\top}=A^{\top} \\
& \Rightarrow A^{\theta}=-A
\end{aligned}
$$

$\Rightarrow A$ is skew Hermitian matrix.
We know that the eigen values of a skew Hermitian matrix are purely imaginary or zero.
\therefore It follows that the eigen values of skew symmetric matrix A are. purdy imaginary on zero.
Theorem: - The eigen values of an orthogonal matrix are of unit modulus, Proof: Let L A be the orthogonal matrix so that $A A^{\top}=I=A^{\top} A$.

Let λ be the eigen value, x be the corresponding eigen vector of A. So that $A x=\lambda x$

$$
\begin{align*}
& (A x)^{\top}=(\lambda x)^{\top} \\
& x^{\top} A^{\top}=\lambda x^{\top} \tag{2}
\end{align*}
$$

Multiplying (1) and (2), we get

$$
\begin{gathered}
\left(x^{\top} A^{\top}\right)(A x)=\left(\lambda x^{\top}\right)(\lambda x) \\
x^{\top}\left(A^{\top} A\right) x=\lambda^{2}\left(x^{\top} x\right) \\
x^{\top} I x=\lambda^{2}\left(x^{\top} x\right) \\
x^{\top} x=\lambda^{2}\left(x^{\top} x\right) \\
\left(1-\lambda^{2}\right)\left(x^{\top} x\right)=0 \\
\lambda^{2}-1=0 \\
\lambda^{2}=1 \\
|\lambda|=1
\end{gathered}
$$

\Rightarrow unit modulus.
The eigen values of an orthogonal matrixare of unit modulus.

Theorem:- The Eigen values of a hermitian matrix are real 15
Proof:- Let A be a hermitian matrix i.e $A^{\theta}=A$ and λ be the eigen value of A.
We prove that λ is real.
If λ is an eigen value of A and x is the corresponding eigen vector then $A x=\lambda x$

Pere multiply both sides of (1) by x^{θ}, we get

$$
\begin{align*}
x^{\theta}(A x) & =x^{\theta}(\lambda x) \\
x^{\theta} A x & =x^{\theta} \lambda x \tag{2}
\end{align*}
$$

Taking transposed conjugate both sides, we get.

$$
\begin{aligned}
& \left(x^{\theta} A x\right)^{\theta}=\left(x^{\theta} \lambda x\right)^{\theta} \\
& x^{\theta} A^{\theta}\left(x^{\theta}\right)^{\theta}=x^{\theta} \bar{\lambda}\left(x^{\theta}\right)^{\theta} \\
& x^{\theta} A^{\theta} x=\bar{\lambda} x^{\theta} x \\
& x^{\theta} A x=\bar{\lambda} x^{\theta} x \quad\left[\because A^{\theta}=A\right]
\end{aligned}
$$

From (2) and (3), we get

$$
\begin{aligned}
& \lambda x^{\theta} x=\bar{\lambda} x^{\theta} x \\
& (\lambda-\bar{\lambda}) x^{\theta} x=0 \\
& \lambda-\bar{\lambda}=0 \\
& \lambda=\bar{\lambda} \\
& \therefore \lambda \text { is real }
\end{aligned} \quad\left\{\begin{array}{c}
\because \text { is non zero vector } \\
x^{\theta} \\
x x^{\theta} \\
\text { i.e } x x^{\theta} \neq 0
\end{array}\right.
$$

\therefore Hence the eigen values of a hermitian matrix are real.
Eg. verity that the eigen values of hermitian matrix $A=\left[\begin{array}{cc}4 & 1-3 i \\ 1+3 i & 7\end{array}\right]$ are real. sol: Given that $A=\left[\begin{array}{cc}4 & 1-3 i \\ 1+3 i & 7\end{array}\right]$

The characteristic equation of A is $|A-\lambda I|=0$ i.e $\left|\begin{array}{cc}4-\lambda & 1-3 i \\ 1+3 i & 7-\lambda\end{array}\right|=0$.

$$
\begin{gathered}
(4-\lambda)(7-\lambda)-10=0 \\
\lambda^{2}-11 \lambda+18=0 \\
\lambda=2,9
\end{gathered}
$$

The Eigen values, are $\lambda=2,9$

$$
\text { of } A
$$

Which are real
\therefore The Eigen values of hermitian matrix A are real.
Theorem: - The Eigen values of a skew hermitian matrix are either purely imaginary or zero.
Proof: - Let A be a skew hermitian matrix i.e $A^{\theta}=-A$. and λ be the eigen value of A.
We prove that $\lambda=0$ or λ is an imaginary.
If λ is an eigen value of A and λ be the corrosponding eigen
Vector then $A X=\lambda x$
Pre multiply bothsides of (i) by " i ", we get

$$
\begin{aligned}
& i(A x)=i(\lambda x) \\
& (i A) x=(i \lambda) x .
\end{aligned}
$$

By definition, $i \lambda$ is an eigen value of $I A$
Since A is skew hermitian, we have $A=-A$
$\Rightarrow i A$ is hermitian.
Since $(i A)^{\theta}=-i A^{\theta}$

$$
\begin{aligned}
& =(-i)(-A) \\
(i A)^{\theta} & =i A
\end{aligned}
$$

A is skew hermitian then iA is hermitian matrix - (2) From (1) and (2), We have it is the eigen value of a hermitian matrix IA.

Since we know that Eigen values of a hermitian matrix are real
$\therefore i \lambda$ is real number
i.e λ is zero or purely imaginary

Hence the Eigen values of a skew hermitian matrix are either purely imaginary or zero.
Eg: Verity that an eigen values of skew hermitian matrix $A=\left[\begin{array}{cc}3 i & 2+i \\ -2+i & -i\end{array}\right]$ are either purely imaginary or zero.

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& i \cdot e\left|\begin{array}{cc}
3 i-\lambda & 2+i \\
-2+i & -i-\lambda
\end{array}\right|=0 \\
& (3 i-\lambda)(-i-\lambda)-(2+i)(-2+i)=0 \\
& 3-3 i \lambda+i \lambda+\lambda^{2}+5=0 \\
& \lambda^{2}-2 i \lambda+8=0 \\
& \lambda=\frac{2 i \pm \sqrt{-4-32}}{2}=\frac{2 i \pm 6 i}{2}=1 \pm 3 i \\
& \lambda=4 i,-2 i
\end{aligned}
$$

The Eigen values of A are $\lambda=4 i,-2 i$
Which are purely imaginary.
\therefore The Elgen values of given skew hermitian matrix are purely imaginary. Theorem: - The Eigen values of unitary matrix is of unit modulus.
Proof: - Let A be a unitary matrix i.e $A A^{\theta}=I=A^{\theta} A$ and λ be the Eigen value of A
We prove that $|\lambda|=1$.
If λ is an eigen value of A and x be the corrosponding eigen vector then $A x=\lambda x$ (1).

Taking transposed conjugate on bothsides of (1), we get

$$
\begin{align*}
& (A x)^{\theta}=(\lambda x)^{\theta} \\
& x^{\theta} A^{\theta}=\pi x^{\theta} \tag{2}
\end{align*}
$$

Multiplying (1) and (2), we get

$$
\begin{aligned}
& \left(x^{\theta} A^{\theta}\right)(A x)=\left(\pi x^{\theta}\right)(\lambda x) \\
& x^{\theta}\left(A^{\theta} A\right) x=\lambda \bar{\lambda}\left(x^{\theta} x\right) \\
& \cdot x^{\theta} \perp x=\lambda \bar{x}\left(x^{\theta} x\right) \\
& x^{\theta} x=\lambda \bar{\lambda}\left(x^{\theta} x\right) \\
& (1-\lambda \bar{\lambda}) x^{\theta} x=0 \\
& 1-\lambda \bar{\lambda}=0 \quad[\because x \text { is non zero vector } \\
& \lambda \pi=1 \\
& (\lambda)^{2}=1 \\
& (\lambda)=1 \quad \text { ide } \times x^{\theta} \neq 0
\end{aligned}
$$

Hence the Eigen values of a unitary matrix are of unit modulus.
Eg verity that the eigen values of a unitary matrix $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$ are. of unit modulus
Sol: Given that $A=\left[\begin{array}{cc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { ie. }\left|\begin{array}{cc}
\frac{1}{\sqrt{2}}-\lambda & \frac{1}{\sqrt{2}} \\
\frac{-i}{\sqrt{2}} & \frac{-1}{\sqrt{2}}-\lambda
\end{array}\right|=0 \\
& -\left(\frac{1}{\sqrt{2}}+\lambda\right)\left(\frac{1}{\sqrt{2}}-\lambda\right)-\frac{1}{2}=0 \\
& -\left(\frac{1}{2}-\lambda^{2}\right)-\frac{1}{2}=0 \\
& \lambda^{2}-1=0 \\
& \lambda= \pm 1, \text { Eigen values of } A \text { are } \lambda=1,-1 \\
& |\lambda|=1
\end{aligned}
$$

\therefore Eigen values of unitary matrix A are of unit modulus.

Theorem :- An Eigen values of Idempotent matrix are 0 and I
Proof:- Let A be an Idemponent matrix i.e $A^{2}=A$.
Let λ be an eigen value of A and X is corresponding eigen vector Then

$$
A x=\lambda x
$$

We prove that an eigen values of A are 0 and 1 i.e $\lambda=0$ and 1 .

We know that If λ is an eigen value of A corresponding to the eigen vector x then λ^{n} is an eigen value of A^{n} corresponding to the eigen vector x.

We have $\hat{A}^{n} x=\lambda^{n} x$

$$
\begin{equation*}
\Rightarrow A^{2} x=\lambda^{2} x . \tag{3}
\end{equation*}
$$

From (2) and (3), we get

$$
\begin{equation*}
A x=\lambda^{2} x- \tag{4}
\end{equation*}
$$

From (2) and (4), weget

$$
\begin{aligned}
& \lambda^{2} x=\lambda x \\
& \left(\lambda^{2}-\lambda\right) x=0 \\
& \lambda^{2}-\lambda=0 \quad[\because x \neq 0] \\
& \lambda(\lambda-1)=0 \\
& \lambda=0, \lambda=?
\end{aligned}
$$

\therefore An Eigen values of Idempotent matrix A are 0 and I.
 at 4 Pa

$$
\text { iक }+x=x A
$$

$$
8=5
$$

$$
x^{2}=x A
$$

quest ald
$(s) \square+8=84$

$$
\text { togence } \sqrt{3} \text { kno (p) (wool? }
$$

$$
00-=x^{2}<=x 4
$$

$$
x \alpha=x 8
$$

$$
[0 f x
$$

$$
\Delta 5=x(k-i)
$$

$$
0=x-\frac{b}{k}
$$

$$
\theta=(1-<) \lambda
$$

$$
\begin{equation*}
1=x \quad, 0=x \tag{4}
\end{equation*}
$$

QUADRATIC FORMS
Quadratic form:-
A homogeneous polynomial of second degree in n variables $x_{1}, x_{2}, x_{3} \ldots x_{n}$ is called a quadratic form in the n variables.

It is denoted by Q.
Thus $Q=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$ is a quadratic form in n variables $x_{1}, x_{2}, \cdots x_{n}$ [OR]
An expression of the form $\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$ where $a_{i j}$'s are elements of a field F is called a quadratic form in n variables. $x_{1}, x_{2}, x_{3} \ldots x_{n}$ over a field F.
If $a_{i j}$'s belongs to a real number field R then the above quadratic form is sold to be a "real quadrate form" in n variables $x_{1}, x_{2}, \ldots x_{n}$ It is denoted by Q i.e $Q=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$
Eg:- (i) $Q=x^{2}$ is a quadratic form in a single variable x.
(ii) $Q=3 x^{2}+4 x y+7 y^{2}$ is a quadratic form in two variables x, y.
(iii) $Q=x^{2}+y^{2}+3 z^{2}+4 x y-7 x z+8 y z$ is a quadratic form in 3 variables.

Quadratic form Corresponding to a Real Symmetric Matrix:-
Let $A=\left[a_{i j}\right]_{n \times n}$ be a real symmetric matrix and let $x=\left[\begin{array}{ll}x_{1} & x_{2} x_{3} \ldots x_{n}\end{array}\right]^{\top}$ be a column matrix Then $X^{\top} A X$ will determine a quadratic form

$$
\begin{aligned}
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j} \cdots \\
& \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}= a_{11} x_{1}^{2}+a_{12} x_{1} x_{2}+\cdots+a_{1 n} x_{1} x_{n}+a_{21} x_{2} x_{1}+a_{22} x_{2}^{2}+\cdots+a_{2 n} x_{2} x_{n} \\
&+\cdots+a_{n 1} x_{n} x_{1}+a_{n 2} x_{n} x_{2}+\cdots+a_{n n} x_{n}^{2} \\
&= a_{11} x_{1}^{2}+\left(a_{12} x x_{21}\right) x_{1} x_{2}+\cdots+\left(a_{1 n}+a_{n 1}\right) x_{1} x_{n}+a_{22} x_{2}^{2}+ \\
&\left(a_{23}+a_{32}\right) x_{2} x_{3}+\cdots+\left(a_{2 n}+a_{n 2}\right) x_{2} x_{n}+\cdots+a_{n n} x_{n}^{2}
\end{aligned}
$$

Matrix of a Quadratic form: -
If $Q=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} x_{i} x_{j}$ is a quadratic form in n variables $x_{1}, x_{2}, \ldots x_{n}$ over a field F. Hen there exists a unique symmetric matrix A of order n such that $Q=x^{\top} A x$
Where $x=\left[\begin{array}{lllll}x_{1} & x_{2} & x_{3} & \ldots & x_{n}\end{array}\right]^{\top}$
Here the symmetric matrix A is called the matrix of the quadratic form Q. sol: Let $A=\left[\begin{array}{lll}1 & 2 & 6 \\ 2 & 1 & 3 \\ 6 & 3 & 4\end{array}\right]$

The Quadratic form related to the given matrix is $x^{\top} A X$. Where $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right] x^{\top}=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]$.

$$
\begin{aligned}
\therefore \text { Required quadratic form } & =x^{\top} A x
\end{aligned}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 2 & 6 \\
2 & 1 & 3 \\
6 & 3 & 4
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]
$$

Write down the symmetric matrix. of the quadratic form.

$$
2 x_{1}^{2}+3 x_{2}^{2}+44 x_{3}^{2}-3 x_{1} x_{2}+4 x_{2} x_{3}-5 x_{1} x_{3} .
$$

Sol:- Given that $2 x_{1}^{2}+3 x_{2}^{2}+44 x_{3}^{2}-3 x_{1} x_{2}+4 x_{2} x_{3}-5 x_{1} x_{3}$.
Itcan be written as $2 x_{1}^{2}+3 x_{2}^{2}+44 x_{3}^{2}-\frac{3}{2} x_{1} x_{2}-\frac{3}{2} x_{2} x_{1}+2 x_{2} x_{3}+2 x_{3} x_{2}$
\therefore The Matrix of quadratic form $A=\left[\begin{array}{ccc}2 & -3 / 2 & -5 / 2 \\ -3 / 2 & 3 & 2 \\ -5 / 2 & 2 & 44\end{array}\right] \quad \frac{-5}{2} x_{1} x_{3}-\frac{5}{2} x_{3} x_{1}$

Linear Transformation of a Quadratic form:-
Let $Q=X^{\top} A X$ be a quadratic form in n variables $x_{1}, x_{2}, x_{3} \ldots x_{n}$ and the symmetric matrix $A=\left[a_{i j}\right]_{n \times n}$ be the matrix of Q.
Let $x=P y$ be a non singular transtormation when P is a non sing lar matrix of order n and $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n}\end{array}\right] \quad y=\left[\begin{array}{c}y_{1} \\ y_{2} \\ y_{3} \\ \vdots \\ y_{n}\end{array}\right]$

$$
\begin{aligned}
& x=P y \\
& x^{\top}=(P Y)^{\top}=Y^{\top} P^{\top} \\
Q & =x^{\top} A x \\
= & (P Y)^{\top} A(P Y) \\
= & Y^{\top}\left(P^{\top} A P\right) y \\
Q & =Y^{\top} B Y \quad \text { Where } B=P^{\top} A P \\
B^{\top} & =\left(P^{\top} A P\right)^{\top} \\
& =P^{\top} A^{\top}\left(P^{\top}\right)^{\top} \\
& =P^{\top} A P \\
B^{\top} & =B
\end{aligned}
$$

$\therefore B$ is symmetric.
Hence $Y^{\top} B Y$ is another quadratic form in n variables $y_{1}, y_{2}, y_{3} \ldots y_{n}$ Thus the linear transtirmation $x=P y$ transtorms the given quadra - Hic form Q to another quadratic form $\mathcal{Q}^{\prime}=Y^{\top} B Y$.
i.e $Y^{\top} B Y$ is the linear transform of $X^{\top} A X$ under the linear transtorm $x=P Y$.
If P is a non singular matrix of order n. then the linear transtor - mation $X=P Y$ is said to be a non singular linear transtormation A non singular transtormation is also called regular transtormation

If P is an orthogonal matrix of order n then the linear trans - formation $x=P Y$ is called an orthogonal transformation. Canonical form or Normal form of a quadratic form:-
A real quadratic form in which the product teems are missing and which contains only terms of squares of variables is called a canonical form.
Eg:- $Q=a_{1} x_{1}^{2}+a_{2} x_{2}^{2}+a_{3} x_{3}^{2}+\cdots+a_{n} x_{n}^{2}$ is a canonical form.
[$O R$].
If $X^{\top} A x$ is a real quadratic form in n variables, then there exists a real non singular linear transtormation $x=P Y$ which transtorms $x^{\top} A x$ to the form $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+\cdots+y_{x}^{2}$.
This expression is called the canonical form or normal form of the given quadratic form $x^{\top} A x$.
Rank of a Quadratic form:-
Let $X^{\top} A x$ be a quadratic form over a field F. The rank of the matrix A is called the rank of the quadratic form $X^{\top} A X$.
Working procedure for the reduction of Quadratic form to the Normal form or Canonical form:-
Let $Q=X^{\top} A \times$ be a quadratic form of n-variables.
Let A be the matrix of the quadratic form.
Here A is the symmetric matrix.

$$
\text { Let } A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \tag{1}\\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

step (i):- We can write $A_{3 \times 3}=I_{3} A I_{3}$

$$
\begin{aligned}
& \text { ie } A_{3 \times 3}=I_{3} A I_{3} \\
& {\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]}
\end{aligned}
$$

Now reduce the matrix A on the L.H.S to the diagonal form by applying a finite no. of elementary transformations. Each row transformation will be applied to the pre factor I_{3} and each column transtormation applied to the post factor I_{3} on the R.H.S of eqn(i) Step(ii): - If $a_{11} \neq 0$ then by using a_{11} position make a_{21}, a_{31} position as zero. The same row operations will be applied pore factor of A on R.H.S.

$$
\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}^{\prime} & a_{23}^{\prime} \\
0 & a_{32}^{\prime} & a_{33}^{\prime}
\end{array}\right]=\left[\begin{array}{l}
x
\end{array} A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\right.
$$

Step(iii): - By using a_{11} position make a_{12}, a_{13} positions as zero. The same column operations will be applied post factor of A on R.H.S.

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & a_{32}^{\prime \prime} & a_{33}^{\prime \prime}
\end{array}\right]=[\quad \sim]
$$

Step(iv):- If $a_{22}^{\prime \prime} \neq 0$ then by using $a_{22}^{\prime \prime}$ position make $a_{32}^{\prime \prime}$ position as zero. The same row operation will be applied pretactor of A on R.H.S

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & a_{23}^{\prime \prime} \\
0 & 0 & a_{33}^{\prime \prime}
\end{array}\right]=\left[\begin{array}{l}
x \\
\end{array}\right]
$$

step (v): - By using $a_{22}^{\prime \prime}$ position make $a_{23}^{\prime \prime}$ position as zero. The same column operations will be applied post factor of A on R.H.S

$$
\left[\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22}^{\prime \prime} & 0 \\
0 & 0 & a_{33}^{\mathrm{dv}}
\end{array}\right]=[A]
$$

The Resulting equation is $P^{\top} A P=$ Diagonal matrix . Where P is a non singular matrix of order n.

Step (vi):- Finally we can interpret the above result interms of quadratic forms.
If $x^{\top} A x$ be a real quadratic form in n variables then there exists a linear transformation $x=P Y$ where P is anon singular matrix of order n, franstorms the quadratic form $x^{\top} A x$ to a diagonal form. i.e $y^{\top} P^{\top} A P Y=\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}+\cdots+\lambda_{r} y_{\gamma}^{2}$
i.e a sum of γ-square terms. Here r gives the rank of the quadratic form $X^{\top} A X$.
Note: - In the above procedure of diagonal form if we make the diagonal elements as 1 or -1 or 0 then we obtain the required canonical form or normal form of the given quadratic form.
Index of the quadratic form:-
Let $y_{1}^{2}+y_{2}^{2}+y_{3}^{2}+\cdots+y_{p}^{2}-y_{p+1}^{2}+\cdots+y_{\gamma}^{2}$ be a canonical form or normal form of real quadratic form $X^{\top} A X$. The number of positive terms in the normal form of $X^{\top} A X$ is called the index of the quadratictorm. It is denoted by s
The number of non positive terms is equal to $\gamma-s$.
Signature of the quadratic form: -
The difference of the number of positive terms and the non -positive. terms is called the signature of the quadratic form.

$$
\therefore \text { signature }=s-(s-s)=2 s-\gamma .
$$

Nature of a Quadratic form:-
The quadratic form $X^{\top} A X$ in n variables is said to be.
(i) Positive Definite: - If $\gamma=n$ and $s=n$ (OR) If all the eigen values of A are positive
(ii) Nagative Definite:- If $r=n$ and $s=0$ (OR) If all the eigen values of A are -be.
(iii) Positive semi definite:- If $\gamma<n$ and $s=\gamma$ [OR] If all the eigen values of A are $\geqslant 0$ and atleast one eigen value is zero.
(iv) Nagative semi definite: If $\gamma<n$ and $s=0$ [OR] If all the eigen values of $A \leq 0$ and at least one eigen value is zero.
(v) Indefinite: :- In all other cases [OR] If A has positive as well as negative eigen values.

1) Identity Nature, Index, Rank and signature of the quadratic form $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$.
Sol:- The given quadratic form can be written as $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-2 x_{1} x_{2}-2 x_{2} x_{1}$ The matrix of the quadratic form is $A=\left[\begin{array}{ccc}1 & -2 & 1 \\ -2 & 4 & -2 \\ 1 & -2 & 1\end{array}\right]$
The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { ie }\left|\begin{array}{ccc}
1-\lambda & -2 & 1 \\
-2 & 4-\lambda & -2 \\
1 & -2 & 1-\lambda
\end{array}\right|=0 \\
& R_{1} \rightarrow R_{1}+R_{2}+R_{3} \\
& \left|\begin{array}{ccc}
-\lambda & -\lambda & -\lambda \\
-2 & 4-\lambda & -2 \\
1 & -2 & 1-\lambda
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{aligned}
& -\lambda\left|\begin{array}{ccc}
1 & 1 & 1 \\
-2 & 4-\lambda & -2 \\
1 & -2 & 1-\lambda
\end{array}\right|=0 \\
& c_{2} \rightarrow c_{2}-c_{1}, c_{3} \rightarrow c_{3}-c_{1} \\
& -\lambda\left|\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 6-\lambda & 0 \\
1 & -3 & -\lambda
\end{array}\right|=0 \\
& -\lambda[-\lambda(6-\lambda)-0]=0 \\
& \lambda=0,0,6 .
\end{aligned}
$$

\therefore The Eigen values of A are $\lambda=0,0,6$.
(i) The Nature of the quadratic form is positive semi definite.
(ii) The Index of the quadratic torn is 1 .
(iii) Rank of the quadratic form is 1 .
(iv) Signature of the quadratic tom is $2 s-\gamma=1$.

Find the transformation which will transform $4 x^{2}+3 y^{2}+z^{2}-8 x y-6 y z+4 z x$ into a sum of squares and find the reduced form

Sol:- Given that the quadratic form

$$
4 x^{2}+3 y^{2}+z^{2}-8 x y-6 y z+4 z x
$$

It can be written as

$$
\begin{aligned}
& \text { written as } \\
& 4 x^{2}+3 y^{2}+z^{2}-4 x y-4 y x-3 y z-3 z y+2 z x+2 x z
\end{aligned}
$$

The matrix of the quadratic form is

$$
A=\left[\begin{array}{ccc}
4 & -4 & 2 \\
-4 & 3 & -3 \\
2 & -3 & 1
\end{array}\right]
$$

We write $A=I_{3} A I_{3}$
We apply elementary operations on A of L.H.S and we apply the same row operations on the pret factor and column operations on the post factor.

$$
\left.\left.\begin{array}{l}
{\left[\begin{array}{ccc}
4 & -4 & 2 \\
-4 & 3 & -3 \\
2 & -3 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
R_{2} \rightarrow R_{2}+R_{1} \quad R_{3} \rightarrow 2 R_{3}+R_{1} \\
{\left[\begin{array}{ccc}
4 & -4 & 2 \\
0 & -1 & -1 \\
0 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right] A\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]} \\
C_{2} \rightarrow C_{2}+C_{1} \\
C_{3}
\end{array}\right] 2 C_{3}-C_{1},\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & -1 & -2 \\
0 & -2 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 1 & 0 \\
-1 & 0 & 2
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 1 & 0 \\
0 & 0 & 2
\end{array}\right]\right]
$$

$$
\begin{aligned}
& c_{2} \rightarrow 3 c_{2}+c_{1} \quad c_{3} \longrightarrow 3 c_{3}-c_{1} \\
& {\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 21 & -3 \\
0 & -3 & 21
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 0 \\
-1 & 0 & 03
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & 0 \\
0 & 0 & 03
\end{array}\right]} \\
& R_{3} \longrightarrow 7 R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 21 & -3 \\
0 & 0 & 144
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 0 \\
-6 & 3 & 21
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -1 \\
0 & 3 & 0 \\
0 & 0 & -3
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
6 & 0 & 0 \\
0 & 21 & 0 \\
0 & 0 & 1008
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3 & 0 \\
-6 & 3
\end{array}\right] A\left[\begin{array}{ccc}
1 & 1 & -6 \\
0 & 3 & 3 \\
0 & 0 & -21
\end{array}\right]}
\end{aligned}
$$

This is of the form $B=P^{\top} A P$.

$$
B=\operatorname{Diag}\{6,21,1008\}=P^{\top} A P
$$

Thus the non singular linear transtomation $x=p y$ where $x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ $P=\left[\begin{array}{ccc}1 & 1 & -6 \\ 0 & 3 & 3 \\ 0 & 0 & -21\end{array}\right] \quad y=\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right]$ transforms the given quadratic torn to to the diagonal form which is given by $6 y_{1}^{2}+21 y_{2}^{2}+1008 y_{3}^{2}$. Rank of the quadratictorm $\gamma=3$
Index of the quadratic form $s=3$
signature of the quadratic form $2 s-\gamma=6-3=3$.
\therefore The given quadratictarm is positive definite.
\therefore The required nonsingular tineas transtomation which brings about can diagonal from is $x=P y$.

$$
\begin{aligned}
& \text { form is } x=p 4 \\
& {\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{ccc}
1 & 1 & -6 \\
0 & 3 & 3 \\
0 & 0 & -21
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right]} \\
& x=y_{1}+y_{2}-6 y_{3} \quad y=3 y_{2}+3 y_{3}, z=-21 y_{3}
\end{aligned}
$$

QUADRATIC FORMS

I: Reduce the following quadratic forms into a sum of squares. Indicate the nature, rank, index and signature of the quadratic form. Also write the corrosponding linear transtormation which brings about the normal reduction.
(i) $3 x^{2}+3 y^{2}+3 z^{2}+4 x y+8 x z+8 y z$.

Ans:- Rank $=3$, Index $=2$, Nature: Indefinite.
R.NO

1-20
$21-40$
41-60
(ii) $4 x^{2}+3 y^{2}+z^{2}-8 x y-6 y z+4 z x$.

Ans:- Rank $=3$, Index $=2$, Nature: Indefinite.
(iii) $5 x^{2}+26 y^{2}+10 z^{2}+4 y z+14 z x+6 x y$

Ans:- $\operatorname{Rank}=2$, Index $=2$ Nature: Positive semi definite.
(iv) $7 x^{2}+6 y^{2}+5 z^{2}-4 y y-4 y z$

Ans:- Rank $=3$, Index $=3$. Nature: Positive definite.
(v) $3 x^{2}+2 y^{2}+z^{2}+4 x y-2 x z+6 y z$

Ans:- $\operatorname{Rank}=3$, Index $=2$ (Nature: Indefinite.
(vi) $-3 x^{2}-3 y^{2}-3 z^{2}-2 x y-2 y z+2 x z$

Ans:- Rank $=$ Index $=$ Nature: Nagative definite.
(vii) $6 x^{2}+17 y^{2}+3 z^{2}-20 x y-14 y z+8 z x$

Ans:- Rank $=2$ Index $=2$ Nature: Positive semi definite.
(viii) $6 x^{2}+3 y^{2}+14 z^{2}+4 y z+18 x z+4 x y$.

Ans:- Rank $=3$ Index $=3$ Nature: Positive definite.
(ix) $4 x_{1}^{2}+9 x_{2}^{2}+2 x_{3}^{2}+8 x_{2} x_{3}+6 x_{3} x_{1}+6 x_{1} x_{2}$

Ans:- Rank $=3$ Index $=2$ Nature Indefinite.
ix) $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}+4 x_{1} x_{3}-2 x_{2} x_{3}$.

Ans:- Rank $=3$ Index $=3$ Nature: Positive definite.
II. Reduce the following quadratic forms to canonical form. In each case find the matrix of the transform. Also find rank, index, nature and signature of the quadratic form.

NO Q.NO
(i) $2 x y+2 y z+2 z x$

Ans:- Rank $=3$, Index $=1$ Nature: Indefinite.
(ii) $2 x^{2}+2 y^{2}+2 z^{2}-2 x y+2 x z-2 y z$

Ans:- Rank $=3$ Index $=3$ Nature Positive definite.
(iii) $3 x^{2}+3 z^{2}+4 x y+8 x z+8 y z$

Ans:- Rank $=3$, Index $=1$ Nature: Indefinite.
(iv) $x^{2}+4 y^{2}+z^{2}+4 x y+6 y z+2 z x$

Ans:- Rank $=$ Index $=$ Nature:
Iv) $x^{2}+4 y^{2}+9 z^{2}+t^{2}-12 y z+6 z x-4 x y-2 x t-6 z t$.

Ans:- Rank $=3$ Index $=2$ Nature: Indefinite.
(vi) $2 x^{2}+y^{2}-3 z^{2}+12 x y-4 z x-8 y z$.

Ans:- Rank $=3$ Index $=1$. Nature: Indefinite.
(vii) $x_{1}^{2}+3 x_{2}^{2}+5 x_{3}^{2}-4 x_{1} x_{2}+2 x_{3} x_{1}+4 x_{2} x_{3}$

Ans:- Rank $=3$ Index $=2$ Nature: Indefinite.
(Viii) $2 x y-4 y z-6 z x$

Ans:- $\operatorname{Rank}=$ Index $=$ Nature:
(ix) $9 x^{2}+2 y^{2}+2 z^{2}+6 x y+2 y z-2 z x$

Ans: Rank $=3$ Index $=3$ Nature. Positive definite.
(x) $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$.

Ans:- Rank $=3$ Index $=3$ Nature: Positive definite.

Reduction of the Quadratic form to canonical form by Orthogonal
Transformation:-
If in the transformation $x=P Y, P$ is an orthogonal matrix and it $x=P y$ transforms the Quadratic form Q to the canonical form the Q is said to be reduced to the canonical form by an orthogonal transformation.
Working procedure: -
Let $Q=x^{\top} A x$ be a given quadratic form.
Step 1:- Let A be the matrix of the quadratic form
Step 2:- The characteristic equation of A is $|A-\lambda I|=0$
Solve the characteristic equation and find the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of the matrix A.
step 3 :-
case (i): - If the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ of the matrix A are distinct
Step (i):- Find the eigen vectors x_{1}, x_{2}, x_{3} corrosponding to the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and these eigen vectors are linearly independent. Observe that these eigen vectors are pairwise orthogonal.
\therefore The matrix A is diagonalizable.
step(ii):-

$$
\text { Modal Matrix }=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{lll}
a_{1} & a_{2} & a_{3} \\
b_{1} & b_{2} & b_{3} \\
c_{1} & c_{2} & c_{3}
\end{array}\right]
$$

step (iii): - Construct the normalized eigen vectors e_{1}, e_{2}, e_{3} corrosponding to the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Where $e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|} \quad e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|} \quad e_{3}=\frac{x_{3}}{\left\|x_{3}\right\|}$

$$
\left\|x_{1}\right\|=\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \quad\left\|x_{2}\right\|=\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}} \quad\left\|x_{3}\right\|=\sqrt{a_{3}^{2}+b_{3}^{2}+c_{3}^{2}}
$$

Step(iv): - Detine the normalized modal matrix.

$$
p=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
\frac{x_{1}}{\left\|x_{1}\right\|} & \frac{x_{2}}{\left\|x_{2}\right\|} & \frac{x_{3}}{\left\|x_{3}\right\|}
\end{array}\right]
$$

This P will be an orthogonal matrix
By detinition of an orthogonal matrix.

$$
\begin{aligned}
& P P^{\top}=P^{\top} P=I \\
& \Rightarrow P^{-1}=P^{\top}
\end{aligned}
$$

step (V): - Find $P^{-1} A P$ (OR) $P^{\top} A P$
Which is the diagonal matrix of A.

$$
P^{-1} A P=P^{\top} A P=D=\operatorname{Diag}\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
$$

Step (vi): - Now Define the orthogonal transtormation $x=P y$ Which transtorms the given Quadratic form $Q=X^{\top} A x$ to the normal form is given by

$$
\begin{array}{rlr}
Q & =x^{\top} A x & \text { Where } x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
Q & =(P Y)^{\top} A(P Y) & y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
& =\left(y^{\top} P^{\top}\right) A(P Y) \\
& =y^{\top}\left(P^{\top} A P\right) Y \\
Q & =y^{\top} D Y \\
Q & =\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]^{\top}\left[\begin{array}{lll}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
Q & =\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2}
\end{array}
$$

Which is the required Normal form (OR) Canonical form.
Case(ii): - If the eigen values $\lambda_{1} \lambda_{2} \lambda_{3}$ of the matrix A are not distinct. It suppose λ_{1} is repeated two times.
step (i): - Find the eigen vectors corrosponding to the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$ and there eigen vectors are linearly independent.

If Algebraic multiplicity of an eigen value $\lambda \neq$ Geometric multipli - city of an eigen value λ then Diagonalization for the matrix A is not possible.
So we stop the procedure.
else (Algebraic multiplicity of an eigen value $\lambda=$ Geometric multiplicity of an eigen value λ)
\therefore The matrix A is diagonalizable.
goto step(ii).
Step (ii): - Here we observe that the eigen vectors x_{1}, x_{2} are not pairwise orthogonal corrosponding to the eigen value λ_{1}.
Now we find the eigen vector x_{1} is pairwise orthogonal to x_{2} and x_{3} Let $x_{1}=\left[\begin{array}{l}x_{1} \\ y_{1} \\ z_{1}\end{array}\right]$ is pairwise orthogonal to x_{2} and x_{3}.

$$
\text { Where } x_{2}=\left[\begin{array}{l}
a_{2} \\
b_{2} \\
c_{2}
\end{array}\right] \quad x_{3}=\left[\begin{array}{l}
a_{3} \\
b_{3} \\
c_{3}
\end{array}\right]
$$

\dot{x}_{1}, x_{2} are pairwise orthogonal if $x_{1} a_{2}+y_{1} b_{2}+z_{1} c_{2}=0$ x_{1}, x_{3} are pairwise orthogonal it $x_{1} a_{3}+y_{1} b_{3}+z_{1} c_{3}=0$.
Solve the above equations, we get the values of \dot{x}_{1}, y_{1} and z_{1}
\therefore The Eigen vectors x_{1}, x_{2} and x_{3} are pairwise orthogonal.
step(ii):- Modal Matrix $=\left[\begin{array}{lll}x_{1} & x_{2} & x_{3}\end{array}\right]=\left[\begin{array}{lll}x_{1} & a_{2} & a_{3} \\ y_{1} & b_{2} & b_{3} \\ z_{1} & c_{2} & c_{3}\end{array}\right]$
Step(iv): - construct the normalized eigen vectors e_{1}, e_{2}, e_{3} corrosponding to the eigen values $\lambda_{1}, \lambda_{2}, \lambda_{3}$.

$$
\left\|x_{1}\right\|=\sqrt{x_{1}^{2}+y_{1}^{2}+z_{1}^{2}} \quad\left\|x_{2}\right\|=\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}} \quad\left\|x_{3}\right\|=\sqrt{a_{3}^{2}+b_{3}^{2}+c_{3}^{2}}
$$

Where $e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|} \quad e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|} \quad e_{3}=\frac{x_{3}}{\left\|x_{3}\right\|}$

Step (v) : - Normalized Modal Matrix

$$
P=\left[\begin{array}{lll}
e_{1} & e_{2} & e_{3}
\end{array}\right]=\left[\begin{array}{lll}
\frac{x_{1}}{\left\|x_{1}\right\|} & \frac{x_{2}}{\left\|x_{2}\right\|} & \frac{x_{3}}{\left\|x_{3}\right\|}
\end{array}\right]
$$

This P will be an orthogonal matrix.
By definition of an orthogonal matrix $P P^{\top}=P^{\top} P=I \Rightarrow P^{-1}=P^{\top}$
Step (vi):- Find $P^{-1} A P$ (or) $P^{\top} A P$.
Which is the diagonal matrix of A.

$$
\begin{aligned}
& \text { Which is the diagonal matrix of } A \\
& P^{-1} A P=P^{\top} A P=D=\operatorname{Piag}\left[\begin{array}{lll}
\lambda_{1} & \lambda_{2} & \lambda_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]
\end{aligned}
$$

Now define an orthogonal transtormation $X=P Y$ which transtorms the given Quadratic form $Q=x^{\top} A x$ to the normal form is given by.

$$
\begin{aligned}
Q & =x^{\top} A x \\
& =(P Y)^{\top} A(P Y) \\
& =\left(y^{\top} P^{\top}\right) A(P Y) \\
& =Y^{\top}\left(P^{\top} A P\right) Y \\
Q & =Y^{\top} D Y \\
& =\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{ccc}
\lambda_{1} & 0 & 0 \\
0 & \lambda_{2} & 0 \\
0 & 0 & \lambda_{3}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
Q & =\lambda_{1} y_{1}^{2}+\lambda_{2} y_{2}^{2}+\lambda_{3} y_{3}^{2} .
\end{aligned}
$$

Which is the required normal form or canonical form.
Pairwise Orthogonal:
Let A be a square matrix (symmetric) of corder 3 .
If $\lambda_{1} \lambda_{2} \lambda_{3}$ are three distinct eigen values of A then the corrospon

- ding eigen vectors x_{1}, x_{2} and x_{3} are pairwise orthogonal.

Let $x_{1}=\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right] \quad x_{2}=\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right] \quad x_{3}=\left[\begin{array}{l}a_{3} \\ b_{3} \\ c_{3}\end{array}\right]$
x_{1}, x_{2} are pairwise orthogonal if $a_{1} a_{2}+b_{1} b_{2}+c_{1} c_{2}=0$
x_{2}, x_{3} are pairwise orthogonal if $a_{2} a_{3}+b_{2} b_{3}+c_{2} c_{3}=0$
x_{1}, x_{3} are pairwise orthogonal if $a_{1} a_{3}+b_{1} b_{3}+c_{1} c_{3}=0$
(1) Reduce the quadratic form $3 x^{2}+2 y^{2}+3 z^{2}-2 x y-2 y z$ to the normal. form by orthogonal transformation.

Sol:- Given that $Q=3 x^{2}+2 y^{2}+3 z^{2}-2 x y-2 y z$
The above quadratic form can be written as

$$
Q=3 x^{2}+2 y^{2}+3 z^{2}-x y-y x-y z-z y
$$

The matrix of the quadratic form is

$$
A=\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]
$$

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
3-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 3-\lambda
\end{array}\right|=0 \\
& (3-\lambda)[(2-\lambda)(3-\lambda)-1]+1[(-1)(3-\lambda)]=0 \\
& (3-\lambda)\left[6-3 \lambda-2 \lambda+\lambda^{2}-1-1\right]=0 \\
& (3-\lambda)\left(\lambda^{2}-5 \lambda+4\right)=0 \\
& (3-\lambda)(\lambda-4)(\lambda-1)=0 \\
& \lambda=1,3,4
\end{aligned}
$$

The eigen values of A are $\lambda=1,3,4$.
These eigen values are distinct.
\therefore The matrix A is diagonalizable.
Now the Eigen vector Corresponding to the Eigen Values λ are obtained by solving the system of equations $(A-\lambda I) x=0$.

$$
\text { i.e }\left[\begin{array}{ccc}
3-\lambda & -1 & 0 \\
-1 & 2-\lambda & -1 \\
0 & -1 & 3-\lambda
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Caseli): - Eigen vector corrosponding to the Eigen value $\lambda=3:$ -
For $\lambda=3$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
-1 & -1 & -1 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Reduce the coeff. matrix into echelon form by applying E-row opera

$$
\begin{gathered}
R_{1} \leftrightarrow R_{2} \\
{\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -1 & 0 \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]} \\
R_{3} \longrightarrow R_{3}-R_{2} \\
{\left[\begin{array}{ccc}
-1 & -1 & -1 \\
0 & -1 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

The Rank of the coefficient matrix is 2 i.e $P(A)=2=$ The No. of non zero rows equivalent to A.

So that the homogeneous system has $n-\gamma=3-2=1 L$. I solution.
There is only one linearly independent eigen vector corrosponding to the eigen value $\lambda=3$.

To determine this, we have to assign an arbitrary value for one. variable.

From the above system the linear equations are

$$
\begin{array}{r}
x+y+z=0 \\
y=0 \\
x+z=0
\end{array}
$$

choose $x=k$,

$$
x_{1}=\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
k_{1} \\
0 \\
-k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
1 \\
0 \\
-1
\end{array}\right]
$$

$x_{1}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$ is the eigen vector corrosponding to the eigen value $\lambda=3$
Case(ii): - Eigen vector corresponding to the eigen value $\lambda=1$

For $\lambda=1$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 1 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Reduce the coeff matrix into echelon form by applying E-row $R_{1} \longrightarrow R_{2}$ operations only

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
-1 & 1 & -1 \\
2 & -1 & 0 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{2} \rightarrow R_{2}+2 R_{1} \\
& {\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & -1 & -2 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] \\
& R_{3} \longrightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
-1 & 1 & -1 \\
0 & 1 & -2 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right] }=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
\end{aligned}
$$

$\therefore P(A)=2=$ The No. of Non zero rows equivalent to A
So that the homogeneous system has $n-r=3-2=1$ L. I solution
There is only one linearly independent eigen vector corrosponding to the eigen value $\lambda=1$.
To determine this, we have to assign an arbitrary value for ono variable.

From the above system the linear equations are

$$
\begin{aligned}
-x+y-z & =0 \\
y-2 z & =0
\end{aligned}
$$

\therefore This matrix P will reduce the matrix A to be diagonal form. which is given by $P^{-1} A P=D$

$$
\begin{gathered}
\text { i.e } P^{\top} A P=D \\
D=P^{\top} A P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & 0 & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{1}{\sqrt{6}} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}}
\end{array}\right]\left[\begin{array}{ccc}
3 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \\
\therefore D=\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]
\end{gathered}
$$

Thus the orthogonal transformation $x=p y$ where $x=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

$$
P=\left[\begin{array}{ccc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\
\dot{0} & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}
\end{array}\right] \quad y=\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \text { transforms the given quadratic }
$$

form to the normal form is given by.

$$
\begin{aligned}
& Q=X^{\top} A x \\
& Q=(P Y)^{\top} A(P Y) \\
& Q=Y^{\top}\left(P^{\top} A P\right) Y \\
& Q=y^{\top} D Y \\
& Q=\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{lll}
3 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
& Q=3 y_{1}^{2}+y_{2}^{2}+4 y_{3}^{2}
\end{aligned}
$$

\therefore The required orthogonal transformation which brings about the. normal form is given by $x=P Y$ i.e. $\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{ccc}\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}} \\ 0 & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{3}} \\ \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{3}}\end{array}\right]\left[\begin{array}{l}y_{1} \\ y_{2} \\ y_{3}\end{array}\right.$

$$
x=\frac{1}{\sqrt{2}} y_{1}+\frac{1}{\sqrt{6}} y_{2}+\frac{1}{\sqrt{3}} y_{3}, \quad y=\frac{2}{\sqrt{6}} y_{2}-\frac{1}{\sqrt{3}} y_{3} \quad z=\frac{-1}{\sqrt{2}} y_{1}+\frac{1}{\sqrt{6}} y_{2}+\frac{1}{\sqrt{3}} y
$$

The Rank of the Q.F $\gamma=3$, Index of the Q.F $=S=3$:
signature of the $Q \cdot F=25-\gamma=3$ Nature of $Q \cdot F$ is + eve definite.

Reduce the quadratic form $3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$ into sum of squares from by an orthogonal transtormation and give the matrix of transformation.

Sol:- Given that $3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$
The given Q.F can be written as

$$
3 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}+x_{1} x_{2}+x_{2} x_{1}+x_{1} x_{3}+x_{3} x_{1}-x_{2} x_{3}-x_{3} x_{2}
$$

The matrix of the quadratic form is

$$
A=\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]
$$

The characteristic equation of A is $|A-\lambda I|=0$

$$
\begin{aligned}
& \text { i.e }\left|\begin{array}{ccc}
3-\lambda & 1 & 1 \\
1 & 3-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right|=0 \\
& R_{1} \rightarrow R_{1}+R_{3} \\
& \left|\begin{array}{ccc}
4-\lambda & 0 & 4-\lambda \\
1 & 3-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right|=0 \\
& (4-\lambda)\left|\begin{array}{ccc}
1 & 0 & 1 \\
1 & 3-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right|=0 \\
& R_{3} \rightarrow R_{3}-R_{2} \\
& (4-\lambda)\left|\begin{array}{ccc}
1 & 0 & 1 \\
1 & 3-\lambda & -1 \\
0 & \lambda-4 & 4-\lambda
\end{array}\right|=0 \\
& (4-\lambda)^{2}\left|\begin{array}{ccc}
1 & 0 & 1 \\
1 & 3-\lambda & -1 \\
0 & -1 & 1
\end{array}\right|=0
\end{aligned}
$$

$$
\begin{gathered}
c_{3} \longrightarrow c_{3}-c_{1} \\
(4-\lambda)^{2}\left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & 3-\lambda & -2 \\
0 & -1 & 1
\end{array}\right|=0 \\
(4-\lambda)^{2}[(3-\lambda)-2]=0 \\
(4-\lambda)^{2} \cdot(\lambda+1)=0 \\
\lambda=1,4,4 .
\end{gathered}
$$

The eigen values of A are $\lambda=4,4,1$.
The algebraic multiplicities of an eigen values 4 and 1 are 2 and 2 Now we have to find the eigen vector $x=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$ corrosponding to the eigen values λ are obtained by solving the system of equations

$$
(A-\lambda I) x=0 \text { i.e. }\left[\begin{array}{ccc}
3-\lambda & 1 & 1 \tag{1}\\
1 & 3-\lambda & -1 \\
1 & -1 & 3-\lambda
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Case(i):- Eigen vector corrosponding to the eigen value $\lambda=1$:
For $\lambda=1$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
2 & 1 & 1 \\
1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the coefficient matrix to echelon form by applying 'elementary row operations only and determine the rank of the matrix

$$
\begin{aligned}
& R_{2} \longrightarrow 2 R_{2}-R_{1} \quad R_{3} \\
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 3 & -3 \\
0 & -3 & 3
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . }
\end{aligned}
$$

$$
\begin{aligned}
R_{3} & \longrightarrow R_{3}+R_{2} \\
& {\left[\begin{array}{ccc}
2 & 1 & 1 \\
0 & 3 & -3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] . }
\end{aligned}
$$

The Rank of the coefficient matrix $\gamma=2=$ The No. of non zero rows. So that the system have $n-\gamma=3-2=1$ L.I solution.
There is only one L.I eigen vector corrosponding to the eigen value. $\lambda=1$.

To determine this, we have to assign an arbitrary value for $n-r=3-2=1$ variables.

The linear equations are

$$
\begin{aligned}
2 x_{1}+x_{2}+x_{3} & =0 \\
3 x_{2}-3 x_{3} & =0
\end{aligned}
$$

choose $x_{3}=k_{1}$

$$
\begin{gathered}
x_{2}=x_{3}=k_{1} \\
2 x_{1}=-x_{2}-x_{3}=-2 k_{9} \\
x_{1}=-k_{1} \\
x_{1}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-k_{1} \\
k_{1} \\
k_{1}
\end{array}\right]=k_{1}\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right] \text { where } k_{1} \neq 0
\end{gathered}
$$

$x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]$ is the linearly independent eigen vector corrosponding to .
the eigen value $\lambda=1$. So that the geometric multiplicity of $\lambda=1$ is 1 Case (ii):- Eigen vector corresponding to the eigen value $\lambda=4$:-

For $\lambda=4$, The system (1) can be written as

$$
\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & -1 & -1 \\
1 & -1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]
$$

Now we reduce the coefficient matrix to echelon form by applying elementary row operations only and determine the rank of the coefficient matrix.

$$
\begin{aligned}
& R_{2} \longrightarrow R_{2}+R_{1}, \quad R_{3} \longrightarrow R_{3}+R_{1} \\
& {\left[\begin{array}{ccc}
-1 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

The Rank of the coefficient mat rix $\gamma=1=$ No. If non zero rows. So that the system have $n-\gamma=3-1=2$ L.I solutions There are two linearly independent eigen vectors corrosponding to the eigen value $\lambda=4$.
To determine this, we have to assign an arbitrary value for $n-\gamma=3-1=2$ variables

The linear equation is

$$
\begin{gathered}
-x_{1}+x_{2}+x_{3}=0 \\
\text { choose } x_{2}=k_{2} \\
x_{3}=k_{3} \\
x_{1}=x_{2}+x_{3}=k_{2}+k_{3} \\
x=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
k_{2}+k_{3} \\
k_{2} \\
k_{3}
\end{array}\right]=k_{2}\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]+k_{3}\left[\begin{array}{l}
1 \\
0 \\
1
\end{array}\right]
\end{gathered}
$$

$x_{2}=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right] \quad x_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are two linearly independent eigen vectors corrosponding to the eigen value $\lambda=4$.
So that the atgebrate multiplicity of an eigen value $\lambda=4$ is 2 . geometric.

Since the geometric multiplicity of each eigen value of A coincides with the algebraic multiplicity
$\therefore A$ is a diagonalizable matrix.
Now we observe that the eigen vectors x_{2} and x_{3} are not pair - wise orthogonal.

Now we have to find the another linearly independent eigen vector x_{2} of A corrosponding to the eigen value $\lambda=4$ such that x_{1}, x_{2} and x_{2}, x_{3} are pairwise orthogonal.
Let $x_{2}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ be the another L.I eigen vector corrosponding to the eigen value $\lambda=4$.
x_{1}, x_{2} are pairwise orthogonal it $-a+b+c=0$
x_{2}, x_{3} are pairwise orthogonal if $a+0 \cdot b+c=0$
Solving (2) and (3), we get

$$
\frac{a}{1}=\frac{b}{2}=\frac{c}{-1}
$$

$x_{2}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ is the linearly independent eigen vector corrosponding to the eigen value $\lambda=4$ and is orthogonal to x_{1}, and x_{3}.
Now the eigen vectors $x_{1}=\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right] \quad x_{2}=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right]$ and $x_{3}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ are pair

- wise orthogonal.

$$
\begin{gathered}
\text { Modal matrix }=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]=\left[\begin{array}{ccc}
-1 & 1 & 1 \\
1 & 2 & 0 \\
1 & -1 & 1
\end{array}\right] \\
\left\|x_{1}\right\|=\sqrt{1+1+1}=\sqrt{3} \quad\left\|x_{2}\right\|=\sqrt{1+4+1}=\sqrt{6} \\
\left\|x_{3}\right\|=\sqrt{1+0+1}=\sqrt{2}
\end{gathered}
$$

Normalized modal matrix $P=\left[\begin{array}{lll}\frac{x_{1}}{\left\|x_{1}\right\|} & \frac{x_{2}}{\left\|x_{2}\right\|} & \frac{x_{3}}{\left\|x_{3}\right\|}\end{array}\right]$

$$
P=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]
$$

Here P is an orthogonal matrix
By def. $P P^{\top}=P^{\top} P=I$

$$
\Rightarrow \quad p^{-1}=p^{\top}
$$

This matrix P will reduce the matrix A to the diagonal form which is given by $P^{-1} A P=D$ i.e $P^{T} A P=D$.

$$
\begin{aligned}
& P^{T} A P=\left[\begin{array}{ccc}
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{3}} & \frac{1}{\sqrt{3}} \\
\frac{1}{\sqrt{6}} & \frac{2}{\sqrt{6}} & \frac{-1}{\sqrt{6}} \\
\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
3 & 1 & 1 \\
1 & 3 & -1 \\
1 & -1 & 3
\end{array}\right]\left[\begin{array}{ccc}
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right] \\
& P^{T} A P=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]=1 \\
& D=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right] \text { is the spectral matrix. }
\end{aligned}
$$ $P=\left[\begin{array}{ccc}\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{3}} & \frac{2}{\sqrt{6}} & 0 \\ \frac{1}{\sqrt{3}} & -1 / \sqrt{6} & \frac{1}{\sqrt{2}}\end{array}\right]$ transtorms the given quadratic form to canonical form is given by

$$
\begin{aligned}
& Q=x^{\top} A x \\
& Q=(P Y)^{\top} A(P Y)
\end{aligned}
$$

$$
\begin{aligned}
& =y^{\top}\left(P^{\top} A P\right) y \\
Q & =Y^{\top} D Y \\
Q & =\left[\begin{array}{lll}
y_{1} & y_{2} & y_{3}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 4 & 0 \\
0 & 0 & 4
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
Q & =y_{1}^{2}+4 y_{2}^{2}+4 y_{3}^{2}
\end{aligned}
$$

Rank of the Quadratic form $\gamma=3$
Index of the Quadratic form $S=3$.
Signature of the Quadratic from $2 s-\gamma=6-3=3$.
Nature of the Quadratic form is positive definite.
\therefore The required orthogonal transtornation which brings about the normal from is given by $x=P Y$.

$$
\text { i.e } \begin{aligned}
{\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } & =\left[\begin{array}{ccc}
\frac{-1}{\sqrt{3}} & \frac{1}{\sqrt{6}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{3}} & \frac{R}{\sqrt{6}} & 0 \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{6}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right] \\
x_{1} & =\frac{-1}{\sqrt{3}} y_{1}+\frac{1}{\sqrt{6}} y_{2}+\frac{1}{\sqrt{2}} y_{3} \\
x_{2} & =\frac{1}{\sqrt{3}} y_{1}+\frac{2}{\sqrt{6}} y_{2} \\
x_{3} & =\frac{1}{\sqrt{3}} y_{1}-\frac{1}{\sqrt{6}} y_{2}+\frac{1}{\sqrt{2}} y_{3} .
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \quad . \quad . \quad+\quad(2)
\end{aligned}
$$

Maximize and Minimize the quadratic form $Q=x^{\top} A x$ subject to $x^{2}+y^{2}+z^{2}=1$:-

Let $Q=x^{\top} A X$ be the quadratic form.
step (i):- Write the matrix of the given quadratic form.

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \text { which is the symmetric matrix. }
$$

Step(ii): - The characteristic equation of A is $|A-\lambda I|=0$

$$
\text { i.e }\left|\begin{array}{ccc}
a_{11}-\lambda & a_{12} & a_{13} \\
a_{21} & a_{22}-\lambda & a_{23} \\
a_{31} & a_{32} & a_{33}-\lambda
\end{array}\right|=0 \text {. }
$$

Solve the characteristic equation, we get the eigen values of A.
Step (iii):- The eigen values of the matrix A are $\lambda_{1}, \lambda_{2}, \lambda_{3}$.
Case (i):- Let $\lambda=\max \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$
suppose $\lambda=\lambda_{1}$.
Find the eigen vector corresponding to the eigen value $\lambda=\lambda$, Let $x_{1}=\left[\begin{array}{l}a_{1} \\ b_{1} \\ c_{1}\end{array}\right]$
Find the normalized eigen vector $e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}$

$$
\begin{array}{r}
\left\|x_{1}\right\|=\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}} \\
e_{1}=\frac{x_{1}}{\left\|x_{1}\right\|}=\left[\begin{array}{l}
\frac{a_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}} \\
\frac{b_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}} \\
\frac{c_{1}}{\sqrt{a_{1}^{2}+b_{1}^{2}+c_{1}^{2}}}
\end{array}\right]
\end{array}
$$

Substitute the normalized eigen vector in given quadratic form, we get maximum value of Q.
\therefore Maximum value of $Q=$ Maximum eigen value $=\lambda_{1}$.

Case(ii): - For minimize the quadratic form. Q.
Let $\lambda=\min \left\{\lambda_{1}, \lambda_{2}, \lambda_{3}\right\}$
Suppose $\lambda=\lambda_{2}$
Find the eigen vector x_{2} corro sponding to the eigen value. $\lambda=\lambda_{2}$ Let $x_{2}=\left[\begin{array}{l}a_{2} \\ b_{2} \\ c_{2}\end{array}\right]$
Find the normalized eigen vector $e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}$

$$
\begin{aligned}
&\left\|x_{2}\right\|=\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}} \\
& e_{2}=\frac{x_{2}}{\left\|x_{2}\right\|}=\left[\begin{array}{l}
\frac{a_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
\frac{b_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}} \\
\frac{c_{2}}{\sqrt{a_{2}^{2}+b_{2}^{2}+c_{2}^{2}}}
\end{array}\right]
\end{aligned}
$$

substitute the normalized eigen vector in given quadratic form, we get maximum value of Q.
\therefore Minimum value of $Q=$ Minimum eigen value $=\lambda_{2}$.

Nature of a Quadratic form $Q=x^{\top} A x$ with the help of principal. minors of the matrix A :

The nature of a quadratic form can be determined from a study of the principal minors of the matrix of the quadratic form.
In this method, the quadratic form need not be put in the cononi-

- cal form.

Principal minors:-
Let $A=\left[a_{i j}\right]$ be a square matrix of order n. Then

$$
M_{1}=\left|a_{11}\right| \quad M_{2}=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right| \quad M_{3}=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| \ldots M_{n}=|\mathrm{A}| .
$$

Working Rules:
Case (i):- A real quadratic form Q is positive definite it and only if all the principal minors of A are positive i.e $M_{i}>0$ for all $i \leq n$.

Eg:- $\quad Q=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{1} x_{2}+x_{2} x_{3}+x_{3} x_{1}$
The matrix A of the given quadratic form is given by

$$
\begin{gathered}
A=\left[\begin{array}{ccc}
1 & \frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{2} & \frac{1}{2} & 1
\end{array}\right] \\
M_{1}=|1|=1>0 \quad M_{2}=\left|\begin{array}{cc}
1 & \frac{1}{2} \\
\frac{1}{2} & 1
\end{array}\right|=1-\frac{1}{4}=\frac{3}{4}>0 . \\
M_{3}=|A|=1\left(1-\frac{1}{4}\right)-\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}\right)+\frac{1}{2}\left(\frac{1}{4}-\frac{1}{2}\right)=\frac{3}{4}-\frac{1}{8}-\frac{1}{8}=\frac{1}{2}>0 . \\
M_{3}=>0 \\
\therefore M_{i}>0 \quad \forall i \leq 3
\end{gathered}
$$

\therefore The nature of the given quadratic form is positive definite.

Case lii): - A real quadratic form Q is negative detinite it and only if $M_{1}, M_{3}, M_{5} \ldots$ are all negative and $M_{2}, M_{4}, M_{6} \ldots$ are all positive.
i.e $(-1)^{i} M_{i}>0$ for all i.

Eg:- $Q=-4 x^{2}-2 y^{2}-13 z^{2}-4 x y-8 y z-4 x z$.
The matrix A of the given quadratic form is given by

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
-4 & -2 & -2 \\
-2 & -2 & -4 \\
-2 & -4 & -13
\end{array}\right] \\
M_{1}=|-4|=-4<0 & M_{2}=\left|\begin{array}{cc}
-4 & -2 \\
-2 & -2
\end{array}\right|=8-4=4>0 \\
M_{3}=|A| & =[-4(26-16)+2(26-8)-2(8-4)]=-40+36-8=-12<0
\end{aligned}
$$

Here $M_{1}<0, M_{2}<0 \quad M_{2}>0$.
\therefore The $r_{\text {given quatre of }}$ nuadic form is negative definite.
Case(iii): It some of the principal minors in case (i) are zero while. the others are positive then the quadratic form Q is positive semi definite i.c $M_{i} \geqslant 0 \quad \forall i \leq n$ and at least one $M_{i}=0$.

Eg:- $Q=10 x^{2}+2 y^{2}+5 z^{2}+6 y z-10 z x-4 x y$
The matrix A of the given quadratic form is given by.

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
10 & -2 & -5 \\
-2 & 2 & 3 \\
-5 & 3 & 5
\end{array}\right] \\
& M_{1}=|10|=10>0 \quad M_{2}=\left|\begin{array}{cc}
10 & -2 \\
-2 & 2
\end{array}\right|=20-4=16>0 . \\
& M_{3}=|A|=10[10-9]+2[-10+15]-5[-6+10]=10+10-20=0
\end{aligned}
$$

Here $m_{1}>0, m_{2}>0$ and $m_{3}=0$
\therefore The given quadratic form is positive semi definite. $\stackrel{1}{ }$ nature of

Case (iv): - If some of the principal minors in case(ii) are zero then Q is negative semi definite.
i.e. $(-1)^{i} M_{i} \geqslant 0 \quad \forall i \leq n$ and at least one $M_{i}=0$.

Eg:- $\quad Q=-3 x_{1}^{2}-3 x_{2}^{2}-7 x_{3}^{2}-6 x_{1} x_{2}-6 x_{2} x_{3}-6 x_{3} x_{1}$.
The matrix of the quadratic from is

$$
\begin{gathered}
A=\left[\begin{array}{lll}
-3 & -3 & -3 \\
-3 & -3 & -3 \\
-3 & -3 & -7
\end{array}\right] \\
M_{1}=|-3|=-3<0 \quad M_{2}=\left|\begin{array}{cc}
-3 & -3 \\
-3 & -3
\end{array}\right|=0 \\
M_{3}=|A|=-3[21-9]+3[21-9]-3[9-9]=0 .
\end{gathered}
$$

Here $m_{1}<0 \quad m_{2}=0 \quad m_{3}=0$.
\therefore The given quadratic form Q is negative semi definite. \rightarrow nature of

Case (V): - In all other cases, Q is indefinite.
Eg:- $\quad Q=x^{2}+4 y^{2}+4 z^{2}+4 x y+6 x z+16 y z$
The matrix of the quadratic form is

$$
\begin{gathered}
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 8 \\
3 & 8 & 4
\end{array}\right] \\
M_{1}=111>0 \quad M_{2}=\left|\begin{array}{ll}
1 & 2 \\
2 & 4
\end{array}\right|=4-4=0 . \\
M_{3}=|A|=1(16-66)-2(8-24)+3(16-12)=-48+32+12=-8<0
\end{gathered}
$$

Here $m_{1}>0 \quad m_{2}=0 \quad m_{3}<0$.
\therefore The nature of the given quadratic form is indefinite.
\qquad
1

Reduce the following quadratic forms to canonical form by an orthogona transformation. Indicate its nature, rank, index and signature of the quadratic form. Also write the corrosponding linear transtormation which brings about the normal form.
(i) $x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$

Ans:- Rank $=3$, Index $x=3$. Nature: Positive definite Eigen values: $1,2,4$.
(ii) $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$.

Ans:- Rank $=3$, Index $=3$. Nature positive definite.
Eigen values: $2,3,6$
(iii) $3 x^{2}-2 y^{2}-z^{2}+12 y z+8 z x-4 x y$.

Ans:- Rank $=3$ Index $=2$ Nature: Indefinite.
Eigen values: $3,6,-9$
(iv) $8 x^{2}+7 y^{2}+3 z^{2}-12 x y-8 y z+4 z x$

Ans:- Rank $=2$ Index $=2$ Nature: Positive semidetinite.
Eigen values: $0,3,15$.
iv) $3 x^{2}+2 y^{2}+3 z^{2}-2 x y+2 y z$.

Ans: Rank $=3$. Index $=3$ Nature: Positive definite
Eigen values, $3,1,4$.
(vi) $7 x^{2}+5 y^{2}+6 z^{2}-4 x z-4 y z$

Ans. $\operatorname{Rank}=3$, Index $=3$ Nature: Positive definite.

- Eigen values: $3,6,9$.
(vii) $3 x^{2}+2 y^{2}-4 x z$. Eigen values: $-1,2,4$

Ansi- Rank $=3$, Index $=2$ Nature Indefinite
(viii) $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-2 x_{2} x_{3}$ Eigen values: $6,2,4$

Ans:- Rank $=3$. Index $=3$ Nature Positive definite.

Reduce the following quadratic forms to canonical form by an or tho. -gonal transformation. Indicate Rank, index, nature and signatirse of the quadratictorm. Also indicate the matrix of the transtormation
(i) $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z+2 z x$.

Ans:- $\operatorname{Rank}=3$ Index $=3$ Nature: Positive definite.
Eigen values: $1,1,4$
iii) $2 x y+2 y z+2 z x$

Ans: Rank: $=3$ Index $=1$ Nature: Indefinite
Eigen values: $-1,-1,4$
(iii) $3 x^{2}+3 y^{2}+3 z^{2}+2 x y+2 x z-2 y z$

Ans:- R ank $=3$. Index $=3$ Nature: Positive definite.

1. Eigen values: $1,4,4$
(iv) $2 x_{1} x_{2}+2 x_{1} x_{3}-2 x_{2} x_{3}$

Ans:- Rank $=3$, Index $x=2$ Nature: Indefinite
Eigen values $1,1,-2$
(v) $6 x^{2}+3 y^{2}+3 z^{2}-4 x y-2 y z+4 x z$, Figen values: $2,2,8$.

Ans:- Rank $=3$ Index $=3$ Nature Positive definite.
(vi) $2 x_{1}^{2}+2 x_{2}^{2}+2 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}-2 x_{2} x_{3}$

Ans: $\operatorname{Rank}=2$ Index $=2$ Nature: Positive semi definite.
Eigen values: $0,3,3$
(vii) $-3 x_{1}^{2}-3 x_{2}^{2}-3 x_{3}^{2}-2 x_{1} x_{2}-2 x_{1} x_{3}+2 x_{2} x_{3}$

Ans:- Rank $=3$. Index $=0$ Nature: Nagative definite.
4 Eigen values: $-4,-4,-1$.
(viii) $x^{2}+y^{2}+z^{2}+4 y z+4 x y+4 z x$.

Ans.- Rank $=3$. Index $=2$ Nature: Indefinite
(1): Find the maximum and minimum values of $f(x, y)=3 x^{2}-3 y^{2}+8 x y$ subject to $x^{2}+y^{2}=1$.

Ans:- Max. of $f=5$, Min of $f=-5$.
(2) Find the maximum and minimum values of $f(x, y, z)=3 x^{2}+3 z^{2}+2 y^{2}+2 x z$ subject to $x^{2}+y^{2}+z^{2}=1$.

Ans:- Max. of $f=4$. Min. of $f=2$
(3) Find the maximum and minimum values of $f(x, y, z)=10 x^{2}+2 y^{2}+5 z^{2}-4 x y$ $-10 x z+b y z$ subject to $x^{2}+y^{2}+z^{2}=1$.

Max of $f=14$. Min. of $f=0$.
(4) Find the maximum and minimum values of $2 x^{2}+5 y^{2}+3 z^{2}+4 x y$.
subject to $x^{2}+y^{2}+z^{2}=1$.

$$
\text { Max } \operatorname{\text {of}f=6\quad \text {min.of}f=1....~.~}
$$

(1) Identity the nature of the following quadratic forms. Also write Rank, Index and signature of the quadratic from.
(a) $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{1} x_{3}-4 x_{2} x_{3}$.

Ans:- Nature: tee semi definite, $\operatorname{Index}=1, \quad \tan k=1$.
b) $x^{2}+4 x y+6 x z-y^{2}+2 y z+4 z^{2}$.

Ans:- Nature: Indefinite: Index $=1 \quad$ Rank $=2$.
(c) $3 x^{2}+5 y^{2}+3 z^{2}-2 y z+2 z x-2 x y$.

Ans:- Nature: Positi definite Index $=3$ Rank $=3$.
(d) $2 x^{2}+2 y^{2}+2 z^{2}-2 x y-2 y z-2 x z$.

Ans:- Nature + we semidetimite Index $=2 \quad$ Rank $=2$.

Reduce the following quadratic forms to canonical form by Lagrange's method. Also write the corrosponding linear transtormation. Find its rank, index nature and signature of the quadratic from.
(a) $x_{1}^{2}+2 x_{2}^{2}-7 x_{3}^{2}-4 x_{1} x_{2}+8 x_{1} x_{3}$

Ans: Rank $=3$, Nature - Indefinite Index $=2$.
lb) $2 x_{1}^{2}+7 x_{2}^{2}+5 x_{3}^{2}-8 x_{1} x_{2}-10 x_{2} x_{3}+4 x_{1} x_{3}$.
Ansi Rank $=3$ Nature: Indefinite Index $=2$.
(c) $x_{1}^{2}+3 x_{2}^{2}+x_{3}^{2}+2 x_{1} x_{2}+4 x_{2} x_{3}+6 x_{1} x_{3}$.

Ans:- Rank $=3$ Nature: Indefinite Index $=2$.
dd) $x_{1}^{2}+4 x_{2}^{2}+x_{3}^{2}-4 x_{1} x_{2}+2 x_{3} x_{1}-4 x_{2} x_{3}$.
Ans:- Rank $=1$. Nature: Positive semidetinite Index $=1$.
(c) $x_{1}^{2}+6 x_{2}^{2}+18 x_{3}^{2}+4 x_{1} x_{2}+8 x_{1} x_{3}-4 x_{2} x_{3}$.

Ans:- Rank $=3$ Nature: Indefinite Index $=2$.
(f) $x^{2}+y^{2}+z^{2}-2 x y+4 x z+4 y z$

Ans:- Rank $=3$ Nature: Indefinite Index $=2$.
(g) $x_{1}^{2}-4 x_{2}^{2}+5 x_{3}^{2}+2 x_{1} x_{2}-4 x_{1} x_{3}+2 x_{4}^{2}-6 x_{3} x_{4}$

Ans: Rank $=4$ Nature: Indefinite Index $=2$.
(h) $6 x_{1}^{2}+3 x_{2}^{2}+3 x_{3}^{2}-4 x_{1} x_{2}-2 x_{2} x_{3}+4 x_{3} x_{1}$

Ans:- Rank $=3$ Nature: Positive definite Index $=3$.

MODULE -III

ORDINARY

DIFFERENTIAL
EQUATIONS

Differential Equations of first order and their applications Ordinary Differential Equations of First order and First Degree.

Differential Equation:
An equation involving derivatives of one or more dependent variables with respect to one or more independent variables is called differential equation.

Types of Differential Equations:
(a) Ordinary Differential Equation:-

A differential equation is said to be ordinary if the derivatives in the equation have reference to only a single independent variable.

Eg:-

$$
\begin{aligned}
& \left(\frac{d y}{d x}\right)^{3}-5\left(\frac{d y}{d x}\right)^{2}+6 y=\sin x \\
& \frac{d^{2} y}{d x^{2}}+5 x\left(\frac{d y}{d x}\right)^{3}-6 y=\log x \\
& \left(x^{2}+y^{2}-x\right) d y+\left(y e^{y}-2 x y\right) d x=0
\end{aligned}
$$

(b) Partial Differential Equation:-

A differential equation is said to be partial if the derivatives in the equation have reference to two or more independent variables.

Eg:- $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$

The order of a Differential Equation:
The order of a differential equation is the order of the highest derivative appearing in the equation.

Eg: - la) $\left(x^{2}+1\right) \frac{d y}{d x}+2 x y=4 x^{2}$
The first derivative $\frac{d y}{d x}$ is the highest derivative in the above equation
\therefore The order of the above equation is 1 .
(b) $x \frac{d^{2} y}{d x^{2}}-(2 x-1) \frac{d y}{d x}+(x-1) y=e^{x}$

The second derivative $\frac{d^{2} y}{d x^{\varepsilon}}$ is the highest derivative in the above equation.
\therefore The order of the above equation is 2 .
The Degree of a Differential Equation
The degree of a differential equation is the degree of that highest derivative when the derivatives are tree from radicals and fractions.
(OR)
Let $F\left(x, y, y^{\prime}, y^{\prime \prime} \ldots y^{(n)}\right)=0$ be a differential equation of cordern. If the given differential equation is a polynomial in $y^{(n)}$, then the highest degree of $y^{(n)}$ is defined as the degree of the differential equation.
Note:- (1) If in the given equation $y^{(n)}$ enters in the denominator or has a tractional index, then it may be
possible to free it from radicals by algebraic operations so that $y^{(n)}$ has the least positive integral Index and the equation is written as a polynomial in $y^{(n)}$.
(a) The above definition of degree does not require variables x, t, u etc to be free from radicals and fractions.
(3) If it is not possible to express the diftecential equation as a polynomial in $f^{(n)}$, then the degree of the differential equation is not defined.

Eg:- (a)

$$
\begin{aligned}
& y=x \frac{d y}{d x}+\sqrt{1+\left(\frac{d y}{d x}\right)^{2}} \\
& \left(y-x \frac{d y}{d x}\right)^{2}=1+\left(\frac{d y}{d x}\right)^{2} \\
& \left(1-x^{2}\right)\left(\frac{d y}{d x}\right)^{2}+2 x y \frac{d y}{d x}+\left(1-y^{2}\right)=0
\end{aligned}
$$

This is a polynomial equation in $\frac{d y}{d x}$.
The highest degree of $\frac{d y}{d x}$ is two.
Hence the degree of the above differential equation is 2 .
(b)

$$
\begin{aligned}
& \text { a } \frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3 / 2} \\
& a^{2}\left(\frac{d^{2} y}{d x^{2}}\right)^{2}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{3}
\end{aligned}
$$

This is a polynomial equation in $\frac{d^{y}}{d x^{2}}$
The highest degree of $\frac{d^{2} y}{d x^{e}}$ is 2
Hence the degree of the above differential equation is 2 .
(c) $y=\cos \left(\frac{d y}{d x}\right)$ and $x=3 t \log \left(\frac{d y}{d x}\right)$

The above equations can not be expressed as polynomial equations in $\frac{d y}{d x}$.

Hence the degree of the above differential equations can wit be determined and bonce undetirad.

Solution of a differential equation:
Any. relation between the dependent and independent variables not containing their derivatives which satisfies the given diff. eqn is called a solution or integral of the diff. eqn.
Eg:- $\quad y=a \cos x+b \sin x$ is a sol of $\frac{d^{2} y}{d x^{2}}+y=0$
observe that $y=a \cos x+b \sin x$ is a sol. of the given diff eau for any real constants a and b which are called arbitrary constants.

General Solution: -
A solution containing the number of independent arbitrary constants which is equal to the order of the diff. eqn is called the general solution or complete primitive of the equation.
Eg:- $y=c_{1} e^{x}+c_{2} e^{2 x}$ is the general solution of $y^{\prime \prime}-3 y^{\prime}+2 y=0$, as it contains two independent arbitrary constants.

Particular Solution:-
A solution obtained from the general solution of a diff. equation by giving particular values to the independent arbitrary constants is called a particular solution to the given diff. en.
Eg:- some particular solutions of $y^{\prime \prime}-3 y^{\prime}+2 y=0$ is given by $y=e^{x}+e^{2 x}$, $y=e^{x}-2 e^{2 x} \quad e+c$.
Singular solution:-
A solution which can not be obtained from any general solution of a diff. equation by any choice of the independent arbitrary constants is called a singular solution of the given diff. equation.

Eg: - $\quad y=(x+c)^{2}$
$y=0$ is also a solution of (2). More over $y=0$ can not be obtained by any choice of c in (1)

Hence $y=0$ is a singular solution of (2).

Orthogonal Trajectories:
Trajectory:- A curve that intersects each member of a family of curves according to some specified property is called Trajectory. of the family of curves.

Orthogonal trajectory: - A trajectory which cuts every member of a family of curves ot right angles is called an orthogonal traje. -ctory of the given family of curves.
Orthogonal Trajectories in cartesian form
Let the tamily of curves be described by the equation

$$
\begin{equation*}
f(x, y, c)=0 \tag{i}
\end{equation*}
$$

Where c is a parameter.
Diff. (1) we have.

$$
\begin{gather*}
\frac{\partial t}{\partial x}+\frac{\partial f}{\partial y} \cdot \frac{d y}{d x}=0 \\
\frac{d y}{d x}=\frac{-\frac{\partial f}{\partial x}}{\frac{\partial t}{\partial y}} \tag{2}
\end{gather*}
$$

Eliminating c between (1) and (2), we get

$$
\begin{equation*}
F\left(x, y, \frac{d y}{d x}\right)=0 \tag{3}
\end{equation*}
$$

Equation (3) represents the diff. eqn of the tamily of curves given by (1).
If the slope of any member of (1) at (x, y) on the curve is $\frac{d y}{d x}$, then the slope of the curve passing through the
point (x, y) and cutting the member curve orthogonally is $\left(\frac{d x}{d y}\right)$
\therefore The slope of a member of the member of tamity of orth. - gonal trajectories of (i) is $-\left(\frac{d x}{d y}\right)$

Hence the dit. equation of the orthogonal trajectories may be obtained by replacing $\frac{d y}{d x}$ by $-\frac{d x}{d y}$

The orthogonal trajectories of (i) can be obtained by saving

$$
F\left(x, y,-\frac{d x}{d y}\right)=0 .
$$

Working Procedure:
Step 1:- Let the cartesian equation of the family of curves be $f(x, y, c)=0$
Step 2:- Diff (1) $w \cdot r+x$ and eliminate c, we get the -differential equation of the tamily of curves be

$$
\begin{equation*}
F\left(x, y, \frac{d y}{d x}\right)=0 \tag{2}
\end{equation*}
$$

step 3:- Replace $\frac{d y}{d x}$ by $-\frac{d x}{d y}$ in (2). We get the difteren -rial equation of the family of orthogonal trajectories

$$
\begin{equation*}
F\left(x, y,-\frac{d x}{d y}\right)=0 \tag{3}
\end{equation*}
$$

Step 4:- Solving the diff. en (3) to get the orthogonal trajectory.
\rightarrow show that the system of confocal conics $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$, where λ is a. parameter is self orthogonal.

Sol: Given that the equation of the tamily of confocal conics is

$$
\begin{equation*}
\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1 \tag{1}
\end{equation*}
$$

Diff (1) w.r.t" x^{*}, we get.

$$
\left.\begin{array}{c}
\frac{2 x}{a^{2}+\lambda}+\frac{2 y}{b^{2}+\lambda} \cdot \frac{d y}{d x}=0 . \\
\frac{2 x}{a^{2}+\lambda}+\frac{2 y}{b^{2}+\lambda} \cdot p=0 \text { where } p=\frac{d y}{d x} \\
x\left(b^{2}+\lambda\right)+y\left(a^{2}+\lambda\right) p=0 . \\
\left(x b^{2}+y a^{2}\right)+\lambda(x+y p)=0 . \\
\lambda=\frac{-\left(b^{2} x+a^{2} y p\right.}{x+y p} \\
\therefore \quad a^{2}+\lambda=a^{2}-\frac{\left(b^{2} x+a^{2} y p\right)}{x+y p}=\frac{\left(a^{2}-b^{2}\right) x}{x+y p} \tag{-2}\\
\quad b^{2}+\lambda=b^{2}-\frac{\left(b^{2} x+a^{2} y p\right)}{x+y p}=\frac{-\left(a^{2}-b^{2}\right) y p}{x+y p}
\end{array}\right] .
$$

Eliminating λ from (1) and (2), we get.

$$
\begin{align*}
& \frac{x^{2}(x+y p)}{\left(a^{2}-b^{2}\right) x}+\frac{y^{2}(x+y p)^{2}}{\left(a^{2}-b^{2}\right) 4 p}=1 \\
& \frac{x+y p}{a^{2}-b^{2}}\left(x-\frac{y}{p}\right)=1 \\
& (x+y p)\left(x-\frac{y}{p}\right)=a^{2}-b^{2} \tag{3}
\end{align*}
$$

This is differential equation of family of curves (1).
We get the differential equation of the family of crithogonal trajectries.
by repacing $\frac{d y}{d x}=p$ with $-\frac{d x}{d y}=-\frac{1}{\frac{d y}{d x}}=-\frac{1}{p}$.
Hence the differential equation of orthogonal trajectories is.

$$
\begin{equation*}
\left(x-\frac{y}{p}\right)(x+p y)=a^{2}-b^{2} \tag{4}
\end{equation*}
$$

Which is same as (3). Thus we see that the differential equation of the tamily of orthogonal trajectories is same as that of the orthogonal tamily. Hence the given family of curves is orthogonal to itself.
Hence $I t$ is a self orthogonal family of curves.

ORTHOGONAL TRAJECTORIES (Cartesian)
1 Find the orthogonal trajectories of the family of curves $y=\frac{x}{1+c_{1} x}$ Where c_{1} is the parameter Ans:- $x^{3}+y^{3}=c_{2}$.
2 Find the orthogonal trajectories of the tamily of parabolas through the origin and the loci on y-axis Ans:- $\frac{x^{2}}{2}+\frac{y^{2}}{1}=c$.
3 Find the orthogonal trajectories of the tamily of curves $4 y+x^{2}+1+c_{1} e^{2 y}=0$ where c_{1} is the parameter $A:-y=\frac{1}{4}-\frac{1}{6} x^{2}+c_{2} x^{-4}$.
4 Find the member of the O.T for the curve $x+y=c e^{y}$ which passes through $(0,5)$ Ans:- $y e^{x}=2 e^{x}-x e^{x}+c_{2}, y=2-x+3 e^{-x}$.
5 Find the $0 . T$ of the family of coaxial circles $x^{2}+y^{2}+2 g x+c=0$ Where g is parameter. Ans:- $x^{2}+y^{2}-c_{1} y+c=0$.
6 Find the O.T of the family of curves $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}+\lambda}=1$ where λ is the parameter Ans:- $x^{2}+y^{2}-2 a^{2} \log x=c$.
7 show that the tamily of confocal conics $\frac{x^{2}}{a^{2}+\lambda}+\frac{y^{2}}{b^{2}+\lambda}=1$ is self orthogonal. Where λ is the parameter.
8 show that the orthogonal trajectories of the system of parabolas $y^{2}=4 a(x+a)$ belongs to the system itself, ' a ' being the parameter.
9 Find the family orthogonal to the tamily $y=c e^{-x}$ is of exponential curves. Determine the member of each family passing through $(0,4)$. Ans:- $y=4 e^{-x}, y^{2}=2(x+8)$
10 Find the O.T of the tamily $y=x+c e^{-x}$ and determine the particular member of each tamily that passes through $(0,3)$.
Ans:- $y=x+3 e^{-x}, \quad x-y+2+e^{3-y}=0$.
11 Find the O.T of the tamily of curves whose diff. equation is $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{2 x y}$ Ans:- $x^{2}+y^{2}=c y$.

12 Find the 0.T of the tamily of curves $x^{2}+y^{2}+2 g x+c=0$ where 9 is the parameter. Ans:- $x^{2}+y^{2}-k y-c=0$.
13 show that the tramily of parabolas $x^{2}=4 a(a+y)$ is set orthogonal Where a is parameter.
14 show that the family of confocal conics $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a-b}=1$ is self orthogonal. Here a is the parameter and b is the constant.

15 Find the value of the constant d such that the priabolas $y=c_{1} x^{2}+d$ are the orthogonal trajectories of the family of ellipses $x^{2}+2 y^{2}-y=c_{2}$ Ans:- $d=\frac{1}{4}$.

Polar co ordinates :-
Suppose $f(x, \theta, k)=0$ is the given family of curves. Forming the differential equation eliminating the arbitrary constant.
The differential equation is $F\left(\gamma, \theta, \frac{d \gamma}{d \theta}\right)=0$.
Suppose c is curve in the family $f(\gamma, 0, k)=0$.
Suppose c is any curve which cuts c^{\prime} orthogonally
Let PT be the tangent to c at P and $P T^{\prime}$ is the tangent to c^{\prime} at P. \quad LOPS $=\phi, \quad \angle D P T^{\prime}=90^{\circ}+\phi=\phi^{\prime}$

We know that $\tan \varphi=\gamma \frac{d \theta}{d \gamma}$.

$$
\begin{aligned}
\tan \phi^{\prime} & =\tan (90+\phi) \\
& =-\cot \phi \\
& =-\frac{1}{\tan \varphi} \\
& =\frac{-1}{\gamma \frac{d \theta}{d \gamma}} \\
& =-\frac{1}{\gamma} \frac{d \phi}{d \theta}
\end{aligned}
$$

On replacing $\frac{d \theta}{d r}$ by $-\frac{1}{\gamma} \frac{d r}{d \theta}$ we get the differential equation of the orthogonal trajectories.
$\frac{d \gamma}{d \theta}$. should be replaced by $-\gamma^{2} \frac{d \theta}{d \gamma}$
Solving the differential equation, we get the family of orthogonal trajectories.

Orthogonal Trajectories in Polar form:
Working Procedure:-
Let $f(r, 0, c)=0$ (1) be the equation of the given tamily of curves in polar form
Step 1: - Diff (1) w.r.t' θ^{\prime} and obtain the differential equation of family of curves $F\left(\gamma, 0, \frac{d \gamma}{d \theta}\right)=0$ by eliminating the parameter C.
Step 2:- Replace $\frac{d \gamma}{d 0}$ with $-\gamma^{2} \frac{d \theta}{d \gamma}$ in (2).
Then the differential equation of the family of Orthogonal trajectories $F\left(\gamma, \theta,-\gamma^{2} \frac{d \theta}{d \gamma}\right)=0$

Step 3:- Solve the equation (3) to get the equation of the orthogonal trajectories of (1).
\rightarrow Find the orthogonal trajectories of the tamily of cardioids $\gamma=a(1-\cos \theta)$ Where a is the parameter.

Sol:- Given equation of the tamily of carctiords is $x=a(1-\cos \theta)$
Diff (i) w.r.t. θ, we get

$$
\begin{align*}
\frac{d \gamma}{d \theta} & =a \sin \theta \\
a & =\frac{1}{\sin \theta} \frac{d \gamma}{d \theta} \tag{2}
\end{align*}
$$

Eliminating a from (1) and (2), veges

$$
\begin{align*}
& \gamma=\frac{1}{\sin \theta}(1-\cos \theta) \frac{d \gamma}{d \theta} \\
& \frac{d \gamma}{d \theta}=\frac{\gamma \alpha / \sin \theta / 2 \cos \theta / 2}{\alpha \sin \theta / 2} \\
& \frac{d \gamma}{d \theta}=\gamma \cot \theta / 2-(3) \tag{3}
\end{align*}
$$

This is the differential equation of family of given curves
To get differential equation of tamily of orthegonal-trajectories replace $\frac{d \gamma}{d \theta}$ with $-\gamma^{2} \frac{d \theta}{d \gamma}$ in (3), we get

$$
\begin{aligned}
-x^{x} \frac{d \theta}{d \gamma} & =-\gamma \cot \theta / 2 \\
& \therefore \frac{d \theta}{d \gamma}
\end{aligned}=\cot \theta / 2
$$

Separating the variables and integrate both sides, we get

$$
\begin{aligned}
& \int \frac{-d \theta}{\cot \theta / 2}=\int \frac{d \gamma}{\gamma}+\log c \\
& \int \frac{-\sin \theta / 2}{\cos \theta / 2}=\log |\gamma|+\log c \\
& 2 \int \frac{\frac{-1}{2} \sin \theta / 2}{\cos \theta / 2}=\log (c \gamma)
\end{aligned}
$$

$$
\begin{aligned}
2 \log (\cos \theta / 2) & =\log (c \theta) \\
\log \cos ^{2} \theta / 2 & =\log (c \theta) \\
\cos ^{2} \theta / 2 & =c \theta \\
c x & =\frac{1+\cos \theta}{2} \\
x & =\frac{1}{2 c}(1+\cos \theta) \\
x & =c_{1}(1+\cos \theta)
\end{aligned}
$$

This is the equation of tamely of orthogonal trajectories

ORTHOGONAL TRAJECTORIES (Polar form)
1 Find the orthogonal trajectories of the family of curves $\gamma=a \theta$ Where a is the parameter Ans:- $\gamma=C e^{-\theta^{2} / 2}$

2 Find an eqn of the O.T of the family of circles having polar equation $\gamma=2 a \cos \theta$ where a is the parameter Ans:- $\gamma=2 c \sin \theta$.

3 Find an O.T of the family of curves $\gamma^{2}=a^{2} \cos 2 \theta$ where a is the para - mete Ans:- $\gamma^{2}=c^{2} \sin 2 \theta$.

4 Find an O.T of the family of curves $\gamma^{n} \sin (n \theta)=a^{n}$ where a is the parameter Ans:- $r^{n} \cos n \theta=c_{1}^{n}$
5 Find an O.T of the tamily of curves $\gamma=\frac{2 a}{1+\cos \theta}$ where a is the para - meter Ans:- $\gamma=\frac{2 c}{1-\cos \theta}$.

6 Find an O.T of the tamily of curves $\gamma=a(1+\cos \theta)$ where a is the parameter Ans:- $\gamma=c(1-\cos \theta)$.
7 P|T the orthogonal trajectories of the tamily of curves $A=r^{2} \cos \theta$ are the curves $B=r \sin ^{2} \theta$ where A and B are parameter

8 Find the O.T of $\gamma=a(1-\sin \theta)$ where a is the parameter Ans:- $\gamma=c(1+\sin \theta)$.
9 Find the O.T of $\gamma=a(1-\cos \theta)$ where a is the parameter.

Newton's Law of cooling:
statement: - The sate of change of the temparature it a body is proportional to the difference of the temperature of the bed and that of the surrounding medium.
Let θ be the temparature of the body at tires and ε_{0} be the temparature of its surrounding medium (usually air). By the Newton's Law of cooling, we have.

$$
\begin{aligned}
& \frac{d \theta}{d t} \alpha\left(\theta-\theta_{0}\right) \\
& \frac{d \theta}{d t}=-k\left(\theta-\varepsilon_{0}\right) \quad \text { Where } k \text { is a +re constant }
\end{aligned}
$$

separate the variables and integrate, we get

$$
\begin{array}{r}
\int \frac{d \theta}{\theta-\theta_{0}}=-k \int d t+\log c \\
\log \left|\theta-\theta_{0}\right|=-k t+\log c . \\
\log \left|\theta-\theta_{0}\right|-\log c=-k t \\
\log \left|\frac{\theta-\varepsilon_{0}}{c}\right|=-k t \\
\frac{\theta-\varepsilon_{0}}{c}=\epsilon^{-k t} \\
\theta=\varepsilon_{0}+c e^{-k t} \tag{i}
\end{array}
$$

It initially $\theta=\theta$, is the temparature of the body at time $t=0$
Then (1) gives. $c=c_{1}-\theta_{0}$
sub (2) in (i), we get.

$$
\theta=\varepsilon_{0}+\left(0_{1}-\theta_{0}\right) e^{-k t}
$$

11) A body is originally at $80^{\circ} \mathrm{C}$ and cools down to $60^{\circ} \mathrm{C}$ in 20 min . It the tomparatuse of the air is $40^{\circ} \mathrm{C}$ find the tomparatuse. of the body attis 40 minutes.
Sol:- Let 0 be the temparature of the body at time
The temperature of the body $0=80^{\circ} \mathrm{C}$ when $1=0 . \mathrm{min}$.
The tompasatuse of the body $0=60^{\circ} \mathrm{C}$ when $t=80 \mathrm{~min}$
The temperature of the ais is $40^{\circ} \mathrm{C}$.
By Newton's Law of coidng,
we have $\frac{d \theta}{d t}=-k\left(0-0_{0}\right)$.
Were O_{0} is the temporatuse of the ais.

$$
\begin{equation*}
\frac{d 0}{d t}=-k(0-40) \tag{1}
\end{equation*}
$$

separate the variables and integrate, we get

$$
\begin{align*}
& \int \frac{d \theta}{\theta-40}=-k \int d t+\log c \\
& \log |\theta-40|=-k t+\log c \\
& \log |\theta-40|-\log c=-k t \\
& \log \left|\frac{\theta-40}{c}\right|=-k t \\
& \frac{\theta-40}{c}=e^{-k t} \\
& 0-40=c e^{-k t} \\
& 0=40+c e^{-k t} \tag{-2}
\end{align*}
$$

When $t=0, \varepsilon=80^{\circ} \mathrm{C}$.
From (i),

$$
\begin{gather*}
80=40+c e^{-k \cdot 0} \\
c=40 \tag{5}
\end{gather*}
$$

subs $c=40 \ln (2)$, we get $\theta=40+406 e^{-k t}$
Scanned with CamScanner

When $t=20, \theta=60$

$$
\begin{align*}
& 60=40+40 e e^{-k 20} \\
& 20=406 \cdot e^{-k 20 .} \\
& \frac{1}{2}=\epsilon e^{-20 k} \tag{4}
\end{align*}
$$

When $t=40 \mathrm{~min}, \theta=$
From (3), we have, $0=40+40 e^{-40 k}$
From (4).

$$
\begin{align*}
& \frac{1}{2}=e^{-20 k} \tag{3}\\
& \frac{1}{4}=e^{-40 k} \tag{5}
\end{align*}
$$

From (3) and (5), we get

$$
\begin{aligned}
\theta & =40+40 \cdot \frac{1}{4} \\
\theta & =50^{\prime} \mathrm{C} .
\end{aligned}
$$

(2) If the temparature of the air is $20^{\circ} \mathrm{C}$ and the temparatuc. of the body drops trim $100^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 10 min . What will be its temparatuse after 20 min . Wen will be the temparatuse. $40^{\circ} \mathrm{C}$.
Sol. Let θ be the temparatuse of the body at time.
The temparature of the body $\theta=100^{\circ}$ when t $=0 \mathrm{~m}, 1 \mathrm{~N}$. The temparatuse of the body $0=80 \mathrm{C}$ went $=10 \mathrm{~min}$

The temparature of the air $\theta_{0}=20^{\circ} \mathrm{C}$.
By Newton's Law of cooling, we have.

$$
\frac{d \theta}{d t}=-k(\theta-00)
$$

where. θ_{0} is the tamparatuse of the body.

$$
\frac{d \theta}{d t}=-k(0-20)
$$

separate the variables andintequate, we get

$$
\begin{gather*}
\int \frac{d \theta}{\theta-20}=-k \int d t+\log c \\
\log |\theta-20|=-k t+\log c \\
\log |\theta-20|-\log c=-k t \\
\log \left|\frac{\theta-20}{c}\right|=-k t \\
\frac{\theta-20}{c}=e^{-k \mid} \\
\theta=20+c e^{-k t} \tag{1}
\end{gather*}
$$

At $t=0, \theta=100$.

$$
\begin{align*}
& \\
\text { From (1), } \quad 100= & 20+c e^{-k \cdot 0} \\
c & =80 . \tag{2}\\
(1) \Rightarrow \quad \theta= & 20+80 e^{-k t}
\end{align*}
$$

When $t=10 \mathrm{~min}, 0=80^{\circ} \mathrm{C}$,

$$
\text { From (2), } \begin{align*}
80 & =20+80 \epsilon^{-10 k} . \\
60 & =80 e^{-10 k} . \\
\frac{3}{4} & =\epsilon^{-10 k} \tag{3}
\end{align*}
$$

(i) When $t=20 \mathrm{~min}, 0=$

From (2).

$$
\begin{align*}
0= & 20+80 e^{-k \cdot 20} \tag{4}\\
\theta=20 & +80 \cdot e^{-20 k} \\
(3) \Rightarrow \frac{3}{4} & =e^{-10 k} \\
\frac{9}{16} & =e^{-20 k} \tag{5}
\end{align*}
$$

From (4) and (5), we get

$$
\theta=20+80 \cdot \frac{9}{16}=65^{\circ} \mathrm{c} .
$$

\therefore The tamparature of the body will be $65^{\circ} \mathrm{C}$ after 20 min.
(ii) When $\theta=40^{\circ} \mathrm{C}, t=$

From (2),

$$
\begin{align*}
0-20 & =80 e^{-k t} \\
40-20 & =80 e^{-k t} \\
20 & =80 e^{-k t} \\
\frac{1}{4} & =e^{-k t} \\
\frac{1}{4} & =\frac{1}{e^{k t}} \\
e^{k t} & =4 . \\
{\left[e^{k}\right]^{t} } & =4 \tag{6}
\end{align*}
$$

From (3),

$$
\begin{align*}
\frac{3}{4} & =e^{-10 k} . \\
\frac{3}{4} & =\frac{1}{e^{10 k} .} \\
\frac{4}{3} & =e^{10 k} . \\
e^{k} & =\left(\frac{4}{3}\right)^{1 / 10} . \tag{-1}
\end{align*}
$$

From (b) and \mathcal{G}, we get

$$
\left[\left(\frac{4}{3}\right)^{1 / 10}\right]^{t}=4 .
$$

Taking log. bothsides, weget

$$
\begin{aligned}
& \log \left[\left(\frac{4}{3}\right)^{1 / 10}\right]^{t}=\log 4 \\
& t \cdot \frac{1}{10} \log \frac{4}{3}=\log 4 \\
& t=\frac{\log \log 4}{\log \left(\frac{4}{3}\right)}=
\end{aligned}
$$

\rightarrow A murder victim is discovered and a lientnant from the Forensic science laboratory is summoned to estimate the time of death. The body is located in a room that is kept at a constant temparatuce of $68^{\circ} \mathrm{F}$. The lieutenant arrived at 9.40 pm and mea

- sured the body temparature as 94.4 F at that Heme. Another measurement of the body temparatuse at 11 PM is $89.2^{\circ} \mathrm{F}$ Find the estimated time of death.
Sol:- Let θ be the temparature of the body at time t Temperature of the room is $\theta_{0}=6.9 \mathrm{~F}$.
Temparatuze of the body at time $t=0(9.40 \mathrm{PM})$ is $0=94.4$ Temparature of the body at time $t=80 \mathrm{~min}(11 \mathrm{PM})$ is $\theta=89.2$. Normal temparature of the human body is $98.6^{\circ} \mathrm{F}$.
We have to find the time $t=$ When temparature $0=98.6 \mathrm{~F}$
By Neut on's Law of cooling, we have.

$$
\begin{aligned}
& \frac{d \theta}{d t} \propto \theta-\theta_{0} \\
& \frac{d \theta}{d t}=-k\left(\theta-\theta_{0}\right)
\end{aligned}
$$

separating the variables and integrate bothsides, we get

$$
\begin{aligned}
\int \frac{d \theta}{\partial-\theta_{0}} & =-k \int d t+\log c \\
\log \left|\theta-\theta_{0}\right| & -\log c
\end{aligned}=-k t \quad \begin{aligned}
\log \left|\frac{\theta-\theta_{0}}{c}\right| & =-k t \\
\frac{\theta-\theta_{0}}{c} & =e^{-k t} \\
\theta-\theta_{0} & =c e^{-k t} \\
\theta & =\theta_{0}+c e^{-k \mid} \\
\theta & =68+c e^{-k t}
\end{aligned}
$$

\rightarrow We have time $t=0$, temperature $\theta=94.4$
From (1),

$$
\begin{aligned}
94.4 & =68+c e^{-k(0)} \\
c & =94.4-68 \\
c & =26.4
\end{aligned}
$$

$$
\begin{equation*}
\text { (1) } \Rightarrow \theta=68+2.6 \cdot 4 e^{-k t} \tag{2}
\end{equation*}
$$

\rightarrow We have tire $t=80 \mathrm{~min}$, temperature $0=89.2$

$$
\text { From (2.), } \begin{align*}
89.2=68 & +26.4 e^{-80 k} \\
26.4 e^{-80 k} & =89.2-68 \\
e^{-80 k} & =\frac{21.2}{26.4} \\
e^{80 k} & =\frac{2.6 .4}{21.2} \\
80 k & =\log \left(\frac{2.6 .4}{2.1 .2-1}\right) \\
k & =0.002-74
\end{align*}
$$

\rightarrow We have to find the time $t=$ \qquad when temperature $\theta=98.6 \mathrm{~F}$

$$
\text { From (3), } \quad \begin{aligned}
98.6 & =68+26.4 t(-0.00274) t \\
2-6.4 e^{(-0.00274) t} & =98.6-68 \\
e^{(-0.00274) t} & =\frac{30.6}{26.4} \\
(-0.00274) t & =\log \left(\frac{30.6}{26.4}\right) \\
t & =-53.88
\end{aligned}
$$

Death accused approximately 53.8 minutes betore first measure meat at 9.40 .

This places the time of death approximately at 8.46 Pm .

NEWTON'S LAIN OF COOLING.
1 If the temparature of the air is 20 C and the temparature of the body drops from $100^{\circ} \mathrm{C}$ to $80^{\circ} \mathrm{C}$ in 10 minutes. What will be its bempan - rature after 20 minutes. When will be the temperature $40^{\circ} \mathrm{C}$ A:-48. emir 2 A murder victim is discovered and a lieutenant from the Forensic science laboratory is summoned to estimate the time of death. The body is located in a room that is kept at a constant t-emparature $68^{\circ} \mathrm{F}$. The lieutenant arrived at $9.40 \mathrm{P} . \mathrm{M}$ and measured the body Lemparature as $94.4 \mathrm{~F}^{\circ}$ at that time. Another measurement if the body temparature at $11 \mathrm{P} . \mathrm{M}$ is $89.2^{\circ} \mathrm{F}$ find the estimated time of death. Ans:- 8.46 PM.
3 An object whose temparature is $75^{\circ} \mathrm{C}$ cools is an atmosphere of constant. temperature $25^{\circ} \mathrm{C}$ at the rate $k \theta, \theta$ being the excess temparature. of the body over the temparature. It after 10 minutes the tempara -ture of the object falls to $65^{\circ} \mathrm{C}$, find its temparature after 20 min . Find the time required to cool down to $55^{\circ} \mathrm{C}$ Inst 23 min .

4 Water is heated to the boiling point temperature $100^{\circ} \mathrm{C}$. It is then removed from heat and kept in a room which is at a constant. temparature of $60^{\circ} \mathrm{C}$. After 3 minutes, the temparature of the water is $90^{\circ} \mathrm{C}$. Find the temparature ate 6 min Ans:- $82.5^{\circ} \mathrm{C}$.
5 A body of temparature so F is placed in a room of constant temp - rature $50^{\circ} \mathrm{F}$ at a time $t=0$. At the end of 5 minutes the body has cooled to a temparature of 70 F . When will the temparature of the body be bo'F? Ans $t=13.55 \mathrm{~min}$.

6 According to Newton's law of cooling, the rate at which a substance Cods in moving air is proportional to the difference between the 28 temperature if the substance and that of the air. If the tempa -rature of the air is $40^{\circ} \mathrm{C}$ and the substance cods from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$, 20 min . What will be the temparature of the substance after 40 minutes 9. Ans:- $49.86^{\circ} \mathrm{C}$.
7 A coppor hall is heated to a temparature of $80^{\circ} \mathrm{C}$. Then at time $t=0$ it is placed in water which is maintained at $30^{\circ} \mathrm{C}$. It at $t=3 \mathrm{~min}$. the temparature of the ball is reduced to $50^{\circ} \mathrm{C}$, find the the at which the temparature of the ball is $40^{\circ} \mathrm{C}$ Ans:- 5.27 min .
8 If the temperature of the air is $30^{\circ} \mathrm{C}$ and the substance cools from $100^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$ in 15 min . Find when the temparature will be $40^{\circ} \mathrm{C}$ Ans:- 52.5 min .

9 An object cools from $120^{\circ} \mathrm{F}$ to $95^{\circ} \mathrm{F}$ in halt an hows when surrounded by air whose temparature is $70^{\circ} \mathrm{F}$. Find its temparature at the end if another half an hour Ans:- $95.08^{\circ} \mathrm{F}$.
10. The temparature of a cup of cotter is $92^{\circ} \mathrm{C}$ when treshly poured the room temparature being $24^{\circ} \mathrm{C}$. In one minute it was cooled to $80^{\circ} \mathrm{C}$ How long a period must elapse, betore the temparature of the cup becomes $65^{\circ} \mathrm{C}$ Ans:- 2.61 min .
11 Water at tempasature $100^{\circ} \mathrm{C}$ cools in 10 min to $88^{\circ} \mathrm{C}$ in a room of tempo -rature $25^{\circ} \mathrm{C}$. Find the temparature of water after 20 min . Ans:- $77.9^{\circ} \mathrm{C}$
12 If the air is maintained at $30^{\circ} \mathrm{C}$ and the temparature of the body cools from $80^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}, 12 \mathrm{~min}$. find the temparature of the body after (i) 36 min (ii) 24 min .

Law of Natural Growth or Decay:
Let $x(t)$ be the amount of a substance at Howe t and let the substance be getting converted chemically. A laue de chemical conversion states that the rate of change of amount $x 11$) ot a chemically changing substance is proportional to the amount it the substance. available at that time.

$$
\text { le } \frac{d t}{d t} d x \text { ie. } \frac{d t}{d t}=-k x
$$

Where. k is a constant of proportionality.
This differential equation can also describe. in a simple way the population growth, radioactive de cay et c.

It as t increases, x increases.
we can take $\frac{d y}{d t}=k x \quad(k>0)$.
It as x decreases as t increases

$$
w e \text { can take. } \frac{d x}{d t}=-k x \quad(k>0)
$$

(1) In a chemical reaction a green substance is being converted into anottes at a rate proportional to the amount of substance. unconverted. If $\left(\frac{1}{5}\right)^{\text {th }}$ of the original amount has been transtromed in 4 minutes, how stack time will be required to transform one halt.
Sol- Let x grans be the amount of the remaining substance after t minutes.
\therefore The differential equation is $\frac{d x}{d t}=-k x, k>0$.

Separate the variables and integrate, we -get

$$
\begin{align*}
& \int \frac{d x}{x}=-k \int d t+\log c \\
& \log x-\log c=-k t \\
& \log \frac{x}{c}=-k t \\
& \frac{x}{c}=e^{-k t} \\
& x=c e^{-k t} \tag{i}
\end{align*}
$$

Let the original amount of substance be m grams. when $t=0, x=m$.

From (1),

$$
\begin{gathered}
m=c e^{-k \cdot 0} \\
c=m
\end{gathered}
$$

Sub. $c=m$ in (1), we get

$$
\begin{equation*}
x=m e^{-k t} \tag{2}
\end{equation*}
$$

When $t=4, x=m-\frac{m}{5}=\frac{4 m}{5}$
Form (2).

$$
\begin{gather*}
x=m e^{-k t} \\
\frac{4 m}{5}=m e^{-4 k} \\
\frac{4}{5}=e^{-4 k} \tag{3}
\end{gather*}
$$

We have to find t when $=\frac{m}{2}$.

$$
\begin{align*}
\text { From (2), } \frac{n)}{2} & =m e^{-k t} \\
\frac{1}{2} & =e^{-k t} \\
\frac{1}{2} & =\left(e^{-k}\right)^{t}- \tag{4}\\
\text { From (3), } \quad \frac{4}{5} & =\left(e^{-k}\right)^{4} . \\
e^{-k} & =\left(\frac{4}{5}\right)^{1 / 4}
\end{align*}
$$

From (4) and (5), we get-

$$
\frac{1}{2}=\left(\frac{4}{5}\right)^{\frac{t}{4}}
$$

Taking \log. bothsides, we get

$$
179
$$

$$
\begin{aligned}
\log \left(\frac{1}{2}\right) & \left.=\frac{t}{4} \log \frac{4}{5}\right) \\
t & =\frac{4 \log \left(\frac{1}{2}\right)}{\log \left(\frac{4}{5}\right)} \\
t & =12.4 \mathrm{~min}
\end{aligned}
$$

(2) Bacteria in a culture grows exponentially so that the initial number has doubled in three hours. How many times the initial number will be present attes 9 hours.
Sol:- Let initially, at time $t=0$, the number of bacteria be A. Let $N(t)$ be the number at time t. Since the bact-csial grows exponentially.

The differential equation is $\frac{d N}{d t}=K N$
separate the variables and integrate

$$
\begin{align*}
\int \frac{d N}{N} & =k \int d t+\log c \\
\log N & =k t+\log c \\
\log \frac{N}{c} & =k t \\
N & =c e^{k t} \tag{1}
\end{align*}
$$

At $t=0, N=A$.

$$
\text { From (1), } \begin{aligned}
A & =C e^{x \cdot 0} \\
C & =A .
\end{aligned}
$$

$$
\begin{equation*}
\therefore N=A c^{k t} \tag{2}
\end{equation*}
$$

At $L=3, N=2 A$.

$$
\text { From (2), } 2 A=A e^{3 k}
$$

$$
\begin{equation*}
2=c^{3 k} \tag{3}
\end{equation*}
$$

We have to find N at $t=9$.

$$
\text { From (2), } \begin{align*}
N & =A e^{k t} \\
N & =A e^{9 k} \\
N & =A\left(e^{k}\right)^{9}
\end{aligned} \quad \begin{aligned}
& 4= \tag{4}\\
& \text { Frown (3), } 2=e^{3 k} \\
& 2=\left(e^{k}\right)^{3} \\
& e^{k}=2^{1 / 3}
\end{align*}
$$

From (4) and (5), we get

$$
\begin{aligned}
& N=A \cdot\left(e^{1 / 3}\right)^{9} \\
& N=A \varepsilon^{3} \\
& N=8 A .
\end{aligned}
$$

\therefore After a hours the bacteria will be 8 times that was present initially.
13) A bacterial culture growing exponentially increases from 200 to 500 grams in the period from $6 \mathrm{a} \cdot \mathrm{m}$ to $9 \mathrm{a} . \mathrm{nl}$. How many. grams will he present at noon.
sol:- Let N be the number of bacteria in a cuttuse at any time $t>0$,
The differential equation is $\frac{d W}{d t}=N K$.
separate the variables and integrate., ueget

$$
\begin{align*}
& \int \frac{d N}{N}=k \int d t+\log c \\
& \log N-\log c=k t \\
& \log \frac{N}{c}=k t \\
& N=c e^{k t} \tag{1}
\end{align*}
$$

When $t=0, N=200$ grams.

$$
\text { from (1), } \begin{align*}
N & =c e^{k t} \\
200 & =c e^{0 \cdot k} \\
c & =200 \\
\therefore N & =200 e^{k t} \tag{2}
\end{align*}
$$

When $t=3$ hours, $N=500$ grams

$$
\text { from (2), } \begin{aligned}
N & =200 e^{k t} \\
\frac{500}{200} & =e^{3 k} \\
e^{3 k} & =\frac{5}{2} \\
3 k & \log _{e}
\end{aligned}=\log ^{\frac{5}{2}} .
$$

Hence the number of bacteria in the culture at any instant of time $t>0$ is given by.

$$
\begin{aligned}
& N=200 e^{k t} \\
& N=200 e^{\log (2.5)^{\frac{t}{3}}} \\
& N=200(2.5)^{t / 3}
\end{aligned}
$$

\therefore After hours, the number of bacteria present will be

$$
\begin{aligned}
& N=200(2.5)^{6 / 3} \\
& N=200(2.5)^{2} \\
& N=200(6.25) \\
& N=1250 \text { grams. }
\end{aligned}
$$

1 The mass of crystalline deposit increases at a rate which is proportional to it's mass at that time. The deposit has stated around a crystal seed of 5 grams. Find an expression of H s mass at time t. If in 30 minutes the mass of the deposit. increases by 1 gram . What will be the mass of the deposit after 10 hones. Ans:- $5\left(\frac{6}{5}\right)^{20}$.
2 The rate at which a certain substance decomposes in a certain solution at any instant is proportional to the amount of it present in the Solution at that instant. Initially, there are 27 grams and three hours later, it is found that 8 grams are left. How much substance will be left after one more hove. Ans:- $\frac{16}{3}$ grams.
3 The number x of bacteria in a culture grow at a rate proportional to x. The value of x was initially 50 and increased to 150 in 1 hours. what will be the value of x after $1 \frac{1}{2}$ hour. Ans:- $50(3)^{1 / 2}$ grows.
4 The rate of growth of a bacteria is proportional to the number present If initially there were 100 bacteria and the amount doubles in 1 hove. how many bacteria will be there after $2 \frac{1}{2}$ hours. Ans:- 564 .
5 In a certain reaction, the rate of conversion of a substance at Hemet' is proportional to the quantity of the substance still untranstormed at the instant. At the end of one hours 60 grams while at the end of 4 hours 21 grams remain. How many grans of the first substance. was there initially? Ans!- 89 grams approx.
6 A radio active substance disintegrate at a rate proportional to its mass when mass is 10 mgm , the rate of disintegration is 0.051 mgm . per day. How long will it take tor the mass to reduce from 10 to 5 mams? Ans!- 135 days appro.

7 A bacterial culture growing, exponentially, increases from 100 to 400 grams in 10 hours. How many was present after 3 hours?.

Ans:- 151.57 .
8 If 30% of a radio active substance disappears in 10 days. Low long will it take for 90%. to disappear? Ans:- $10\left[\frac{\log 10}{\log 10-\log 7}\right]$
9 Under certain conditions can sugar in water is converted into dextrose at a rate which is proportional to the amount unconverted at any time. If 75 grams was there at time $t=0$ and 8 grams are conver -ted during the first 30 minutes, find the amount converted. in $1 \frac{1}{2} h \mathrm{~h}$ Ans:- 21.5 grams.
10 If 10% of 50 mg of a radio active material decays in 2 hours, find the mass of the material left at any time and the time at which the material has decayed to one half of its initial mass. Angst 13 his.
11 If the population of a city gets doubled in 2 yrs and after 3 years the population is 15,000. find the initial population of the city Ans:- 5297 .
12 Bacteria in a certain culture increases at a rate proportional to the number present If the number N increases from 1000 to 2000 in ore hove, how many are present at the end of 1.5 hour Angst 2828 Apo.
13 In a culture yeast. the amount y of active yeast grows at a rate proportional to the amount present. It the original amount y doubles in 2 hours how long does it take for the original amount to triple Ans:- 3.17 hours

14 A bacterial culture population A is known to have a rate of growth proportional to A itself. Between noon and 2.P.M. If the population triples. at what time (no controls being exerted) Should A become 100 times what it was at noon, given that. Ans:- 8.3837 .
15 Find the halt lite of uranium which disintegrates at a rate propertbera to the amount present at any instant. Given that m_{1} and m_{2} grams of uranium are present at time t_{1} and t_{2} respectively.
Ans:- $T=\frac{\left(t_{2}-t_{1}\right) \log 2}{\log \left(\frac{\left(m_{1}\right.}{m_{2}}\right)}$
16 If radioactive carbon -14 has halt lite of 5750 years, what will remain of one gram after 3000 years 9 . Ans:- 0.6979 m .
17 It was found that 0.5% of radium disappears in 12 years
(a) What percentage will disappears in 1000 years? Ans:- 34.2%
(b) What is halt lite of radium? Ans:- 1672.18 years.

18 A radio active substance disintegrates at a rate proportional to the amount of the substance present. It 50% of the substance disinte -grates in 1000 years approximately what percentage of the substance will disintegrate in 50 yeas Ans'- 3.5%
19 A culture initially No number of bacteria. At $t=1$ hour, the nom - her of bacteria is measured to be $\frac{3}{2} N_{0}$. It the rate of growth is proportional to the number of bacteria present. determine the time necessary for the number of bacteria to triple Ans:- 2.71 hours.
 present. If the number doubles in one hour how long does it take. tor the number to triple. Ansi- 1.58 hours.
2) In a chemical reaction a given substance is being converted into another at a rate proportional to the amount of substance uncorveate If $\left(\frac{1}{3}\right)^{\text {th }}$ of the original amount has been transformed in $4-\mathrm{m} / \mathrm{n}$. how much time will be required to transform ore halt Ans:- $13 \mathrm{~m} / \mathrm{m}$

22 A bacterial culture growing exponentially increases from 200 to 500 grams in the period from 6 aim to 9 aim. How many grams will be present at noon ? Ans:- 1249.8 grams

23 Bacteria in a culture grows exponentially so that the initial number has doubled in 3 has. How many times the initial number will be present attis. 9 his.

Moducte - 2
Higher Order linear diffoccutial Equations:-

- Eefuination: dr equation of the form

$$
\frac{d^{n} y}{d x^{n}}+P_{1}(x) \frac{d^{n-1} y}{d x^{n-1}}+P_{2}(x) \frac{d^{n-1} y}{d x^{n-2}}+\cdots+P_{n}(x) y=P(x)
$$

Where $P_{1}(x), P_{2}(x) \ldots P_{n}(x) \& Q(x)$ are all rial, Contiumors functions of x defied on an Interval I is called linear: differential equations of order n.

Eg:-
i) $x^{2} \frac{d^{2} y}{d x^{2}}+(x-2) \frac{d y}{d x}-2 y=x^{3^{1}}$ is a second order lsuear Differential Equation:
ii) $x^{3} y^{\prime \prime \prime}+2 x^{2} y^{\prime \prime}+2 y=10\left(x+\frac{1}{x}\right)$ is a third order D.E.
\rightarrow Luiear differential equation with constant Coefficient: Lo eq of the fifiom

$$
\frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n-1} y}{d x^{n-1}}+\frac{p_{2} d^{n-1}}{d x^{n-2}}+p_{n}(y)=j(x)
$$

where $P_{1}, P_{2} \ldots P_{n}$ are all real constants. and, $Q(x)$ is continuous function of x is called an ordinary linear D.E with Constant Cooffitinits.
Ce:- i) $\frac{d^{2} y}{d x^{2}}+2 \frac{d y}{d x}+4 y-x^{2}$ is a $2^{\text {nd }}$ order linear $D_{1} E_{1}$
$\bar{B} y^{\prime \prime}+3 y^{\prime \prime}+5 y^{\prime}+5 y=0$ is a $s^{r d}$ ceder livicar b, E,
Note:-

1) In a linear D.E we chi observe the folleroming pointy
(2) The depurate veicrbe ' y ' and its' derivatives of any.
ca: $\frac{d^{2}}{d x^{2}}+y \frac{d y}{d x}+5 y=x^{3}$.
\Rightarrow derivatives in e any term are not multiplied togetton.
\Rightarrow Cocfeceints of acrivaiules are cither functions of independent variable or constant torn' 'f
eg;
i) $x^{3} y^{31}+2 x_{y}^{2 \prime \prime}+2 y=10\left(x+\frac{1}{x y}\right)$
$\stackrel{s}{=}:$
ii) $\frac{d^{2}}{d x^{2}}+\frac{2 d y}{d x}+4 y=x^{2}$,
a) If a \mathcal{D}, E is not kiueay then it y 'called non- Cuiear D.E but a D.E of degree three need not be livicar.

Eg:1 $\frac{d x^{2} y}{d x^{2}}+2 x^{2} \frac{d y}{d x}+2 x_{y}^{2}-\sin x$ is degree 1. Git it is nit. linear because in the third term, loefficenont of y is any "instead a function of ' x (0 (r) . the $3^{\text {rd }}$位m degree of y is two.
Eq:2 $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}+y=e^{x}$ is of degree 1 : but not luiear because in $2^{\text {nd }}$ term $\frac{d y}{d x}$ occur in $2^{\text {nd }}$ degree.

Differcutial Oporator Notation:-
Let the differential operator $\frac{d}{d x}$ denoted by D and diff operators $\frac{d^{2}}{d x^{2}}, \frac{d^{3}}{d x^{3}}, \cdots \frac{d^{n}}{d x^{n}}$ be denoted respectively by $D^{2}, D^{3}, \ldots D^{n}$. When applied on a function y of x yield. Thus $B y=\frac{d y}{d x}, \quad D^{2} y=\frac{d^{2} y}{d x^{2}} \cdots, D^{n} y=\frac{d^{n} y}{d x^{n}}$
let the $n^{\text {th }}$ Order L,D,E be

$$
\frac{d^{n} y}{d x^{n}}+P_{1} \frac{d^{n+1}}{d x^{n-1}}+P_{2} \frac{d^{n-2} y}{d x^{n-2}}+\ldots+p_{n} \dot{y}=Q(x)
$$

The operator form of the above D,E is

$$
\begin{aligned}
& D^{n} y+P_{1} D^{n-1} y+\dot{P}_{2} D^{n-2} y+\cdots+P_{n} y=Q(x) \\
& \left(D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\cdots+P_{n}\right) y=Q(x)
\end{aligned}
$$

which is of the form $f(D) y=Q(x)$;
where $f(D)=D^{n}+P P^{n-1}+P_{n}$.

Note:-
(i) If $Q(x) \neq 0$ for Some x in I (any interval) - tron the equation $f(D) y=Q(x)$ is called, a linear. and. non homogeneous D.E.

Eye- $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+4 y=x^{2}$ i.e $\left(D^{2}+4 D+4\right) y=x^{2}$
ii) If $Q(x)=0$ for some x in I then the $e q f(D) y=0$. us is called a linear homogireois equation.

Ex: $\quad \frac{d^{3} y}{d x^{3}}+5 \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}-y=0$.

$$
\text { ie }\left(D^{3}+5 D^{2}+4 D\right)+y=0
$$

$\rightarrow \underline{\text { General solution of } \dot{f(D) y}=0}$
let $f(D) y=0$ be the $n^{-i n}$ oridur L.D.E . Let $y=y_{1}(x), y=y_{2}(x), \ldots, y=y_{n}(x)$ are $-n$ Lexaiky It independent solutions of $f(D) y=0$, then.

$$
y=c_{1} y_{1}(x), \quad y=c_{2} y_{2}(x) \ldots y=c_{n} y_{n}(x) \ldots \quad 1
$$

Where $C_{1}, c_{2}, \ldots C_{n}$ are real Constant are also...
$\stackrel{s}{=}$ Solutions of $f(D) y=0$ and then $y=c_{1} y_{1}+c_{2} y_{2}+\ldots+c_{n} y_{n}$. is called the general sistition of $f(D) y=0$.

Defination:-
If $y=y_{p}$ is a particular solution of $f(D) y=Q(x)$. containing no arbitary constants and $y=y_{c}$ is the general solution of $f(D) y=0$. They $y=y c+y p$ is called the G.S of $f(D) y=9$.
\rightarrow Complementary: function Particular Integral of D, E of $1 .(D)_{y}=0$
Let $y=y_{c}+y_{p}$ is the G.S of $f(D)_{y}=Q(x)$ then the part

Us. of the G.S is called the Complemintaticy function of $f(D) y=Q$, and the port sse In of the $^{\prime}$ GS is called the particular integral of. $f(D) y=Q$,

Auxiliary Eq:
Consider the. $D \cdot E\left(D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\cdots P_{n}\right) y=Q(x)$
uriel is if the: forme $f(D) y=Q(x)$
where $f(D)=D^{n}+P_{1} D^{n-1}+P_{2} D^{n-2}+\cdots+P_{n}$
The algebraic eq $f(m)=0$ i.e $m^{n}+P_{1} m^{n-1}+p_{2} m^{n-2}+\ldots+P_{n}=0$ where $P_{1}, P_{2}, P_{3} \ldots P_{n}$ are real. Constants, is called
the auxilary equation of $A(D) y=0$.
Since, the auribialy eq $f(m)=0$ is an algebric eq
of degree n, it will have n rods then, 3 cases will arise.

Case-i: When the auxiliary eq has real district. roots.
Let $f(D) y=0$ be the given L.D.E of order n.
The auxilary eq of $f(D) y=0$ is $f(m)=0$.
ie $m^{n}+P_{1} m^{n-1}+p_{2} m^{n-2}+-p_{r}=0$
Let $m_{1}, m_{2}, m_{3}, \ldots m_{n}$ be n real \& distinct sots.
The G.S of $f(D) y=0$ is

$$
y=c_{1} e^{m_{1} x}+c_{2} e^{m_{2} x}+c_{3} e^{m_{3} x}+\ldots+c_{n} e^{m_{n} x} \ldots \ldots
$$

Ex 1. If $0,1,-1$ are the roots of an ausilary q $f(\mathrm{In})=0$, thin the G.S of $f(D) y=0$. is $y=c_{1} e^{0 x}+c_{2} e^{x}+c_{3} e^{-x}$. whine c_{1}, c_{2}, c_{3} are arbitrary
䊉 Order of the $D, E \quad f(D) y=0$ is 3 . constants.
2. If $1,-1,2,3$. are the roots of an auxiliary $c 9$ $f(m)=0$, then, the G, S of $f(D) y=0$ is. ..

$$
y=c_{1} e^{x}+c_{2} e^{-x}+c_{3} e^{2 x}+c_{4} e^{3 x} .
$$

\therefore where. $c_{1}, c_{2}, c_{3}, c_{4}$ are arbitary contanity,
: Order of $D . E+(D) y=0$ is 4 .
\because The G.S have 4 arbitary Constants.
$\stackrel{\rho}{=}$
Q) Solve $\frac{d^{2} y}{d x^{2}}-1 y=0$.

Sol: GIT, $\frac{d^{2} y}{d x^{2}}-y=0$.
An operator form of the gimme D, E is $\left(D^{2}-1\right)_{y}=0 \ldots \ldots$
which is of the form $f(D) y=0 \ldots$
where $f(D)=D^{2}-1$.
An aurilary eq is $f(m)=0$. ice $m^{2}-1=0$
The roots are real \& distinct.
The G.S of $D . E$ is $y=c_{1} e^{x}+c_{2} e^{-x}$.
where $C_{1} \& c_{2}$ are arbistary constants.
Scanned with CamScanner
Scanned with CamScanner
Q) Solve $\left(D^{2}-5 D+C\right) y=0$

Sol: G.T. $\left(D^{2}-5 D+6\right) y=0$
which is of the form $+(D): \begin{gathered} \\ y\end{gathered}=$.
where $f(D)=\left(D^{2}-5 D+6\right)$
An auxilary eq is $f(m)=0$ i, e' $m^{2}-5 m^{\prime}+6=0$.

$$
\therefore \quad \therefore m=2,3 .
$$

The roots are real \& district.
The G.S if D.E is $y=c_{1} e^{2 x}+c_{2} e^{3 x}$
where $c_{1} \& c_{2}$ are, arbitary constants.

Case -2:-
When the auxulary eq has: real \& repeated roots.
Let $f(D) y=0$ be the given: D, E of order ' n '.
The auxilary eq of $f(D) y=0$ is $f(m)=0$..
ice. $m^{n}+p_{1} m^{n-1}+p_{2} m^{n-2}+\cdots+p_{n}=0$.
. Let $m_{1}, m_{2 y}, \ldots, m_{n}$ be in'. real =roots:,
i) Let $f(m)=0$ have two equal roots $m_{1}=m_{2}$ \&' all other roots $m_{3}, m_{4}, \ldots, m_{n}, \therefore$ are distinct:.
Then the G.S of $f(D) y=0$ is

$$
y=\left(c_{1} x^{n}+c_{2} x^{1}+c_{3} x^{2}\right) e^{m_{1} x}+c_{3} e^{m_{3} x}+c_{4} e^{m_{4} x}+\ldots c_{n} e^{m_{n} x}
$$

ii) Let ' $f(m)=0$. have 3 equal roots $m_{1}=m_{2}=m_{3}$ if all other distinct roots $m_{4}, m_{5}, \ldots m_{n}$
The G.S of $f(D) y=0$. is
$y=\left(c_{1} x^{0}+c_{2} x+c_{3} x^{2}\right) e^{m_{1} x}+c_{4} e^{m_{1} 4^{x}}+\cdots+c_{n} e^{m_{n} x}$ Scanned with CamScanner Scanned with CamScanner Scanned with CamScanner

Ex:

1) If $1,1,-2$ are the roots of auxilary eq $f(m)=0$ then the G.S of $f(D) y=0$ is

$$
y=\left(c_{1} x^{0}+c_{2} x^{\prime}\right) e^{x}+c_{3} e^{-i x}
$$

where $c_{1}, c_{2} \& c_{3}$ are arbitary Constants. Order of the D,E is 3 .
2) If $1,1,1,-3$ are the roots of aurxilany eq $f(m)=0$ then the G.S of $f(D) y=0$ is

$$
y=\left(c_{1} x^{0}+c_{2} x^{i}+c_{3} x^{2}\right) e^{x}+c_{4} e^{-3 x}
$$

where $c_{1}, c_{2}, c_{3} \& c_{4}$ are auxilary constants. $:$
Order of $D_{1} \in$ es 4 .
Since the GS have: 4 Comitants.
Q) Solve $(D-1)^{3} y=0$.

Sol: G.T, $(D-1)^{3} y=0$
which is of the form. $f(D) y=0$
where $f(D)=(D-1)^{3} \cdots$
An cuxilary eq is $f(m)=0.1$ iii $(m-1)^{3}=0$,

$$
m=1,1,1
$$

The roots are real \&'rupeatid.
The G.S of the Q.E is. $y=\left(c_{1} x^{2}+c_{2} x^{1}+c_{3} x^{2}\right) e^{x}$ where
Q) Solve $\left(D^{2}-4\right)(D+1)^{2} y=0$.

Sol: GIT, $\left(D^{2}-4\right)(D+1)^{2} y=0$.
which is of the form $f(D) y=0$.
where $f(D)=\left(D^{2}-4\right)(D+1)^{2}$
Sn auxilary eq is $f(m)=0$. ie., $\left(m^{2}-4\right)(m+1)^{2}=0$.

$$
\begin{array}{ll}
m^{2}-4=0 & (m+1)^{2}=0 \\
m=-2,2 & m=-1,-1
\end{array}
$$

The roots are real \& repeated.
The. G.S of the D.E is

$$
y=\left(c_{1} x^{\prime}+c_{2} x^{\prime}\right) e^{-x}+c_{3} e^{-2 x}+c_{4} e^{2 x}
$$

where $C_{1}, c_{2}, c_{3} \& c_{4}$ are arbitrary constants.
Q) Solve $\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}+2 y=0$.
\&ol: G.T, $\frac{d^{3} y}{d x^{3}}-3 \frac{d y}{d x}+2 y=0$

$$
\left(D^{3}-3 D+2\right) y=0
$$

which is of the form $f(D) y=0$.
where $f(D)=D^{3}-3 D+2$
An auxilary eq is $f(m)=0$.

$$
\begin{gathered}
m^{3}-3 m+2=0 \\
m=-2,1,1
\end{gathered}
$$

The roots are sual and repeated,
The G,S of dior eq is

$$
y=\left(c_{1} x^{3}+c_{2} x^{\prime}\right) e^{x}+c_{3} e^{-2 x}
$$

Scanned with CamScañer
Scanned with CamScanner

Cass-3:-
when the auxilary eq has complex 960 ts. Let $f\left(D_{y}=0\right.$ with the $n^{\text {th }}$ Order linear D, E_{i}
Let $f(m)=0$, i.e, $m^{n}+p_{1} m^{n-1}+P_{2} m^{n-2}+-P_{n}=0$. be the auxilary eq,
Let $a+i b$, a, b are real \& $b \neq 0$ be a Complex roots of $f(m)=0$.
Since the coefficients of $f(m)=0$ are seal. Constants.
The complex roots occur in Conjugate pairs. Hence $a-i b$ is also a rect of $f(m)=0$,
Let the other real roots $f(m)=0$ be $m_{3}, m_{4}--m_{p}$. \therefore The G,S of $f(D) y=0$ is: y :

$$
y=e^{a x}\left[c_{1} \cos b x+c_{2} \sin b x\right]+c_{3} e^{m_{3} x}+c_{4} e^{m_{4} x}+\cdots+c_{n} e^{m_{n} x}
$$

Xxii) Let $2+3 i, 2-3 i,-3$ are the Mots of an auxilary eq $f(m)=0$: then the Gis of $f(D) y=0$ is $y=e^{2 x}\left[c_{1} \cos 3 x+c_{2} \sin 3 x\right]+c_{3} c^{-3 x}$
2) Let $-4 i, 4 i,-2,-2$ are the roots of an auxilary eq $f(m)=0$ then the G1,S of $f(D) y=0$ is given by $y=e^{i x}\left[c_{1} \cos 4 x+c_{2} \sin 4 x\right]+\left(c_{3} x^{\circ}+c_{4} x^{\prime}\right) e^{-4}$.
\rightarrow Let $m_{1}=m_{2}=a+i b, m_{3}=m_{4}=a-i b$ are the swots of aunilary. eq then the roots of $f(D) y=0$ is

$$
y=e^{a x}\left[\left(c_{1} x^{0}+c_{2} x^{\prime}\right) \cos b x+\left(c_{3} x^{0}+c_{4} x^{1}\right) \sin b x\right]
$$

Ex: Let $m_{1}=m_{2}=2+i$ and $m_{3}=m_{1}=2-i$, arc. the roots of $f(m)=0$ then the G,S of $f(0) y=0$ is

$$
y=e^{2 x}\left[\left(c_{1}+c_{2} x\right) \cos x+\left(c_{3}+c_{4} x\right) \sin x\right]
$$

Q) Solve $\left(\dot{\phi}^{3}-1\right) y=0$.

Sol: G.T, $\left(D^{3}-1\right) y=0$.
which is of the form $f(D) y=0$.
where $f(D) y=D^{3}-1$
An auxibary eq is $f(m)=0$ ie $m^{3}-1=0$
The roots are $m=1, m=\frac{-1}{2} \pm \frac{\sqrt{3}}{2} ;$
The roots are imagincory,
The G,S of $f(D) y=0$.

$$
y=c_{1} e^{x}+e^{-\frac{x}{2}}\left[c_{2} \cos \frac{\sqrt{3}}{2} x+c_{3} \sin \frac{\sqrt{3}}{2} x\right]
$$

Note:

$$
\begin{aligned}
& a^{3}-b^{3}=(a-b)\left(a^{2}+b^{2}+a b\right) \\
& \left(a^{3}+b^{3}\right)=(a+b)\left(a^{2}-a b+b^{2}\right) \\
& a^{2}-b^{2}=(a+b)(a-b)
\end{aligned}
$$

Q) Solve $\left(D^{3}+1\right) y=0$.

Sol: $G, T,\left(D^{3}+1\right) y=0$ which is of the form

$$
f(D) y=0 .
$$

where $f(D)=D^{3}+1$

$$
\begin{aligned}
& 1 . e m^{1 \prime} 11=0 \\
& m=-1,1+3 . a
\end{aligned}
$$

The roots are imacginesug.
The GIS is $y=e^{1 / 2 d}\left[c_{1} \cos \frac{\sqrt{3}}{3} 1+c_{0} \sin \frac{13}{2} 10\right]+c_{3} c^{-2}$.
Q) Solve $\left(D^{4}-1\right)(D+2)^{2} y=0$.

Sol: G.T, $\left(D^{4}-1\right)(D+2)^{2} y=0$. which is of the fern

$$
\begin{gathered}
f(D) y=0 \\
f(D)=\left(D^{4}-1\right)(D+2)^{2}
\end{gathered}
$$

an auxilary eq is $f(\mathrm{~m})=0$.
Lie , $\left(m^{4}-1\right)(m+2)^{2}=0$.

$$
\begin{aligned}
& \left(m^{2}-1\right)\left(m^{2}+1\right)=0 \\
& m=1,-1, i,-1
\end{aligned} \quad m=-2,-2
$$

The roots are imaginary.
The G.S of $f(D) y=0$. is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\left(c_{3}+c_{4} x\right) e^{-2 x}+e^{0 x}\left[c_{5} \cos x+c_{6} \sin x\right]
$$

Q) Solve $\left(b^{6}-1\right) y=0$.

501: GT, $\left(D^{b}-1\right) y=0$ which is of the form

$$
\begin{aligned}
& f(D) y=0 \\
& f(D)=D_{-1}^{6}
\end{aligned}
$$

On auxilary eq is $f(m)=0$ ie

$$
m^{l}-1=0
$$

$$
\begin{gathered}
\left(m^{3}\right)^{2}-1=0 \\
\left(m^{3}+1\right)\left(m^{3}-1\right)=0 \\
m^{3}+1=0 \quad m^{3}-1=0 \\
m=-1, \frac{1}{2} \pm \frac{\sqrt{3}}{2} ; \quad m=
\end{gathered}
$$

The roots are inioginary.
The G,S of $f(D) y=0$ is

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\left[c_{3} \cos \frac{\sqrt{3}}{2}+c_{4} \sin \frac{\sqrt{3}}{2}\right] e^{x / 2}+e^{\frac{-x}{2}}\left(c_{5} \cos \frac{\sqrt{3}}{2} x+\right.
$$

Case -4:
Let $f(D) y=0$ be the $n^{\text {th }} e^{\text {order }}$ L,D,E.
Let $f(m)=0$ be ar auxiliary eq. Let $a+\sqrt{b}$ ((a, b) are real and $b>0$) be an irrational root of $f(m)=0$. Since irrational roots of $f(m)=0$ occur in Conjugate pairs. Hence $a-\sqrt{b}$ is also react of $f(m)=0$.

Let $m_{1}=a+\sqrt{b}, m_{2}=a-\sqrt{b}, m_{3}, m_{4}, \ldots, i m_{n}$ are real \& distinct. then the G.S of $f(m)=0$ is

$$
y=e^{a x}\left[c_{1} \cosh \sqrt{b} x+c_{2} \sinh \sqrt{b} x\right]+c_{0} e^{m_{3} x}+c_{4} e^{m_{4} x}+-+c_{n} e^{m_{n} x}
$$

Q) Solve $\left(D^{3}-14 D+8\right) y=0$

Sol: $G, T,\left(D^{3}+14 D+8\right) y=0$ which is of the form

$$
f(D) y=0
$$

Oh auxilary eq of $f(0) y=0$ is $f(m)=0$.
Scanned with CamScanner
Scanned with CamScanner

$$
\begin{aligned}
& m^{3}-14 m+8=0 \\
& m=-4,3.4-4,0.585, \ldots
\end{aligned}
$$

The roots are $m=-4 ; m=2 \pm \sqrt{2} \rho_{1}$
The G.S is $f(D) y=0$ is

$$
\begin{aligned}
y & =c_{1} e^{-4 x}+e^{2 x}\left[c_{2} \cosh \left(2 x+c_{3} \sin \phi \sqrt{2} x\right]\right. \\
& : \cdots \\
y & =c_{1} e^{-4 x}+e^{2 x}\left[c_{2} \cosh \sqrt{2} x+c_{3} \sinh \sqrt{2} x\right]
\end{aligned}
$$

Inverse Operator:
The Operator D is called differential Operator. The Operator D^{-1} is called inverse of the D, O. (D). i.e if Q is any function of x defincad on .m interval I then $D^{-1} Q$ or $\frac{1}{D} Q$ is called the integral of Q.

$$
\frac{1}{D} Q=\int Q d x
$$

Note: D is the differential operator $\Rightarrow \frac{1}{D}$ is insiigral operator,

Ex: 1)

$$
\begin{aligned}
& \therefore \text { D) } \begin{aligned}
& \frac{1}{\Gamma^{2}}\left(e^{3 x}\right)=\frac{1}{D}\left[\frac{1}{D} e^{3 x}\right]=\frac{1}{D}\left[\int e^{3 x} d x\right]=\frac{1}{D}\left[\frac{e^{3 x}}{3}\right] \\
&=\frac{1}{3} \int e^{3 x} d x=\frac{1}{7} e^{3 x} \\
& \text { 3) } \begin{aligned}
\frac{1}{D^{2}}(\cos 3 x) & =\frac{1}{D}\left[\frac{1}{D}(\cos 3 x)\right] \\
& =\frac{1}{D}\left[\int(\cos 3 x) d x=\frac{1}{D}\left[\frac{\sin 3 x}{3}\right]\right.
\end{aligned}=\frac{1}{3} \int \sin 3 x d x \\
&=-\frac{\cos 3 x}{9}
\end{aligned}
\end{aligned}
$$

Theorem:-
If Q is a fusion of x defined on an interval I and α is a constant then the particular value

$$
\frac{1}{D-\alpha} Q=e^{\alpha x} \int Q c^{-\alpha x} d x
$$

Note: $\frac{1}{D+\alpha}(Q)=e^{-\alpha x} \int Q e^{+\alpha x} d x$
Ex: i) $\frac{1}{(D+1)(D-1)} x=\frac{1}{(D+1)}\left[\frac{1}{D-1} x\right]$.

$$
\begin{aligned}
& {\left[W, k: 1 \frac{1}{D-\alpha} Q=e^{-\alpha x} \int Q e^{-\alpha x} d x\right]} \\
& \quad=\frac{1}{D+1}\left[e^{x} \iint_{\substack{x \\
4 \\
-x \\
d}} d x\right] \\
& =\frac{1}{D+1}\left[e ^ { x } \left[\left[\frac{x}{x}\left(\frac{e^{-x}}{-1}\right)-1\left(\frac{e^{-x}}{(-1)^{2}}\right)\right]\right.\right. \\
& =\frac{-1}{1)+1}(x+1)
\end{aligned}
$$

Scanned with CamScanner Scanned with CamScanner

$$
\begin{aligned}
& =-\left[\begin{array}{c}
-x \int(x+1) e_{g}^{x} d x \\
f
\end{array}\right] \\
& =-e^{-x}\left[(x+1)\left(e^{x}\right)-(1)\left(e^{x}\right)\right]
\end{aligned}
$$

Q8) ii) $\frac{1}{D-1} \sin \left(e^{-x}\right)=\left[\frac{1}{D-1)} \sin e^{-x}\right]$

$$
\frac{5}{=}
$$

iii)

$$
\begin{aligned}
\frac{1}{D+1} & e^{x} \\
= & e^{-x} \int e^{x} e^{x} d x \\
& =e^{-x} \int e^{t} \cdot d t \\
& =e^{-x} e^{t} \\
& =e^{-x} e^{e^{x}} .
\end{aligned}
$$

put $e^{x}=t$ $e^{x} d x=A t$.

$$
\begin{aligned}
& {\left[\text { W, } K, T \frac{1}{D-\alpha} Q=e^{\alpha x} \int Q e^{-\alpha x} d x\right]} \\
& =\frac{1}{D \gamma}=\underset{f}{e^{x} \int\left(\sin ^{-x}\right)} e_{g}^{-x} d x \quad[\because \alpha=1] \\
& =e^{x} \operatorname{son}^{-x}\left(\frac{e^{-x}}{-1}\right)-\left(\cos ^{-x}\right)\left(e^{-x}\right)\left(e^{-x}\right) \\
& \text { put } e^{-x}=t \\
& -e^{-x} d x=d t \\
& e^{-x} d x=-d t \text {. } \\
& =-e^{x} \int_{f}^{t \sin t} d t \\
& =e^{-x}[t(-\cos t)-1(-\sin t)] \\
& =-e^{x}\left[-e^{-x} \cos ^{-x}+\sin e^{-x}\right]
\end{aligned}
$$

Methods of finding particular sitegral in Some Specínl Cases:-

Type-(1)
Particular integral of $f(D) y=Q(x)$ when $Q(x)=e^{a x}$ where ' a ' is a real constant.
case -i) when $f(a) \neq 0$.
Consider the $D, E \quad f(D) y=Q$ where $Q=e^{a x}$
Particular integral $P \cdot I=y_{P}=\frac{1}{f(D)} Q=\frac{1}{f(D)} e^{a x}=\frac{e^{a x}}{f(a)}$

Ex: $\frac{1}{D^{2}-5 D+6} e^{x}=\frac{e^{x}}{2}$
1)
when $f(a) \neq 0$.

$$
\left[\begin{array}{rl}
f(D)= & D^{2}-5 D+6, \quad Q=e^{x}, \\
& \text { Here } a=1 \\
f(a) & =f(1)=1^{2}-5(1)+6=2 \neq 0
\end{array}\right.
$$

ii)

$$
\begin{aligned}
& \frac{1}{(D+2)^{2}(D+3)} e^{3 x}=\frac{e^{3 x}}{150} \\
& f(D)=(D+2)^{2}(D+3), \quad Q=e^{3 x} .
\end{aligned}
$$

there $a=3$,

$$
f(a)=f(3)=(3+2)^{2}(3+3)=150 \neq 0
$$

Note: \quad Sinh ar $=\frac{e^{a x}-e^{-a x}}{2}$

$$
\cosh a x=\frac{e^{a x}+e^{-a x}}{2}
$$

(19)

$$
\begin{aligned}
& =\frac{1}{(2+2)^{2}} p^{1} \cdot \frac{1}{3}(30:)^{c} \\
& =\frac{-1}{2} \cdot \frac{1}{(1+3)^{2}}+\frac{1}{(-02!}!^{-1} \\
& =\frac{e^{7}}{1!}+\frac{e^{-1}}{2} .
\end{aligned}
$$

:

Latri)
wheo $\cdot(\cdot(n)=0$.

$$
\begin{aligned}
& \text { P.j }=y_{1}=\frac{1}{-(i(0)} e_{i}=\frac{1}{f(0)} r^{n 1} \cdot \frac{1}{(0 \cdots 0)^{4} \Delta(0)} e^{13}
\end{aligned}
$$

i)

$$
\begin{aligned}
& \frac{1}{D^{2}-50+6} e^{2 x}=\frac{1}{(D-2)(D-3)} e^{2 x} \frac{x 1^{1}}{1!} \frac{2^{2 x}}{-1}=-x e^{27} \\
& f(D)=D^{2}-5 D+6, a=2, f(a)=f(2)=0 \\
& f(D)=(D-2)(0.3)
\end{aligned}
$$

($D-2$) is intor $a_{t} f(D), k=1$

$$
g^{\prime}(0)=0-3, d(a)=d(2)=2-3=-1 \neq 0 .
$$

ii) $\frac{1}{(D-2)^{4}} e^{2 x}=\frac{x^{4}}{4!}-\frac{c^{2 x}}{1}=\frac{x^{4} c^{2 x}}{24}$
iii)

$$
\begin{aligned}
& \frac{1}{(D+2)^{2}(D-3)} e^{-2 x}=\frac{x^{2}}{2!} \cdot \frac{e^{-2 x}}{-5}=\frac{-x^{2} e^{-2 x}}{10} \\
& f(D)=(D+2)^{2}(D-3) \quad, a=-2 \\
& f(-2)=0
\end{aligned}
$$

$(D+2)^{2}$ is factor of $f(D), k=2$.

$$
\phi(D)=D-3, \phi(a)=\phi(-2)=-2-3=-5 \neq 0 .
$$

Q) Find the particular integral of $\left(D^{2}+6 D+9\right) y=2 \sinh x$,

Sol: GIT, $\left(D^{2}+6 D+9\right) y=2 \sinh x$
Which is of the form $f(D) y=Q$.
Here $f(D)=D^{2}+6 D+9$

$$
\begin{aligned}
Q & =2 \sinh x=2\left(\frac{e^{x}-e^{-x}}{}\right) \\
Q & =e^{x}-e^{-x} \\
P \cdot I=y_{P} & =\frac{1}{f(D)} Q . \\
y_{P} & =\frac{1}{D^{2}+6 D+9}\left(e^{x}-e^{-x}\right) \\
y_{P} & =\frac{1}{(D+3)^{2}} e^{x}-\frac{1}{(D+3)^{2}} e^{-x} \\
y_{P} & =\frac{1}{(1+3)^{2}} e^{x}-\frac{1}{(-1+3)^{2}} e^{-x} \\
y_{P} & =\frac{e^{x}}{16}-\frac{e^{-x}}{4}
\end{aligned}
$$

Q) Solve $\frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 \cosh x, y(0)=0, y^{\prime \prime}(0)=1$

Sol:: G.T, $\quad \frac{d^{2} y}{d x^{2}}+4 \frac{d y}{d x}+5 y=2 \cosh x, y(0)=0, y^{\prime}(0)=1$ Sur operator form of the given- D,E is

$$
\left(D^{2}+4 D+5\right) y=2 \cosh x
$$

Here $f(D)=D^{2}+4 D+5$

$$
\begin{aligned}
& Q=2 \cosh x . \\
& Q=2\left(\frac{e^{x}+e^{-x}}{2}\right)=e^{x}+e^{-x} .
\end{aligned}
$$

An auxilary eq is $f(m)=0$ i.e. $m^{2}+4 m+5=0$.

$$
\begin{aligned}
& m=\frac{-4 \pm \sqrt{16-4(5)}}{2.1} \\
& m=\frac{-4 \pm 2 i}{2} \\
& m=-2 \pm i
\end{aligned}
$$

$\stackrel{!}{=}$. The roots are imaginary.

$$
\begin{aligned}
c_{1} F=y_{c} & =e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right) \\
P_{1} I=y_{p} & =\frac{1}{f(D)} Q \\
y_{P} & =\frac{1}{D^{2}+4 D+5}\left(e^{x}+e^{-x}\right) \\
y_{p} & =\frac{1}{D^{2}+4 D+5} e^{x}+\frac{1}{D^{2}+4 D+5} e^{-x} . \\
y_{p} & =\frac{1}{1_{1}^{2}+4(1)+5} e^{x}+\frac{1}{(-1)^{2}-4+5} e^{-x} \\
y_{p} & =\frac{e^{x}}{10}+\frac{e^{-x}}{2}
\end{aligned}
$$

The G.S is $y=y c+y p$.

$$
\begin{equation*}
y=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)+\frac{e^{x}}{10}+\frac{e^{-x}}{2} \tag{1}
\end{equation*}
$$

We have $y(0)=0$ ire. $y=0$ when $x=0$.
From (1), $0=C_{1}+\frac{1}{10}+\frac{1}{2}$

$$
c_{1}=\frac{-(6)}{10}=\frac{-3}{6}
$$

we have $y^{\prime}(0)=1$
i.e $y^{\prime}=1 \quad$ when $x=0$
diff writ ' x ', we get

$$
y^{\prime}=e^{-2 x}\left(-c_{1} \sin x+c_{2} \cos x\right)-2 e^{-2}\left[c_{1} \cos x+c_{2} \sin x\right]+\frac{e^{x}}{10}-\frac{e^{-x}}{2}
$$

From (2),

$$
\begin{aligned}
& 1=c_{2}-2 c_{1}+\frac{1}{10}-\frac{1}{2} \\
& 1=c_{2}+\frac{6}{5}-\frac{4}{10} \\
& 1=c_{2}+\frac{8}{10} \\
& 1-\frac{8}{10}=c_{2} \\
& \frac{2}{10}=c_{2} \\
& c_{2}=\frac{1}{5}
\end{aligned}
$$

Sub the values of $C_{1} \& C_{2}$ in (1), we get

$$
y=e^{-2 x}\left(\frac{-3}{5} \cos x+\frac{1}{5} \sin x\right)+\frac{e^{x}}{10}+\frac{e^{-x}}{2}
$$

Which is the Particular solution of given D,E,

Note:

$$
\begin{aligned}
& a=c^{\log e^{1}} \\
& \left.a^{x}=e^{\left(\log c^{1}\right.}\right)^{x}=\left(\log c^{1}\right) x
\end{aligned}
$$

Q) Save $\left(D^{2}-2 D+1\right) y=\left(1+c^{-x}\right)^{2}+a^{-x}$
S.1: GUT, $\left(D^{2}-2 D+1\right) y=\left(1+C^{-x}\right)^{2}+2^{-x}$.
which is of the form $f(D) y=Q$
Here $f(0)=(D-1)^{2}, Q=\left(1+e^{-x}\right)^{2}+2^{-x}$

$$
\begin{aligned}
& Q=1+e^{-2 x}+2 e^{-x}+2^{-x} \\
& Q=1+e^{-2 x}+2 e^{-x}+e^{-(\log 2) x} \\
& Q=e^{-x}+e^{-2 x}+2 e^{-x}+e^{-\left(\log e^{2}\right) \cdot} .
\end{aligned}
$$

Ah aurxilary eq is $f(m)=0$.

$$
\text { ic. } \begin{array}{r}
(m-1)^{2}=0 \\
m=1,1
\end{array}
$$

1.2 roots are real \& repeat.

$$
\begin{aligned}
& C F=y_{c}=\left(c_{1} x^{0}+c_{2} x^{\prime}\right) e^{x} \\
& Z=y_{p}=\frac{1}{f(D)} \theta \\
& y_{p}=\frac{1}{(D-1)^{2}}\left[e^{0 x}+e^{-2 x}+2 e^{-x}+e^{-(\log 2) x}\right] \\
& \frac{10}{\sqrt{10})^{2}} e^{0 x}+\frac{1}{(D-1)^{2}} e^{-2 x}+2 \frac{1}{(D-1)^{2}} e^{-x}+\frac{1}{(D-1)^{2}} e^{-(h a) 2) x}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{2 x}{2 x}+\frac{e^{-x}}{2}+\frac{1}{\left(1+\log _{c} 2\right)^{2}} e^{-(\log 2) x}
\end{aligned}
$$

\therefore The $G_{1 . S}$ \& $y=y_{c}+y_{p}$

$$
y=\left(c_{1}+c_{2} x\right) e^{x}+1+\frac{e^{-2 x}}{9}+\frac{e^{-x}}{2}+\frac{1}{\left(1+\log _{c_{2}}\right)^{2} 2^{2}} e^{-\left(l_{01 k_{2}}\right) x}
$$

Q) Solve $\left(D^{3}-5 D^{2}+7 D-3\right) y=e^{2 x} \cosh x$

Sol: G,T, $\left(D^{3}-5 D^{2}+7 D-3\right) y=c^{2 x} \cosh x, \cdots$.
clinch is of the form $P(D)_{y}=Q$
Here, $f(D)=D^{3}-5 D^{2}+7 D-3$

$$
Q=e^{2 x} \cosh x
$$

An aurilary eq is $f(m)=0$.

$$
\begin{gathered}
m^{2}-5 m^{2}+7 m-3=0 \\
(m-1)\left(m^{2}-4 m+3\right)=0 \\
(m-1)(m-1)(m-3)=0 . \\
m=1,1,3
\end{gathered}
$$

The roots are real \& supeat.

$$
\begin{aligned}
C \cdot F & =y_{c}=\left(c_{1} x^{0}+c_{2} x^{7}\right) e^{x}+c_{3} e^{3 x} \\
P_{1} I & =y_{p}=\frac{1}{f(D)} Q \\
y_{p} & =\frac{1}{D^{3}-5 D^{2}+7 D-3}\left[e^{2 x} \cosh x\right] \\
& =\frac{1}{D^{3}-5 D^{2}+7 D-3} e^{2 x}\left(\frac{e^{x}+e^{-x}}{2}\right) \\
& =\frac{1}{D^{3}-5 D^{2}+7 D-3} \frac{e^{2}}{2}+\frac{1}{D^{3}-5 D^{2}+7 D-3} \frac{e^{x}}{2} \\
& =\frac{x}{2} \frac{1}{3 D^{2}-10 D+7} e^{3 x}+\frac{x}{2} \frac{1}{3 D^{2}-10 D+7} e^{7}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x}{8} e^{3 x}+\frac{x^{2}}{2} \frac{1}{6 D-10} e^{x} \\
& =\frac{x}{8} e^{3 x}-\frac{x^{2}}{8} e^{x}
\end{aligned}
$$

\therefore The G.S is $y=y_{c}+y_{p}$

$$
y=\left(c_{1} x^{0}+c_{2} x^{\prime}\right) e^{x}+c_{3} e^{3 x}+\frac{x}{8} e^{3 x}-\frac{x^{2}}{8} e^{x}
$$

Q) Find the general solution of $(D-1)^{4} y=e^{x}$.
\therefore Sol: $G, T,(D-1) y=e^{x}$
which is of the form $f(D) y=Q$

$$
\begin{gathered}
f(D)=(D-1)^{4} \\
Q=e^{x}
\end{gathered}
$$

An aurelary eq is $f(m)=0$.
$\stackrel{1}{=}$

$$
\begin{aligned}
& (m-1)^{4}=0 \\
& m=1,1,1,1
\end{aligned}
$$

The roots are real. \& repeat.

$$
\begin{aligned}
c_{1} F=y_{R} & =\left(c_{1} x^{0}+c_{2} x^{1}+c_{3} x^{2}+c_{4} x^{3}\right) e^{x} \\
P_{1} \dot{I}=y_{p} & =\frac{1}{f(D)} Q . \\
y_{p} & =\frac{1}{(D-1)^{4}} e^{x} \\
y_{p} & =\frac{x^{4}}{4!} e^{x} \\
y_{p} & =\frac{x^{4}}{24} e^{x} .
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$

$$
y=\left(c_{1} x^{x}+c_{2} x^{1}+c_{3} x^{2}+c_{4} x^{3}\right) e^{x}+\frac{x^{4}}{24} e^{x} .
$$

Q) Sole $\left(D^{2}+4 D+5\right) y=-2 \cosh x+2^{x}$.

Sol: G.T, $\left(D^{2}+4 D+5\right) y=-2 \cosh x+2^{x}$
which is of the form $f(D) y=Q$

$$
\begin{aligned}
& f(D)=D^{2}+4 D+5 \\
& Q=-2 \cosh x+2^{x} \\
& Q=-2\left(\frac{e^{x}+e^{-x}}{2}\right)+e^{\left(\log _{c} 2\right) x} \\
& Q=-\left(e^{x}=e^{x \log _{e} a}\right) \\
& \left.Q e^{-x}\right)+e^{\left(\log ^{2}\right) x} .
\end{aligned}
$$

On auxilory eq is $f(m)=0$

$$
\begin{gathered}
m^{2}+48 n+5=0 \\
m=-2 \pm i .
\end{gathered}
$$

The roots are imaginary,

$$
\begin{align*}
& c_{1 F}=y_{c}=e^{-2 x}\left[\left(c_{1} \cos x\right)+c_{2} \sin x\right] \\
& \therefore=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right) \\
& P \cdot I=Y_{\rho}=\frac{1}{f(D)} Q . \\
& y_{p}=\frac{1}{p^{2}+4 D+5}\left[-\left(x^{x}+e^{-x}\right)+e^{\left(\log _{e} 2\right) x}\right] \\
& y_{p}=\frac{1}{D^{2}+4 D+5}\left(-e^{x}\right)-\frac{1}{D^{2}+4 D+5} e^{-x}+\frac{1}{D^{2}+4 D+5} e^{\left(\log e^{2}\right) x} \tag{1}
\end{align*}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{aligned}
& \frac{-c^{x}}{D^{2}+4-D+5}=\frac{-x / e^{x}}{21 D+4}=\frac{-e^{x}}{1+4+5}=\frac{-e^{x}}{10} \\
& \text { Here } a=1 \\
& f(a)=1^{2}+4+5=10 \text {. } \\
& \frac{e^{-x}}{D^{2}+4 D+5}=\frac{e^{-x}}{2} \\
& a=-1 \\
& f(a)=(-1)^{2}-4+5=1-4+5=2 \\
& \frac{1}{D^{2}+4 D+5} e^{\left(\log c^{2}\right) x}=\frac{1}{\left(\log _{2}\right)^{2}+4 \log _{c} 2+5}: e^{\left(\log _{c} 2\right) x} .
\end{aligned}
$$

Sub iq (2), (3) \& (4) in (1).

$$
y_{p}=\frac{-e^{x}}{10}-\frac{e^{-x}}{2}+\frac{1}{\left(\log _{e^{2}}\right)^{2}+4 \log _{e^{2}+5}} e^{\left(\log _{e} 2 x\right.}
$$

The G,S is given by,

$$
\begin{gathered}
y=y_{c}+y_{p} \\
y=e^{-2 x}\left(c_{1} \cos x+c_{2} \sin x\right)-\frac{e^{x}}{10}-\frac{e^{-x}}{2}+\frac{1}{\left(\log _{2} 2\right)^{2}+4 \log _{c} 2+5} e^{\left(\log _{c} 2\right.}
\end{gathered}
$$

Type -2:
To find the particular integral of $f(D) y=Q$ where $Q=\sin b x$ or $\cos b x$.

Consider the D, E of the form $f(D) y=Q$ where $Q=\sin b x$ or $\cos b x$.
Case-i) Let $f(D)=\phi\left(D^{2}\right)=D^{2}+b^{2}$, and $\phi\left(-b^{2}\right)=0$.
a) $y_{p}=\frac{1}{f(D)} \cdot Q=\frac{1}{D^{2}+b^{2}} \sin b x=\frac{-x}{2 b} \cos b x$

$$
-b^{2}+b^{2}=0
$$

$$
\because 0
$$

Ex: $\frac{1}{D^{2}+9} \sin 3 x=\frac{-x}{2,3} \cos 3 x=\frac{-x \cos 3 x}{6}$

$$
-3^{2}+9
$$

$$
\frac{1}{D^{2}+1} \sin x=\frac{-x}{2.1} \cos x=\frac{-x \cos x}{2}
$$

b) $y_{p}=\frac{1}{f(D)} Q=\frac{1}{D^{2}+b^{2}} \cos b x=\frac{x}{2 b} \sin b x$

Ex: i)

$$
\frac{1}{\frac{1}{D^{2}+16}} \cos 4 x=\frac{x}{2,4} \sin 4 x=\frac{x \sin 4 x}{8}
$$

ii) $\frac{1}{D^{2}+1} \cos x=\frac{x}{2.1} \sin x=\frac{x \sin x}{2}$

$$
-1^{2}+1=0
$$

Case-ii) Let $f(D)=\phi\left(D^{2}\right)=D^{2}+b^{2}$ and $\phi\left(-b^{2}\right) \neq 0$.
a) $y_{p}=\frac{1}{f(D)} Q=\frac{1}{D^{2}+b^{2}} \sin b x=\frac{1}{\phi\left(-b^{2}\right)} \sin b x$

Ex: i) $\frac{1}{D^{2}+9} \sin 2 x=\frac{1}{-2^{2}+9} \sin 2 x=\frac{\sin 2 x}{5}$
ii) $\frac{1}{D^{2}+4} \sin 3 x=\frac{1}{-3^{2}+4} \sin 3 x=\frac{-\sin 3 x}{5}$
b) $y_{p}=\frac{1}{f(D)} Q=\frac{1}{D^{2}+b^{2}} \cos b x=\frac{\cos b x}{\phi\left(-b^{2}\right)}$
5.: i) $\frac{1}{\theta^{2}+1} \cos 2 x=\frac{\cos 2 x}{-2^{2}+1}=\frac{\cos 2 x}{-3}$

$$
\frac{1}{b^{2}+5} \cos 4 x=\frac{1}{-4+5} \cos 4 x=\frac{-\cos 4 x}{11}
$$

$\stackrel{!}{=}$ Cose-iii)
When $f(D)$ involving odd powers of D, for finding particular integral first we replace D^{2} wilt ' $-b^{2}$ ' and then rationalize to find the particular uilegral
Ex:

$$
\text { i) } \begin{aligned}
\frac{1}{D^{2}+D+1} \cos 2 x & =\frac{1}{-2^{2}+D+1} \cos 2 x \\
& =\frac{1}{D-3} \cos 2 x \\
& =\frac{(D+3)}{(D-3)(D+3)} \cos 2 x \\
& =\frac{D+3}{D^{2}-9} \cos 2 x=\frac{(D+3)}{-2^{2}-9} \cos 2 x \\
& =\frac{-1}{13}[D(\cos 2 x)+3 \cos 2 x] \\
& =\frac{-1}{13}\left[\frac{d}{d x}(\cos 2 x)+3 \cos 2 x\right]
\end{aligned}
$$

Scanned with CamScanner

$$
=\frac{-1}{13}\left[-2 \sin ^{2} 2 x+3 \cos 2 x\right]
$$

Note:

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B \\
& 2 \sin A \cos B=\sin (A+B)+\sin (A-B) \\
& 2 \cos A \sin B=\sin (A+B)-\sin (A-B) \\
& \cos (A+B)=\cos A \cos B-\sin A \sin B \\
& \cos (A-B)=\cos A \cos B+\sin A \sin B \\
& 2 \cos A \cos B=\cos (A+B)+\cos (A-B) \\
& 2 \sin A \sin B=\cos (A-B)-\cos (A+B) \\
& \cos 2 x=\cos ^{2} x-\sin ^{2} x=2 \cos x-1=1-2 \sin ^{2} x \\
& \sin ^{2} x=\frac{1-\cos ^{2} 2 x}{2} \\
& \cos ^{2} x=\frac{1+\cos ^{2} 2 x}{2} \\
& \cos ^{2} 3 x=4 \cos x-3 \cos x \\
& \cos ^{3} x=\frac{3 \cos x+\cos 3 x}{4} \\
& \sin ^{3} 3 x=\frac{3 \sin x-4 \sin ^{3} x}{\sin ^{3} x=\frac{3 \sin ^{2} x-\sin ^{3} 3 x}{4}}
\end{aligned}
$$

Note: When $Q(x)=\sin ^{2} x(0 x) \cos ^{2} x$ we write $Q(x)$ interns of $\cos 2 x$.
When $Q(x)=\sin ^{3} x$ or $\cos ^{3} x$; we write $Q(x)$ interns of $\sin 3 x$ or $\cos 3 x$
when $Q(x)=\sin a x \cos b x$ or $\cos a x \cos b x$ or $\sin a x \sin b x$ there we write $Q(x)$ addition or subtraction of Sin and cosine terms.
Q) Find the particular Entegral of $\left(D^{4}+4 D^{2}+4\right) y=2 \cos ^{2} x$.

Sol: G.T, $\left(D^{4}+4 D^{2}+4\right) y=2 \cos ^{2} x$
which is of the form $f(D) y=Q$
where $f(D)=D^{4}+4 D^{2}+4$

$$
\begin{aligned}
& Q=2 \cos ^{2} x . \\
& Q=2\left(\frac{1+\cos 2 x}{2}\right) \\
& Q=e^{0 \cdot x}+\cos 2 x
\end{aligned}
$$

$$
\begin{aligned}
P \cdot I=y_{p} & =\frac{1}{f(D)} Q \\
y_{p} & =\frac{1}{D^{4}+4 D^{2}+4}\left(e^{0 x}+\cos 2 x\right) \quad D^{2}:=-b^{2} \\
y_{p} & =\frac{1}{D^{4}+4 D^{2}+4} e^{0 x}+\frac{1}{D^{4}+4 D^{2}+4} \operatorname{cosin} x \\
& =\frac{1}{0^{4}+4(0)^{2}+4} e^{0 x}+\frac{1}{\left(-2^{2}\right)^{2}+4(-2)^{2}+4} \cos 2 x \\
& =\frac{1}{4}+\frac{\cos 2 x}{4}
\end{aligned}
$$

Q) Solve $\left(b^{2}+9\right) y=e^{3 x}+\cos ^{3} x$

Sol: G.T, $\left(D^{2}+9\right) y=e^{3 x}+\cos ^{3} x$.
which is of the form $f(D) y=Q$
where $f(D)=D^{2}+9$

$$
\begin{aligned}
& Q=e^{3 x}+\cos ^{3} x=e^{3 x}+\frac{3 \cos x+\cos 3 x}{4} \\
& Q=e^{3 x}+\frac{13}{4} \cos x+\frac{1}{4} \cos 3 x
\end{aligned}
$$

Ar auxilary eq is $f(m)=0$

$$
\begin{aligned}
& m^{2} 7-9=0 \\
& m= \pm 3 i
\end{aligned}
$$

The roots are imaginary

$$
\begin{aligned}
& C \cdot F=y_{c}=e^{0 x}[[\cos 3 x+6 \sin 3 x] \\
& P \cdot I=y_{P}
\end{aligned}=\frac{1}{f(D)} Q \quad 10 \frac{1}{D^{2}+9}\left(e^{3 x}+\frac{3}{4} \cos x+\frac{1}{4} \cos 3 x\right) .
$$

The G.S is $y=y_{c}+y_{p}$

$$
y=e^{0 x}\left[c_{1} \cos 3 x+c_{2} \sin 3 x\right]+\frac{1}{18} e^{3 x}+\frac{3}{32} \cos x+\frac{1}{72} \cos 3 x \cdot \frac{x}{6} \sin 3 x
$$

Q) Solve $\left(D^{2}+5 D-6\right) y=2 \sin 4 x \cdot \sin x+e^{-x}+2^{x}$

Sol: G.T, $\left(D^{2}+50-6\right) y=2 \sin 4 x, \sin x+e^{-x}+2^{x}$.
which is of the form $f(D) y=Q$.
Hers $f(D)=D^{2}+5 D-6$

$$
\begin{aligned}
& Q=2 \sin 4 x \cdot \sin x+e^{-x}+2^{x} \\
& Q=\cos 3 x-\cos 5 x+e^{-x}+e^{\left(\log e^{2}\right) x}
\end{aligned}
$$

An auxilary $e q$ is $f(m)=0$
iii, $m^{2}+5 m-6=0$.

$$
m=-6,+1
$$

The roots are real \& distinct.

$$
C_{1} F=y_{P}=\frac{1}{f(D)} Q .
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{align*}
& y_{p}=\frac{1}{D^{2}+5 D-6}\left[\cos 3 x-\cos 5 x+e^{-x}+e^{(\log , 2) x}\right] \\
& =\frac{1}{D^{2}+5 D-6} \cos 3 x-\frac{1}{D^{2}+5 D-6} \cos 5 x-1 \frac{1}{D^{2}+5 D-6} e^{-x}+\frac{1}{D^{2}+5 D-6}-6 \\
& =\frac{1}{D^{2}+5 D-6} e^{-x}=\frac{1}{(-1)^{2}+5(-1)-6} e^{-x}=\frac{-e^{-x}}{10} \tag{2}\\
& \frac{1}{D^{2}+5 D-6} e^{\left(\log _{e} 2\right) x}=\frac{1}{\left(\log _{e} 2\right)^{2}+5\left(\log _{e} 2\right) \cdot-6} c^{\left(\log _{c} 2\right) x} \tag{3}\\
& \frac{1}{D^{2}+5 D-6} \cos 3 x=\frac{\cdots}{-3^{2}+5 D-6} \cos 3 x \\
& \ldots=\frac{1}{5 D-15} \cos 3 x=\frac{1}{5} \cdot \frac{1}{D-3} \cos 3 x . \\
& =\frac{1}{6} \cdot \frac{D+3}{(D-3)(D+3)} \cos 3 x \\
& =\frac{1}{5} \cdot \frac{D+3}{D^{2}-9} \cos 3 x \\
& =\frac{1}{5} \frac{b+3}{-3^{2}-9} \cos 3 x \\
& =\frac{-1}{90}[D(\cos 3 x+3 \cos 3 x)] \\
& =\frac{-1}{90}[-3 \sin 3 x+3 \cos 3 x] \tag{4}\\
& \frac{1}{D^{2}+5 D-6} \cos 5 x=\frac{1}{-5^{2}+5 D-6} \cos 5 x \\
& =\frac{1}{5 D-31} \cos 5 x
\end{align*}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{align*}
& =\frac{(5 D+3)}{(5 D-31)(5 D+31)} \cos 5 x \\
& =\frac{5 D+31}{25 D^{2}-9(1} \cos 5 x \\
& =\frac{5 D+31}{25(-5)^{2}-961} \cos 5 x \\
& =\frac{-1}{1586}[5 D(\cos 5 x)+31 \cos 5 x] \\
& =\frac{-1}{1586}[-25 \sin 5 x+31 \cos 5 x] \tag{5}
\end{align*}
$$

Sub (9), (3), (4), (5) in (1), we get

$$
\begin{aligned}
& y_{p}=\frac{1}{30}[\sin 3 x-\cos 3 x]+\frac{1}{1586}[-2 \sin 5 x+31 \cos 5 x] \\
&=\frac{e^{-x}}{10}+\frac{e^{\left(\log _{e} 2\right) x}}{\left(\log _{e} 2\right)^{2}+5(\log z)-6}
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{aligned}
& y=c_{1} e^{-6 x}+c_{2} e^{x}+\frac{1}{30}[\sin 3 x-\cos 3 x] \\
+ & \frac{1}{1586}[-25 \sin 5 x+31 \cos 5 x]-\frac{e^{-x}}{10}+\frac{e^{(\log 2) x}}{(\log 2)^{2}+5\left(\log c^{2}\right)-6}
\end{aligned}
$$

Q) Solve $\cdot\left(D^{2}+4\right) y=(1+\cos x)^{2}+e^{-x}$.

Sol: GIT, $\left(D^{2}+4\right) y=(1+\cos x)^{2}+e^{-x}$.
which is of the form $f(D) y=Q$
Here $f(D)=D^{2}+4$

$$
\begin{aligned}
& Q=(1+\cos x)^{2}+e^{-x} \\
& Q=1+\cos ^{2} x+2 \cos x+e^{-x}
\end{aligned}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{aligned}
& Q=e^{-x}+e^{0 \cdot x}+2 \cos x+\frac{1+\cos 2 x}{2} \\
& Q=e^{-x}+e^{0 x}+2 \cos x+\frac{e^{0 . x}}{2}+\frac{1}{2} \cos 2 x \\
& Q=e^{-x}+\frac{3}{2} e^{0 x}+2 \cos x+\frac{1}{2} \cos 2 x .
\end{aligned}
$$

str auxilary eq is $f(m)=0$ i.e $m^{2}+4=0$

$$
m= \pm 2 i
$$

The roots are imaginary,

$$
\begin{align*}
& C \cdot F=y_{C}=\frac{H}{f(D)} Q=\frac{H^{1}+L_{4}}{D} \\
& e^{o x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right] \\
& P . I=y_{p}=\frac{1}{f(P)} Q . \\
& y_{p}=\frac{1}{b^{2}+4}\left(e^{-x}+\frac{3}{2} e^{0 x}+2 \cos x+\frac{1}{2} \cos 2 x\right) \\
& y_{p}=\frac{1}{D^{2}+4} e^{-x}+\frac{3}{2}-\frac{1}{D^{2}+4} \cdot e^{0 \cdot x}+x^{\prime} \frac{1}{D^{2}+4} \cos x+\frac{1}{2} \cdot \frac{1}{D^{2}+4} \cos 24 \\
& =\quad \frac{1}{D^{2}+4} e^{-x}=\frac{e^{-x}}{(-1)^{2}+4}=\frac{e^{-x}}{5} \text {-(2). } \tag{2}\\
& f(D)=D^{2}+4, \quad a=-1 \\
& f(a)=f(-1)=(-1)^{2}+4=5 \neq 0 \text {. } \\
& \text { 费 } \frac{1}{D^{2}+4} e^{0 x}=\frac{e^{0 x}}{4} \\
& a=0 \text {, } \\
& f(a)=f(0)=4 \neq 0 \text {. } \\
& \frac{1}{D^{2}+4} \cos x=\frac{1}{-1^{2}+4} \cos x=\frac{\cos x}{3}
\end{align*}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{equation*}
\frac{1}{D^{2}+4} \cos 2 x=\frac{x}{2(2)} \sin 2 x=\frac{x}{4} \sin 2 x \tag{5}
\end{equation*}
$$

Sub (2), (3), (4) f (5) in (1).

$$
y_{p}=\frac{e^{-x}}{5}+\frac{3}{2} \frac{e^{0 x}}{4}+\frac{2}{3} \cos x+\frac{x}{8} \sin 2 x
$$

The G.S is $y=y_{c}+y_{\mathcal{P}}$.

$$
y=e^{0 x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]+\frac{e^{-x}}{5}+\frac{3}{2} \frac{e^{c x}}{4}+\frac{2}{3} \cos x+\frac{x}{5} \sin 2 x
$$

Q) Solve the D.E $\frac{d^{3} y}{d x^{3}}+4 \frac{d y}{d x}=\sin 2 x$

So): GIT, $\frac{d^{3} y}{d x^{3}}+4 \frac{d y}{d x}=\sin 2 x$
An operator form of given D, E is

$$
\left(D^{3}+4 D\right) y=\operatorname{Sin} 2 x
$$

which is in the form of $f(D) y=Q$

$$
\begin{aligned}
f(D) & =D^{3}+4 D \\
Q & =\sin 2 x
\end{aligned}
$$

An auxilary eq is $f(m)=0$

$$
\begin{aligned}
& m^{3}+4 m=0 \\
& m\left(m^{2}+4\right)=0 \\
& m=0, \pm 2 i
\end{aligned}
$$

The roots are imaginary.

$$
\begin{aligned}
& C_{1} F=y_{c}=c_{1} e^{0 x}+e^{0 x}\left(c_{2} \cos 2 x+c_{3} \sin 2 x\right) \\
& P_{1} I=y_{p}=\frac{1}{f(D)} Q \\
& y_{p}=\frac{1}{D^{3}+4 D} \sin 2 x
\end{aligned}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{aligned}
& =\frac{1}{\left.n_{1} 1+4.1\right)} \sin 3 x \\
& =2 \cdot \frac{1}{31^{2}+1} \sin 1 x \\
& =x \cdot \frac{1}{3(-2)^{2}+4} \sin 2 x \\
& =\frac{-x}{8} \sin 2 x
\end{aligned}
$$

The Eis is $y=y_{c}$ lyp

$$
\left.y=c_{1} e^{n x}+i^{0 x}\left(c_{1} \cos 2 x+1 c_{3} \sin 1\right) x\right)-\frac{x}{8} \sin 2 x .
$$

Q) Solue $\left(D^{2}+9\right) y=\cos ^{3} x$,

S01: GIT, $\left(n^{2}+9\right) y=\cos ^{5} x$
which is of the torm $f(D) y=Q$

$$
\begin{aligned}
& f(D)=0^{2}+9 \\
& S=\cos ^{3} x=\frac{3 \cos x+\cos 3 x}{4}
\end{aligned}
$$

shl aurilary eq, is $f(m)=0$.

$$
\begin{gather*}
D^{2}+q=0 . \\
m= \pm 31 \\
C \cdot F=y_{c}=\varepsilon^{0 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right) \\
P \cdot I=y_{P}=\frac{1}{f(D)} Q \\
y_{P}=\frac{1}{D^{2}+9} \frac{3 \cos x+\cos 3 x}{4} \\
y_{P}=\frac{8}{4} \frac{1}{D^{2}+9} \cos x+\frac{1}{4} \frac{1}{D^{2}+9} \cos 3 x \tag{1}
\end{gather*}
$$

Scanned with CamScanner
Scanned with CamScanner

$$
\begin{align*}
& \frac{1}{D^{2}+9} \cos x=\frac{1}{-1+9} \cos x=\frac{1}{8} \cos x \tag{2}\\
& \frac{1}{D^{2}+9} \cos 3 x=\frac{x}{2 \cdot 3} \sin 3 x=\frac{x}{6} \sin 3 x
\end{align*}
$$

sub eq (9) \& (3) in (1).

$$
\begin{aligned}
& y_{p}=\frac{3}{4} \cdot \frac{1}{8} \cos x+\frac{1}{4} \cdot \frac{x}{6} \sin 3 x \\
& y_{p}=\frac{3}{32} \cos x+\frac{x}{24} \sin 3 x
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$

$$
y=e^{0 x}\left(c_{1} \cos 3 x+c_{2} \sin 3 x\right)+\frac{3}{32} \cos x+\frac{x}{24} \sin 3 x .
$$

Q) Solve $\left(D^{3}-1\right) y=e^{x}+\sin 3 x+2$.

Sol: G.T, $\left(D^{3}-1\right) y=e^{x}+\sin 3 x+2$.
which is of the form $f(D) y=Q$

$$
\begin{aligned}
& f(D)=D^{3}-1 \\
& Q=e^{x}+\sin 3 x+2 e^{\alpha \cdot x}
\end{aligned}
$$

An auxilary eq is $f(m)=0$.

$$
\begin{align*}
& m^{3}-1=0 \\
& m=1, m=\frac{-1 \pm \sqrt{3} i}{2} \\
& c \cdot F=y_{c}=c_{1} e^{x}+e^{\frac{-1}{2} x}\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right] \\
& y_{1} P=P \cdot I=\frac{1}{f(D)} Q \\
&= \frac{1}{f(D)} e^{x}+\sin 3 x+2 e^{0 x} \tag{1}\\
& Y \cdot P=\frac{1}{f(D)} e^{x}=\frac{1}{D^{3}-1} e^{x}
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{(p-1)\left(D^{2}+D+1\right)} e^{x}=\frac{e^{x}}{3} \cdot \frac{x^{1}}{1} \tag{2}\\
& =\frac{1}{f(D)} \sin 3 x=\frac{1}{D^{3}-1} \sin 3 x \\
& =\frac{1}{D^{2}, D-1} \sin 3 x=\frac{1}{-3^{2}, D-1}=\frac{1}{-9 D-1} \sin 3 \% \\
& =-90 x+\frac{(-9 p+1)}{81 D^{2}-1} \sin 3 x \\
& =\frac{(-9 D+1) \sin 3 x}{81\left(-3^{2}\right)-1}=\frac{-9 D+1}{-730} \sin 3^{\circ} x . \\
& =\frac{1}{730}[27 \cos 3 x+\sin 3 x] \tag{3}\\
& \frac{i}{D^{3}-1} 2 e^{a x}=2 \cdot \frac{1}{D^{3}-1} e^{a x}=\frac{2 \cdot e^{0 x}}{-1}
\end{align*}
$$

Sub (9) , (3), (4) in (1)

$$
y_{p}=\frac{e^{x} \cdot x}{3}+\frac{1}{730}[27(\cos 3 x)+\sin 3 x]+\frac{2 e^{0 x}}{-1}
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{array}{r}
y=c_{1} e^{x}+e^{\frac{-1}{2} x}\left[c_{1} \cos \frac{\sqrt{3}}{2} x+c_{2} \sin \frac{\sqrt{3}}{2} x\right]+\frac{e^{x} \cdot x}{2} \\
+\frac{1}{730}[27 \cos 3 x+\sin 3 x]+\frac{2 e^{0 x}}{7}
\end{array}
$$

Q). Solve $\left(b^{2}+2 p+2\right) y=e^{-x}+\sin 2 x$

Sol: G.T, $\left(D^{2}+2 D+2\right) y=e^{-x}+\sin 2 x$
Which is of the form $f(D) y=Q$

$$
f(D)=D^{2}+2 D+2
$$

Scanned with CamScanner

$$
Q=e^{-x}+\sin 2 x
$$

dr A.E is $f(m)=0$

$$
\begin{gathered}
m^{2}+2 m+2=0 \\
m=-1 \pm i
\end{gathered}
$$

The roots are complex.

$$
\begin{align*}
& c_{1} F=y_{c}=e^{-x}\left[c_{1} \cos x+c_{2} \sin x\right] \\
& P \cdot I=y_{P}=\frac{1}{f(D)} Q \\
& =\frac{1}{D^{2}+2 D+2} e^{-x}+\sin 2 x \\
& y_{p}=\frac{1}{D^{2}+2 D+2} e^{-x}+\frac{1}{D^{2}+2 D+2} \sin 2 x \tag{1}\\
& \frac{1}{D^{2}+2 D+2} e^{-x}=\frac{1}{(-1)^{2}+2(-1)+2} e^{-x}=e^{-x} \tag{2}
\end{align*}
$$

$$
\begin{aligned}
\frac{1}{D^{2}+2 D+2} \sin 2 x & =\frac{1}{-2^{2}+2 D+2} \sin 2 x \\
& =\frac{1}{2 D-4} \sin 2 x \\
& =\frac{1}{2} \frac{1}{(D-2)} \sin 2 x \\
& =\frac{1}{2} \frac{D+2}{D^{2}-4} \sin 2 x \\
& =\frac{1}{2} \frac{D+2}{-2^{2}-4} \sin 2 x \\
& =\frac{1}{2} \frac{D+2}{-8} \sin 2 x \\
& =\frac{1}{-16}(D+2) \sin 2 x \\
& =\frac{-1}{16}[D(\sin 2 x+2 \sin 2 x]
\end{aligned}
$$

Scanned with CamScanner

$$
\begin{aligned}
& =\frac{-1}{16}[2 \cos 2 x+2 \sin 2 x] \\
& =\frac{-1}{8}[\cos 2 x+\sin 2 x] \\
& y_{p}=e^{-x}-\frac{1}{8}[\cos 2 x+\sin 2 x]
\end{aligned}
$$

The $G i s$ is , $y=y_{c}+y_{p}$

$$
y=e^{-x}\left(c_{1} \cos x+c_{2} \sin x\right)+\epsilon^{-x}-\frac{1}{8}[\cos 2 x+\sin 2 x]
$$

Type- (3)
PI I of $f(D) y=Q$
when $Q=x^{k}$, where K is a tue integer.
Consider , DIE of the form $f(D) y=G, G=x^{k}$ or a polynomial is x.

$$
\begin{aligned}
P . I=y_{p}=\frac{1}{f(D)} \cdot \dot{S} & =\frac{1}{f(D)} x^{k} \\
& =\frac{1}{[1 \pm \phi(D)]^{k}}
\end{aligned}
$$

To Evaluate P, I we reduce $\frac{1}{f(D)}$ to The form $\frac{1}{1+\phi(D)}$ by Taking the loukst degree terns feer $f(D)$. Now we wite $\frac{1}{f(D)}$ as $\left[1 \pm \ell^{\prime}(D)\right]^{-1}$
and expand it in ascending powers of D using binomial theorem uso the term containing D^{k} then grate x^{k} with the toms of the expansion of

$$
[\pm \phi(D)]^{-1},
$$

we neglect D^{k+1}, D^{k+2}, \ldots
Slice $D^{k+1}\left(x^{k}\right)=0$

$$
D^{k+2}\left(x^{k}\right)=0
$$

Q) Find the particular integral of $\left(D^{2}+3 D+2\right) y=x^{3}$.
sol: $G T, \quad\left(D^{2}+3 D+2\right) y=x^{3}$.
which is of the form $f(D) y=Q$
where $f(D)=D^{2}+3 D+2$.

$$
\begin{aligned}
Q & =x^{3} \cdot\left(T_{y P e}-(3)\right. \\
P I I=y_{P}= & \frac{1}{f(D)} Q=\frac{1}{\left(D^{2}+3 D+2\right.} \cdot x^{3}=\frac{1}{2\left[1+\left(\frac{D^{2}+3 D}{2}\right)\right.} x^{x^{3}} \\
& =\frac{1}{2}\left[1+\left(\frac{D^{2}+3 D}{2}\right)\right]^{-1} x^{3}
\end{aligned}
$$

Wok. T $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots,|x|<1 \quad$ (he neglect $\left.D^{4}, D^{5}\right)$

$$
\begin{aligned}
& =\frac{1}{2}\left[1-\left(\frac{D^{2}+3 D}{2}\right)+\left(\frac{D^{2}+3 D}{2}\right)^{2}-\left(\frac{D^{2}+3 D}{2}\right)^{3}-\cdot\right] x^{3} \\
& =\frac{1}{2}\left[1-\frac{D^{2}}{2}-\frac{3}{2} D+\frac{9 D^{2}}{4}+\frac{6}{4} D^{3}+\frac{27}{8} D^{3} \cdot\right] x^{3} \\
& =\frac{1}{2}\left[x^{3}-\frac{1}{2} D^{2}\left(x^{3}\right)-\frac{3}{2} D\left(x^{3}\right)+\frac{9}{4} D^{2}\left(x^{3}\right)+\frac{6}{4} D^{3}\left(x^{3}\right)+\frac{27}{6} D^{3}\left(x^{3}\right)\right] \\
& =\frac{1}{2}\left[x^{3}-\frac{6 x}{2}-\frac{9 x^{2}}{2}+\frac{54 x}{4}+\frac{36}{4}-\frac{162}{8}\right]
\end{aligned}
$$

NoTE: $(1+x)^{-1}=1-1+x^{2}-x^{3}+\ldots,|x|<1$

$$
\begin{aligned}
& (1-x)^{-1}=1+x+x^{2}+x^{3}+\cdots \\
& (1-x)^{-2}=1+2 x+3 x^{2}+4 x^{3}+\cdots \\
& (1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\ldots \\
& (1+x)^{-3}=1-3 x+6 x^{2}-10 x^{3}+\ldots \\
& (1-x)^{-3}=1+3 x+6 x^{2}+10 x^{3}+\ldots
\end{aligned}
$$

Q) Solve $\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+\sin 2 x+x^{2}+x$.

Sol: $G, T,\left(D^{3}+2 D^{2}+D\right) y=e^{2 x}+\sin 2 x+x^{2}+\ddot{x}$. which is in the form of $+(D) y=Q$.

Here $f(D)=D^{3}+2 D^{2}+D$

$$
Q=e^{2 x}+\sin 2 x+x^{2}+x .
$$

Auxilary eq is $f(m)=0$

$$
\begin{gather*}
\because \quad m^{3}+2 m^{2}+m=0 \\
m\left(m^{2}+2 m+1\right)=0 \\
m=0,-1,-1 \\
C 1 F=y_{c}=c_{1} e^{c_{1} x}+\left(c_{2} x^{0}+c_{3} x^{1}\right) e^{-x} \\
P \cdot I=y_{P}=\frac{1}{f(D)} Q \\
y_{P}=\frac{1}{D^{3}+2 D^{2}+D}\left(e^{2 x}+\sin 2 x+x^{2}+x\right) \\
y_{P}=\frac{1}{P^{3}+2 D^{2}+D} e^{2 x}+\frac{1}{D^{3}+2 D^{2}+D} \sin 2 x+\frac{1}{D^{3}+2 D^{2}+D}\left(x^{2}+x\right) \tag{i}
\end{gather*}
$$

$$
\begin{align*}
& \frac{1}{0^{7}+21^{2}+10} \cdot c^{2 x}=\frac{1}{18} e^{1 x} \tag{12}\\
& f(D)=D^{3}+2 R^{2}+D, n=2 \\
& f(n)=f(2)=8+8 \cdot 12=16
\end{align*}
$$

$$
\begin{aligned}
\frac{1}{D^{6}+25^{2}+D} \sin 2 x= & \frac{x}{A-} \cos 2 x
\end{aligned}=\frac{1}{D^{2} \cdot D+2 D^{2}+D} \sin 2 x . .
$$

$$
=\frac{-1}{3 D+8} \sin 2 x=\frac{-(3 D-8)}{9 D^{2}-8^{2}} \sin 2 x
$$

$$
=\frac{8-3 D}{9\left(-2^{2}\right)-8^{2}} \sin 2 x=\frac{8-3 D}{-100} \sin 2 x
$$

$$
=\frac{3 D-\gamma}{100} \sin 2 x
$$

$$
=\frac{1}{100}[3 D(\sin 22 x)-8 \sin 2 x]
$$

$$
=\frac{1}{100}\left[(6 \cos 2 x)-\begin{array}{l}
+6 \cos 2 x \tag{3}\\
8 \sin 2 x
\end{array}\right]
$$

$$
\frac{1}{p^{2}+2 D^{2}+D}\left(x^{2}+x\right)=\frac{1}{D\left[1+\left(\frac{D^{3}+2 D^{2}}{D}\right)\right]}\left(x^{2}+x\right)
$$

$$
\begin{aligned}
& =\frac{1}{D\left[1+\left(D^{2}+2 D\right)\right]}\left(x^{2}+x\right) \\
& =\frac{1}{D}\left[1+\left(D^{2}+2 D\right]^{-1}\left(x^{2}+x\right)\right.
\end{aligned}
$$

$$
\text { Wokit, }(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots
$$

Here $x=D^{2}+2 D$.

$$
\begin{align*}
& =\frac{1}{D}\left[1-\left(D^{2}+2 D\right)+\left(D^{2}+9 D\right)^{2}\right]\left(x^{2}+x\right) \\
& =\frac{1}{D}\left[1-D^{2}-2 D+4 D^{2}\right]\left(x^{2}+x \cdot x\right) \\
& =\frac{1}{D}\left[1-2 D+3 D^{2}\right]\left(x^{2}+x\right) \\
& =\frac{1}{D}\left[\left(x^{2}+x\right)-2 D\left(x^{2}+x\right)+3 D^{2}\left(x^{2}+x\right)\right] \\
& =\frac{1}{D}\left[\left(x^{2}+x\right)-3(3 x+1)+3(2)\right] \\
& =\frac{1}{D}\left[\left(x^{2}+x\right)-4 x-2+6\right]=\frac{1}{D}\left[x^{2}+x-4 x+4\right] \\
& =\frac{1}{D}\left[x^{2}-3 x+4\right] \\
& =\int x^{2}-3 x+4 d x=\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+4 x .- \text { (4). }
\end{align*}
$$

Subititute, (2) (3), L(4) in (1), we get

$$
y_{p}=\frac{e^{2 x}}{18}+\frac{1}{100}(6 \cos 2 x-8 \sin 2 x)+\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+4 x
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{aligned}
y=c_{1} e^{0 x}+\left(c_{2} x^{\prime}+c_{3} x^{\prime}\right) e^{-x}+\frac{e^{2 x}}{180} & +\frac{1}{100}(6 \cos 2 x-8 \sin 2 x) \\
& +\frac{x^{3}}{3}-\frac{3 x^{2}}{2}+4 x .
\end{aligned}
$$

Q) Solve $\left(D^{2}-y D+4\right) y=x^{2}+e^{2 x}+\sin 2 x$.

Sof: GiT, $\left(D^{2}-2 D+4\right) y=x^{2}+e^{2 x}+\sin a x$.
which is of the fotm, $f(D) y=Q$

$$
\begin{aligned}
& f(D)=D^{2}-2 D+4 \\
& \theta=x^{2}+e^{2 x}+\sin 2 x
\end{aligned}
$$

Auridary oq is $f(m)=0$

$$
\frac{1}{D^{2}-1 D+4} x^{2}=\frac{1}{4\left[1+\left(\frac{D^{2}-2 D}{4}\right)\right]} x^{2}
$$

$$
=\frac{1}{4}\left[1+\left(\frac{D^{2}-2 D}{4}\right)\right]^{-1} x^{2}
$$

$$
\text { w,k,T }(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots
$$

Here $x=\frac{D^{2}-2 D}{4}$

$$
\begin{align*}
& =\frac{1}{4}\left[1-\left(\frac{D^{2}-2 D}{4}\right)+\left(\frac{D^{2}-2 D}{4}\right)^{2}\right] x^{2} \\
& =\frac{1}{4}\left[1-\frac{D^{2}}{4}+\frac{1}{2} D+\frac{1}{4} D^{2}\right] x^{2} \\
& =\frac{1}{4}\left[x^{2}+\frac{1}{2} D\left(x^{2}\right)\right]=\frac{1}{4}\left[x^{2}+x\right] \tag{2}
\end{align*}
$$

$$
\begin{equation*}
\frac{1}{D_{-2 D+4}^{2}} e^{2 x}=\frac{1}{2^{2}-2,2+4} e^{2 x}=\frac{e^{2 x}}{4} \tag{3}
\end{equation*}
$$

$$
\begin{aligned}
& m^{2}-2 m+1=0 \\
& m=1 \pm \sqrt{3} i \quad \text { (imaginaucy raiti) } \\
& \text { C. } F=y_{L}=0 . c^{x}\left[c_{1}\left(x t \sqrt{3} x+c_{2} \sin \sqrt{3} x\right]\right. \\
& P_{1} I=y_{P}=\frac{1}{\cdot(D)} Q . \\
& y_{p}=\frac{1}{D^{2}-2 D+4}\left(x^{2}+e^{2 x}+\sin 2 x\right) \\
& =\frac{1}{D^{2}-2 D+4} x^{2}+\frac{1}{D^{2}-2 D+9} e^{2 x}+\frac{1}{D^{2}-0 D+4} \sin 2 x .
\end{aligned}
$$

$$
\begin{align*}
& =-\frac{1}{2} \int(\sin 2 x) d x \\
& =\frac{\cos 2 x}{4} \tag{4}
\end{align*}
$$

$\operatorname{sub}(2)$, (3) $\&$ (4) in (1)

$$
y_{p}=\frac{1}{4}\left(x^{2}+x\right)+\frac{e^{2 x}}{4}+\frac{\cos 2 x}{4}
$$

The G.S is $y:=y_{c}+y_{p}$.

$$
y=e^{x}\left[c_{1} \cos \sqrt{3} x+c_{2} \sin \sqrt{3} x\right]+\frac{8}{4}\left(x^{2}+x\right)+\frac{e^{2 x}}{4}+\frac{\cos 2 x}{4}
$$

Q) Solve $\left(b^{2}+1\right)^{2} y=x^{4}+2 \sin x \cos 3 x$

Sol: GTT, $\left(D^{2}+1\right)^{2} y=x^{4}+2 \cdot \sin x \cos 3 x$
which is of the form, $f(D) y=\dot{Q}$

$$
\begin{aligned}
& f(D)=\left(D^{2}+1\right)^{2} \\
& Q=x^{4}+2 \sin x \cos 3 x
\end{aligned}
$$

An auxiclary eq is $\left(m^{2}+1\right)^{2}=0$.

$$
\begin{aligned}
& {[(m+i)(m=i)]^{2}=0} \\
& m= \pm i, \pm i
\end{aligned}
$$

\therefore The roots are imaginary,

$$
\left.\begin{array}{rl}
\text { C.F } & =y_{c}
\end{array}=e^{D x}\left[\left(c_{1} x^{0}+c_{2} x^{\prime}\right) \cos x+\left(c_{3} x^{\circ}+c_{4} x^{1}\right) \sin x\right)\right] .
$$

$$
\begin{aligned}
& =\left(1+D^{2}\right)^{-2} x^{4}+\frac{1}{\left(D^{2}+1\right)^{2}} \sin 4 x-\frac{1}{\left(D^{2}+1\right)^{2}} \sin 2 x . \\
& =\left(1-2 D^{2}+3 D^{4}-4 D^{6}+-\right) x^{4}+\frac{1}{\left(-4^{2}+1\right)^{2}} \sin 4 x-\frac{1}{\left(-2^{2}+1\right)^{2}} \sin 2 x \\
& =x^{4}-2 D^{2}\left(x^{4}\right)+3 D^{4}\left(x^{4}\right)-\frac{1}{225} \sin 4 x-\frac{1}{9} \sin 2 x \\
& =x^{4}-24 x^{2}+72-\frac{1}{225} \sin 4 x-\frac{1}{9} \sin 2 x
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{gathered}
y=e^{0 x}\left[\left(c_{1} x^{0}+c_{2} x^{1}\right) \cos x+\left(c_{3} x^{\circ}+c_{4} x^{1}\right) \sin x\right]+x^{4}-24 x^{2}+72 \\
-\frac{1}{225} \sin 4 x-\frac{1}{9} \sin 2 x .
\end{gathered}
$$

Q) Solve $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$
0): G.T, $(D-2)^{2} y=8\left(e^{2 x}+\sin 2 x+x^{2}\right)$

Which is of the form, $f(D) y=0$

$$
\begin{aligned}
& f(D)=(D-2)^{2} \\
& Q=8\left(e^{2 x}+\sin 2 x+x^{2}\right)
\end{aligned}
$$

An auxilory eq is $f(m)=0$

$$
\begin{aligned}
& (m-2)^{2}=0 . \\
& m=2,2
\end{aligned}
$$

\therefore The roots are real \& repent.

$$
c_{1} F=y_{c}=\left(c_{1} x^{0}+c_{2} x^{1}\right) e^{2 x}
$$

$$
\begin{align*}
& P \cdot I=y_{p}=\frac{1}{f(D)} Q \\
& y_{p}=\frac{1}{(D-2)^{2}} 8\left(e^{2 x}+\sin 2 x+x^{2}\right) \\
&=8 \cdot \frac{1}{(D-2)^{2}} e^{2 x}+8 \frac{1}{D^{2}-4 D+4} \sin 2 x+8 \cdot \frac{1}{(D-2)^{2}} \cdot x^{2} \tag{1}\\
& \frac{1}{(D-2)^{2}} e^{2 x}=x \cdot \frac{1}{2(D-2)} e^{2 x}=\frac{1}{\frac{1}{D^{2}-4 D+4}}=\sin 2 x \cdot x \cdot \frac{1}{2(1)} e^{2 x} \tag{2}\\
&=\frac{1}{-x^{2}-4 D+A} \sin 2 x=\frac{-1}{4} \frac{1}{D}(\sin 2 x) \tag{2}\\
& \frac{1}{(D-2)^{2}} x^{2}=\frac{1}{4\left(1-\frac{D}{2}\right)^{2}} x^{2}=\frac{1}{4\left(1-\frac{1}{2}\right)^{2}} x^{2} \\
&=\frac{1}{4}\left[1+2\left(\frac{D}{2}\right)+3\left(\frac{D^{2}}{4}\right)+-\frac{1}{2}\right] x^{2} \\
&=\frac{1}{4}\left[x^{2}+2 x+\frac{3}{4} \dot{x}^{2}\right]
\end{align*}
$$

The G.S is $y=y_{c}+y_{\rho}$.

$$
y=\left(c_{1} x^{0}+c_{2} x^{1}\right) e^{2 x}+4 x^{2} e^{2 x}+\cos 2 x+2 x^{2}+4 x+3
$$

8) Solve $\left(p^{2}+4\right) y=e^{x}+\sin 3 x+x^{2}$.

Sol.: GIT, $\left(D^{2}+4\right) y=e^{x}+\sin 3 x+x^{2}$.
which is of the form $A(D) y=Q$

$$
\begin{aligned}
f(D) & =D^{2}+4 \\
Q & =e^{x}+\sin 3 x+x^{2}
\end{aligned}
$$

An A, E is $f(m)=0$

$$
\begin{aligned}
& (m)^{2}+4=0 \\
& m= \pm 2 i
\end{aligned}
$$

$$
\begin{align*}
C \cdot F & =y_{C}
\end{align*}=e^{o x}\left[C_{1} \cos 2 x+c_{2} \sin 2 x\right] .
$$

$$
\begin{aligned}
& \text { W.k.7, }(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots \\
& =\left[1-\left(1+\frac{p^{2}}{4}\right)+\left(1+\frac{p^{2}}{4}\right)^{2}\right] x^{2} \\
& =\left[y-y+\frac{1+D^{2}}{4}+\frac{2 p^{2}}{4}\right] x^{2} \\
& =x^{2}-\frac{1}{4} D^{2}\left(x^{2}\right)+\frac{1}{2} p^{2}\left(x^{2}\right) \\
& =x^{2}-\frac{1}{4}(2)+1 \\
& =x^{2}+\frac{1}{2} \\
& \frac{y}{y p}=\operatorname{sub} \text { (3), (3), (4) in (1) } \\
& y_{p}=\frac{1}{5} e^{x}+\left(\frac{-1}{5} \sin 3 x\right)+x^{2}+\frac{1}{2}
\end{aligned}
$$

The G.S is,

$$
\begin{gathered}
y=y_{c}+y_{p} \\
y=e^{c x}\left[c_{1} \cos 2 x+c_{2} \sin 2 x\right]+\frac{1}{5} e^{x}-\frac{1}{5} \sin 3 x+x^{2}+\frac{1}{2}
\end{gathered}
$$

$34 x_{2}-(4)$
proticulace inciginal of $f(D) y=Q$ when $Q=e^{a x} v$ bistre ' R ' is a constant and $V=\sin b x\left(0^{\circ}\right) \cos b x \cos x^{k}$
consider the D.E of the form $f(D) y=Q, Q=e^{a x} v$

$$
\begin{aligned}
P \cdot I=y_{p} & =\frac{1}{f(D)} Q \\
y_{P} & =\frac{1}{f(D)} e^{a x} V . \\
y_{P} & =e^{a x} \frac{1}{f(D+n)} v .
\end{aligned}
$$

1) $Q=e^{a x}(\sin b x$ of $\cos b x)+e t x^{k}$

First we apply Type -(4) ant there we apply Type -(9)
ii) If $Q=e^{a^{a} x} x^{k}$, first we apply Type (4) and then we apply Type -(3).
Q) Solve $\frac{d^{2} y}{d x^{2}}+i y=e^{-x}+x^{3}+e^{x} \sin x$.
sol: G.T., $\frac{d^{2} y}{d x^{2}}+y=e^{-x}+x^{3}+e^{x} \sin x$
orr operates form of the giver D.E is

$$
\left(D^{2}+1\right) y=e^{-x}+x^{3}+e^{x} \sin x,
$$

Here $f(0)=D^{2}+1$

$$
Q=e^{-x}+x^{3}+e^{x} \sin x .
$$

Ah auxilary en, is $f(n)=0$. i.e. $m^{2}+1=0$.

$$
m= \pm i .
$$

The roots are imaginary.

$$
\begin{aligned}
& C F=y_{c}=c_{1} \cos x+c_{2} \sin x, \\
& P \cdot I=y_{p}=\frac{1}{f(D)} \theta .
\end{aligned}
$$

$$
w_{1} k, T \frac{1}{f(D)} e^{a x} v=e^{a x} \cdot \frac{1 . .}{f(D+a)_{\text {Here }}}:
$$

$$
\begin{aligned}
& =e^{x} \frac{1}{D^{2}+2 D+2} \sin x \\
& =e^{x} \frac{1}{-1^{2}+2 D+2} \sin x \\
& =e^{x} \frac{1}{2 D+1} \sin x ; \\
& =e^{x} \frac{(2 D-1)}{(2 D+1)(2 D-1)} \sin x \\
& =\frac{e^{x}(2 D-1)}{4 D^{2}-1} \sin x \\
& =e^{x} \frac{(2 D-1)}{2(-1)^{2}-1} \sin x .
\end{aligned}
$$

Scanned with CamScanner
Scanned with CamScanner
Scanned with CamScanner

$$
\begin{aligned}
& y_{p}=\frac{1}{D^{2}+1}\left(e^{-x}+x^{3}+e^{x} \sin x\right) \\
& y_{p}=\frac{1}{D^{2}+1} e^{-x}+\frac{1}{D^{2}+1} x^{3}+\frac{1}{D^{2}+1} e^{x} \cdot \sin x \\
& \frac{1}{D^{2}+1} e^{-x}=\frac{1}{(-1)^{2}+1} e^{-x}=\frac{e^{-x}}{2} \text {-(1). } \\
& \frac{1}{D^{2}+1} x^{3}=\left(1+D^{2}\right)^{-1} x^{3} \text {. } \\
& \text { w. K.T, }(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots ; \\
& \text { Here, } x=D^{2} \\
& =\left[1-D^{2}+D^{4}\right] x^{3} \text {. } \\
& \because \quad \therefore \quad \therefore \dot{x}^{3}-D^{2}\left(x^{3}\right)+D^{4}\left(x^{3}\right)=x^{3}-6 x \\
& \frac{x i \ldots}{D^{2}+1} e^{x} \sin x=e^{x} \frac{1}{(D+1)^{2}+1} \sin x
\end{aligned}
$$

$$
\begin{align*}
& =\frac{-e^{x}}{5}(2 D(\sin x)-\sin x) . \\
& =\frac{-e^{x}}{5}(2 \cos x-\sin x) \tag{4}
\end{align*}
$$

sub eq (3), (3), (4) in (1).

$$
y_{p}=\frac{e^{-x}}{2}+x^{3}-6 x-\frac{e^{x}}{5}(2 \cos x-\sin x)
$$

The G.S is $y=y_{c}+y_{p} \quad \because,: \quad \therefore:=$

$$
y=c_{1} \cos x+c_{2} \sin x+\frac{e^{-x}}{2}+x^{3}-6 x-\frac{e^{x}}{5}(2 \cos x-\sin x) .
$$

8) Solve $\left(D^{2}-4\right) y=x^{2} \sin h x+\cos 2 x+e^{-2 x}$.

Sol: G.T, $\left(D^{2}-4\right) y=x^{2} \sinh x+\cos 2 x+e^{-2 x}$.
which is of the form $f(D) y=Q$.
Here $f(D)=D^{2}-4$

$$
\begin{aligned}
& Q=e^{-2 x}+\cos 2 x+x^{2} \sinh x=e^{-2 x}+\cos 2 x+x^{2}\left(\frac{e^{x}-e^{-x}}{2}\right) . \\
& Q=e^{-2 x}+\cos 2 x+\frac{1}{2} e^{x} x^{2} \frac{1}{2} e^{-x} x^{2} .
\end{aligned}
$$

In auxilary eq is $f(m)=0$. i.e. $m^{2}-4=0$

$$
m= \pm 2
$$

The roots are real \&e distinct

$$
\begin{aligned}
C \cdot F=y_{C} & =C_{1} e^{-2 x}+C_{2} e^{2 x} \\
P \cdot I=y_{p} & =\frac{1}{f(D)} Q \\
y_{p} & =\frac{1}{D^{2}-4}\left(e^{-2 x}+\cos 2 x+\frac{1}{2} e^{x} x^{2}-\frac{1}{2} e^{-x} x^{2}\right)
\end{aligned}
$$

$\frac{y}{p}=\frac{1}{D^{2}-4} e^{-2 x}+\frac{1}{D^{2}-4} \cos 2 x+\frac{1}{D^{2}-4}\left(\frac{1}{2} e^{x} x^{2}\right)-\frac{1}{p^{2}-4}\left(\frac{1}{2} e^{-x} x^{2}\right)$

$$
\begin{align*}
& \frac{1}{D^{2}-4} e^{-2 x}=\frac{1}{(0-2)(D+2)} e^{-2 x}=\frac{x^{1}}{1!} \frac{e^{-2 x}}{-4}=\frac{-x e^{2 x}}{4} \tag{2}\\
& f(D)=D^{2}-4, Q=e^{-2 x}, \quad a=-2 \\
& f(a)=f(-2)=0 \text {. } \\
& f(D)=(D-2)(D+2) \\
& (D+2) \text { is factor of } i(D), \quad k=1 \\
& \phi(D)=D-2, \phi(a)=\phi(-2)=-4 \neq 0 . \\
& \frac{1}{D^{2}-4} \cos 2 x=\frac{1}{-i^{2}-4} \cdot \cos 2 x \cdot=\frac{\cos 2 x}{8}-\text { (3) } \\
& \frac{1}{D^{2}-4} e^{x} x^{2}=e^{x} \frac{1}{(D+1)^{2}-4} \cdot x^{2}: \therefore, \quad, \quad \because \cdots \cdot! \\
& W, k \pi \frac{1}{f(D)} e^{a x \cdots} v=e^{a z} \frac{1}{1 ;} v(\dot{f}+a) . \\
& =e^{x} \frac{1}{D^{2}+2 D-3} x^{2} \text {. } \\
& =e^{x} \frac{1}{-3\left[1-\left(\frac{0^{2}+20}{3}\right)\right]} x^{x^{2}} \\
& =\frac{e^{x}}{-3}\left[1-\left(\frac{D^{2}+2 D}{3}\right)\right]^{-1} x^{2} . \\
& \text { W.K.T, }(1-x)^{-1}=1+x+x^{2}+x^{3}+\cdots \\
& =\frac{e^{x}}{-3}\left[1+\left(\frac{D^{2}+2 D}{3}\right)+\left(\frac{D^{2}+2 D}{3}\right)^{2}\right] x^{2} \\
& =\frac{e^{x}}{-3}\left[1+\frac{D^{2}}{3}+\frac{2}{3} D+\frac{4}{9} D^{2}\right] x^{2} . \\
& =\frac{-e^{x}}{3}\left[x^{2}+\frac{1}{3} D^{2}\left(x^{2}\right)+\frac{2}{3} D\left(x^{2}\right)+\frac{4}{9} D^{2}\left(\dot{x}^{2}\right)\right] \\
& =-\frac{e^{+x}}{3}\left[x^{2}+\frac{2}{3}+\frac{4 x}{3}+\frac{8}{9}\right] \tag{4}
\end{align*}
$$

$$
\begin{array}{rl}
\frac{1}{D^{2}-4} e^{-x} x^{2} & =e^{-x} \frac{1}{(D-1)^{2}-4} \cdot x^{2} \\
& =e^{-x} \frac{1}{D^{2}-2 D-3} x^{2} . \\
& =e^{-x} \frac{1}{(-3)\left[1-\left(\frac{D^{2}-2 D}{3}\right)\right]} x^{2} . \\
& =\frac{-e^{-x}}{3}\left[1-\left(\frac{D^{2}-2 D}{3}\right)\right]^{-1} x^{2} \\
w & F \cdot T(1-x)^{-1}=1+x+x^{2}+---- \\
& =\frac{-e^{-x}}{3}\left[1+\left(\frac{D^{2}-2 D}{3}\right)+\left(\frac{D^{2}-2 D}{3}\right)^{2}\right] x^{2} . \\
& =\frac{-e^{-x}}{3}\left[1+\frac{D^{2}}{3}-\frac{2}{3} D+\frac{4}{9} D^{2}\right] x^{2} . \\
& =\frac{-e^{-2}}{3}\left[x^{2}+\frac{1}{3} D^{2}\left(x^{2}\right)-\frac{2}{3} D\left(x^{2}\right)+\frac{4}{9} D^{2}\left(x^{2}\right)\right] \\
& =\frac{-e^{-x}}{3}\left[x^{2}+\frac{2}{3}-\frac{4 x}{3}+\frac{S}{9}\right]-5 \tag{5}
\end{array}
$$

Sub $2,3,4,5 \mathrm{in} 1$

$$
\begin{aligned}
y_{p}=\frac{-x e^{-2 x}}{4}-\frac{\cos 2 x}{8}- & \frac{e^{x}}{6}\left(x^{2}+\frac{2}{3}+\frac{4 x}{3}+\frac{5}{9}\right) \\
& +\frac{e^{-x}}{6}\left(x^{2}+\frac{2}{3}-\frac{4 x}{3}+\frac{5}{9}\right)
\end{aligned}
$$

The G.S is,

$$
\begin{aligned}
& y=y_{c}+y_{p} \\
& \because=c_{1} e^{-2 x}+c_{2} e^{2 x}-\frac{x e^{-2 x}}{4}-\frac{\cos 2 x}{8}-\frac{e^{x}}{6}\left(x^{2}+\frac{2}{3}+\frac{4 x}{3}+\frac{5}{9}\right) \\
& \\
& \\
& +\frac{e^{-x}}{6}\left(x^{2}+\frac{2}{3}-\frac{4 x}{3}+\frac{8}{9}\right)
\end{aligned}
$$

Scanned with CamScanner
Q) Solve $\left(D^{2}-4 D+3\right) y=x e^{3 x}+e^{x} \cos x+e^{x}+\sin x$.

Sol:- G.T, $\left(D^{2}-4 D+3\right) y=x e^{3 x}+c^{x} \cos x+e^{x}+\sin x$
which is of the form $f(D) y=Q$

$$
\begin{aligned}
& f(D)=D^{2}-4 D+3 \\
& Q=e^{x}+x e^{3 x}+e^{x} \cos x+\sin x
\end{aligned}
$$

she auxilary eq is $f(m)=0$.

$$
\begin{aligned}
& m^{2}-4 m+3=0+x, \\
& m=1,3 .
\end{aligned}
$$

The rests are read \& distinct

$$
\begin{aligned}
& C_{1} F=y_{c}=c_{1} e^{x}+c_{2} e^{3 x} \ldots \\
& P \cdot I=Y_{p}=\frac{1}{f(D)} G \ldots, \cdots, \cdots,= \\
& \text { - } y_{p}=\frac{1}{D^{2}-4 D+3} \cdot\left(e^{x}+x e^{3 x}+e^{x} \cos x+\sin x\right) \cdot . \\
& y_{p}=\frac{1}{D^{2}-4 D+3} e^{x}+\frac{1}{D^{2}-4 D+3} x e^{3 x}+\frac{\therefore 1}{D^{2}-4+D+3} e^{x} \cos 2 x+\frac{\sin x}{D^{2}-C D+3} \\
& 1 \sigma^{-} \dot{\cdots}+\cdots \\
& \frac{1}{0^{2}-40+3} x e^{3 x}= \\
& \text { W.K.T, } \frac{1}{f(D)} e^{a \dot{x}} v=e^{a \dot{x}} \frac{1}{f(D+a)} v \\
& =e^{3 x} \frac{1}{(D+3)^{2}-4(D+3)+3} x \\
& =e^{3 x} \frac{1}{D^{2}+9+6 D-4 D-12+3} . \\
& =e^{3 x} \frac{1}{D^{2}+2 D} \quad \therefore \text {. } \\
& =c^{33 .} \frac{1}{2 D\left(1+\frac{D}{2}\right)} x=\frac{e^{3 x}}{2} \int \frac{1}{2}=e^{3 x_{1}} \frac{1}{2 D}\left[1+\frac{D}{2}\right]^{-1} 2
\end{aligned}
$$

Scanned with CamScánner
Scanned with CamScanner

$$
\begin{align*}
& \text { W. K.T, }(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots \\
& =e^{3 x} \frac{i}{2 D}\left(1-1-\frac{p}{2}\right) x=\frac{3 x}{\frac{3}{2}} \int \frac{-0}{2} x \\
& =-\frac{e^{3 x}}{4} f x+D=\frac{e^{3 x} \cdot x^{2}}{8} \\
& =\frac{e^{3 x}}{2} \int\left(x-\frac{D x}{2}\right) d x \\
& =\frac{e^{3 x}}{2}\left[\frac{x^{2}}{2}-\frac{x}{2}\right] \\
& \frac{1}{D^{2}=4 D+3} e^{x} \cos g x= \\
& \text { (0.k.T, } \frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(D \mid a)} v . \\
& a=1, V=\cos 2 x \\
& =e^{x} \frac{1}{D^{2}-4 D+3} \cos 2 x .=e^{x} \frac{1}{(D+1)^{2}-x(D+1) \div 3} \cos 2 x \\
& =e^{x} \frac{1}{-4 D-1} \cos 2 x=e^{x} \frac{1}{D^{2}-2 D} \cos 2 x \\
& =e^{x} \frac{1}{-2 D-4} \cos 2 x=e^{x} \frac{1}{-2(D+2)} \cos 2 x \\
& =\frac{e^{x}}{-2} \frac{D-2}{D^{2}-4} \cos 2 x=\frac{e^{x}}{-2} \frac{D-2}{-8} \cos 2 x \\
& =\frac{e^{x}}{16}[-2 \sin 2 x-2 \cos 2 x] \tag{3}\\
& =\frac{e^{x}}{8}[\sin 2 x+\cos 2 x] \\
& \frac{1}{D^{2}-4 D+3} e^{x}=x \cdot \frac{1}{f^{\prime}(D)} e^{a x} \text { when } f(D)=0 \text {. } \\
& =x \cdot \frac{1}{2 D-4} e^{x}=\frac{x}{-2} e^{x} \\
& \frac{1}{D^{2}-4 D+3} \sin x=\frac{1}{-4 D+2} \sin x=\frac{1}{-2(2 D-1)} \sin x \\
& =\frac{-1}{2} \frac{2 D+1}{4 D^{2}-1} \sin x=\frac{-1}{2} \frac{(2 D+1)}{-5} \sin x \\
& =\frac{1}{10}(20+1) \sin x
\end{align*}
$$

$$
\begin{align*}
& =\frac{1}{10}[2 D(\sin x)+\sin x] \\
& =\frac{1}{10}[2 \cos x+\sin x] \tag{5}
\end{align*}
$$

Sub 2, 3, 4,5 in (1)

$$
\begin{gathered}
y_{p}=\frac{-x}{2} e^{x}+\frac{e^{3 x}}{2}\left[\frac{x^{2}}{2}-\frac{x}{2}\right] \frac{-x-x^{x}}{2}+\frac{1}{10}[2 \cos x+\sin x] \\
-\frac{e^{x}}{8}[\sin 2 x+\cos 2 x]
\end{gathered}
$$

The G,S is $y=\dot{y}_{c}+y_{p} \cdots$

$$
\begin{aligned}
y=c_{1} e^{x}+c_{2} e^{3 x}- & -\frac{x}{2} e^{x}+\frac{e^{3 x}}{2}\left[\frac{x^{2}}{2}-\frac{x}{2}\right]+\frac{1}{10}[2 \cos x+\sin x] \\
& -\frac{e^{x}}{8}[\sin 2 x+\cos 2 x]
\end{aligned}
$$

Type -(5)
preticular integral of $f(D)_{y}=Q$ when $Q=x^{m} v$ where m is posifue integer and $V=\sin b x$ oc $\cos b x$. Consider the $D \cdot E$ of the form $f(D) y=Q$ where $Q=x^{m} v$.
Case -1: when $m=1, Q=x v$.

$$
\begin{aligned}
P \cdot I=y_{p} & =\frac{1}{f(D)} \cdot Q \\
y_{p} & =\frac{1}{f(D)} x V \\
& =\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{1}{f(D)} \cdot v .
\end{aligned}
$$

Q) Solve $\quad \frac{d^{2} y}{d x^{2}}+3 \frac{d y}{d x}+2 y=: x e^{x} \sin x+x^{2}+e^{-x}$

约: G.T,

$$
\frac{d^{2} y}{d x^{2}}+\frac{3}{d y} \frac{d x}{d x}=x y=x e^{x} \sin x+x^{2}+e^{-x}
$$

An Operator form of the giver. D, E is $f(D) y=Q$
i.e. $\quad\left(D^{2}+3 D+2\right) y=x e^{x} \sin x+e^{-x}+x^{2}$.
$\therefore f(D)=D^{2}+3 D+2$

$$
Q=e^{-x}+x^{2}+x e^{x} \sin x
$$

An auxilary eq is. $f(m)=0$.
i.e. $\quad m^{2}+3 m+2=0$.

$$
m=-1,-2 i
$$

The roots are real \& distinct.

$$
\begin{aligned}
& C_{1} F=y_{c}=c_{1} e^{-x}+c_{2} e^{-x} \\
& P_{1} I=y_{P}=\frac{1}{f(0) Q} \\
& y_{P}=\frac{1}{D^{2}+3 D+2}\left(e^{-x}+\dot{x}^{2}+e^{x} x \sin x\right)
\end{aligned}
$$

$$
\begin{gather*}
y_{p}=\frac{1}{D^{2}+3 D+2} e^{-x}+\frac{1}{D^{2}+3 D+2} x^{2}+\frac{1}{D^{2}+3 D+2} e^{x} x \sin x \\
\frac{1}{D^{2}+3 D+2} e^{-x}=\frac{1}{(D+1(D+2)} e^{-x}=\frac{x^{1}}{1!} \frac{e^{-x}}{1}=x e^{-x} \tag{1}\\
\frac{1}{D^{2}+3 D+2} x^{2}=\frac{1}{2\left[1+\left(\frac{D^{2}+3 D}{D^{2}}\right)\right]} x^{2} \\
\\
=\frac{1}{2}\left[1+\left(\frac{D^{2}+3 D}{2}\right)\right]^{-1} x^{2} \tag{2}
\end{gather*}
$$

$$
\cdot
$$

$$
\begin{aligned}
& =\frac{1}{2}\left[1+\left(\frac{D^{2}+3 D}{2}\right)\right]^{-1} x^{2} \\
& \text { W.k.T, }
\end{aligned}
$$

W.F.T, $\frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f^{\prime \prime}(D+a)} v$. $=e^{x} \frac{1}{D^{2}+5 D+6} x \sin x, r$
W.K.T $\frac{1}{f(D)} x v=\left[x-\frac{f^{\prime}(\dot{\prime}(D)}{f(D)}\right] \frac{1}{f(D)}$. $=e^{2}\left[x-\frac{20+5}{D^{2}+5 p+6}\right] \frac{1}{D^{2}+5 D+1} \cdot \sin x$.

$$
=e^{x}\left[x-\frac{2 D+5}{p^{2}+5 D+6}\right] \frac{1}{-1^{2}+5 D+6} \sin x
$$

$$
\begin{align*}
& \text { W.K.T, }(1+x)^{-1}=10 x+x^{2}-x^{3^{\prime}}+\cdots \\
& \begin{array}{l}
=\frac{1}{2}\left[1-\left(\frac{D^{2}+3 D}{2}\right)+\left(\frac{D^{2}+3 D}{2}\right)^{2}\right] x^{2} . \\
=1\left[1-D^{2} .\right.
\end{array} \\
& \begin{array}{l}
=\frac{1}{2}\left[1-\frac{D^{2}}{2}-\frac{3}{2} D+\frac{9 D^{2}}{4}\right] x^{2 \prime \prime} \cdot \quad \therefore \\
=\frac{1}{2}\left[x^{2}-\frac{1}{2} D^{2}\left(x^{2}\right)=\frac{3}{2} D\left(x^{2}\right)+, \frac{9}{4} D^{2}\left(x^{2}\right)\right] \\
=\frac{1}{2}\left[x^{2}-1-3 x+9\right] \quad . \quad \cdots \cdots
\end{array} \\
& \begin{array}{l}
=\frac{1}{2}\left[1-\frac{D^{2}}{2}-\frac{3}{2} D+\frac{9 D^{2}}{4}\right] x^{2 \prime \prime} \cdot \quad \therefore \\
=\frac{1}{2}\left[x^{2}-\frac{1}{2} D^{2}\left(x^{2}\right)=\frac{3}{2} D\left(x^{2}\right)+, \frac{9}{4} D^{2}\left(x^{2}\right)\right] \\
=\frac{1}{2}\left[x^{2}-1-3 x+9\right] \quad . \quad \cdots \cdots
\end{array} \\
& \because=\frac{1}{2}\left[\begin{array}{ccc}
\dot{x}^{2}-1 & -3 x+\frac{9}{2} \\
4, & 1 & =1
\end{array}\right] \tag{3}\\
& \frac{1}{D^{2}+3 D+2} e^{x} x \sin x=e^{x} \frac{1}{(p+1)^{2}+3(p+1)+2} x \sin x
\end{align*}
$$

$$
\begin{aligned}
& =\frac{x}{i 5}\left[x-\frac{2 D+5}{D^{2}+5 D+C}\right] \frac{1}{D+!} \sin x . \\
& =\frac{e^{x}}{5}\left[x-\frac{2 D+5}{D^{2}+5 D+6}\right] \frac{p-1}{(D+1)(D-1)} \sin x \text {. } \\
& =\frac{c^{x}}{5}\left[x-\frac{a D+5}{D^{2}+5 D+4}\right] \frac{D-1}{D^{2}+1} \sin x . \\
& =\frac{e^{x}}{5}\left[x-\frac{2 D+5}{D^{2}+5 D+c}\right] \frac{(D-1)}{-1^{2}-1} \sin x \text {. } \\
& =\frac{c^{2}}{10}\left[x-\frac{2 D+5}{D^{\prime}+5 D+C}\right](1-D) \sin x \\
& =\frac{e^{x}}{10}\left[x-\frac{2 D+5}{D^{2}+5 D+C}\right][\sin x-D(\sin x)] \\
& =\frac{e^{x}}{10}\left[x-\frac{2 D+5}{D^{2}+5 D+6}\right](\sin x-\cos x) \\
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)-\frac{(2 D+5)}{\left(D^{2}+5 D+6\right)}(\sin x-\cos x)\right] \\
& (20+5)(\sin x-\cos x)=I D(\sin x-\cos x)+5(\sin x-\cos x) \\
& =2(\cos x+\sin x)+5(\sin x-\cos x) \\
& =7 \sin x-3 \cos x \text {. } \\
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)-\frac{1}{D^{2}+50+6}(7 \sin x-3 \cos x)\right] \\
& =\frac{e^{x}}{10}\left[x[\sin x-\cos x)-\frac{1}{-1^{2}+5 D+6}(7 \sin x-3 \cos x)\right] \\
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)-\frac{1}{5(p+1)}(7 \sin x-3 \cos x)\right] \\
& =\frac{\cdot e^{x}}{10}\left[x(\sin x-\cos x)-\frac{D-1}{5\left(D^{2}-1\right)}(7 \sin x-3 \cos x)\right] \\
& =\frac{e^{x}}{10}\left[x \cdot(\sin x-\cos x)-\frac{D-1}{5\left(-1^{2}-1\right)}(7 \sin x-3 \cos x)\right]
\end{aligned}
$$

$$
\begin{align*}
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)+\frac{1}{10}(D-1)(7 \sin x-3 \cos x)\right] . \\
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)+\frac{1}{10}[D(7 \sin x-3 \cos x)-7 \sin x+3 \cos x]\right] \\
& =\frac{e^{x}}{10}\left[x(\sin x-\cos x)+\frac{1}{10}(7 \cos x+3 \sin x-7 \sin x+3 \cos x)\right] . \\
& =\frac{e^{x}}{10}\left[x[\sin x-\cos x)+\frac{1}{10}(10 \cos x-4 \sin x)\right]-4 . \tag{4}
\end{align*}
$$

Sub (2), (3), (4) in (1), we get.

$$
\begin{aligned}
y_{p}=x e^{-x}+\frac{1}{2}\left[x^{2}-1-3 x\right. & \left.+\frac{9^{2}}{2}\right]+\frac{x e^{x}}{10}(\sin x-\cos x) \\
& +\frac{e^{x}}{100}(10 \cos x-4 \sin x)
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{array}{r}
y=c_{1} e^{-x}+c_{2} e^{-2 x}+x e^{-x}+\frac{1}{2}\left(x^{2}-1-3 x+\frac{9}{2}\right)+\frac{x e^{x}}{10}(\sin x-\cos x) \\
\cdots \\
\cdots+\frac{e^{x}}{100}(10 \cos x-4 \sin x)
\end{array}
$$

Q) Solve $\left(D^{2}+5 D+6\right) y=e^{-2 x}+x^{2}+x e^{x} \cos x$

Sol: G.T, $\left(D^{2}+5 D+6\right) y=e^{-2 x}+x^{2}+x e^{x} \cos x$
which is in the form,$f(D) y=Q_{1} \ldots \therefore$.

$$
\begin{aligned}
f^{\prime}(D) & =D^{2}+5 D+6 \\
Q & =e^{-2 x}+x^{2}+e^{x} x \cos x
\end{aligned}
$$

An ausilary eq is $f(m)=0$

$$
\begin{aligned}
& m+5 m+6=0 \\
& m=-2,-3
\end{aligned}
$$

The roots are real f distinct

$$
\begin{align*}
& c \cdot F=y_{c}=c_{1} e^{-2 x}+c_{2} e^{-3 x} \\
& p_{1} I=y_{p}=\frac{1}{f(\theta)} Q \\
& =\frac{1}{D^{2}+5 D+6}\left(e^{-2 x}+x^{2}+e^{x} x \cos x\right) \\
& =\frac{1}{D^{2}+5 D+6} e^{-2 x}+\frac{1}{D^{2}+5 D+6} x^{2}+\frac{1}{D^{2}+5 D+6} e^{x} x \cos x \\
& \frac{1}{D^{2}+5 D+6} e^{-2 x}=\frac{1}{(D+2)(D+3)} e^{-2 x}=\frac{x^{1}}{1!} e^{-2 x}=x e^{-2 x} \tag{2}\\
& \frac{1}{D^{2}+5 D+6} x^{2}=\frac{1}{6\left[1+\frac{D^{2}+5 D}{6}\right]} x^{2}=\frac{1}{6}\left[1+\left(\frac{D^{2}+5 D}{6}\right)\right]^{-1} x^{2} \\
& \text { W,K.T, }(1+x)^{-1}=1-x+x^{2}-x^{3}+\cdots \\
& =\frac{1}{6}\left[1-\left(\frac{D^{2}+5 p}{6}\right)+\left(\frac{D^{2}+5 D}{6}\right)^{2}\right] x^{2} \\
& =\frac{1}{6}\left[1-\frac{D^{2}}{6}+\frac{5}{6}(D)+\frac{D^{4}}{36}+\frac{2 S}{36} D^{2}+\frac{5 D^{3}}{3}\right] x^{2} \\
& =\frac{1}{6}\left[x^{2}-\frac{1}{6} D^{2}\left(x^{2}\right)+\frac{5}{6} D\left(x^{2}\right)+\frac{25}{36} D^{2}\left(x^{2}\right)\right] \\
& =\frac{1}{6}\left[x^{2}-\frac{1}{3}+\frac{5 x}{3}+\frac{25}{18}\right] \tag{3}\\
& \frac{1}{D^{2}+5 D+6} e^{x} x \cos x=e^{x} \frac{1}{(D+1)^{2}+5^{\prime}(D+1)+6} x \cos x . \\
& \text { W.K.T, } \frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(p+a)} V \text {. } \\
& =e^{x} \frac{1}{D^{2}+7 D-12} x \cos x
\end{align*}
$$

$$
\begin{aligned}
& \text { inT, } \frac{1}{x(0)} x v=\left[x-\frac{f(p)}{f(1)}\right] \frac{1}{f(p)} V \\
& =e^{x}\left[x-\frac{2 D+x}{1 D^{2}+112+12 x}\right] \frac{1}{1 D^{2}+: 11412} \cos x
\end{aligned}
$$

$$
\begin{aligned}
& =c^{x}\left[x-\frac{2 \mid D+y}{D^{2}+7 P+12}\right] \frac{7(D-1 \mid}{1 \cdot 9 D^{2}-121} \cos x \\
& =e^{x}\left[x-\frac{2 D+7}{D^{2}+7 n+12}\right] \frac{7 D-11}{-170} \cos x \\
& =\frac{c^{x}}{-130}\left[x-\frac{2 D+7}{D^{2}+7 p+12}\right](7 D(\cos x)-11 \cos x) \\
& =\frac{e^{2}}{-170}\left[x-\frac{2 D+7}{D^{2}+7 D+12}\right](-7 \sin x-11 \cos x) \text {. } \\
& =\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{2 D+7}{D^{2}+7 D+12}(-7 \sin x+11 \cos x)\right] \\
& (2 D+7)(7 \sin x+11 \cos x)=20(7 \sin x+11 \cos x)+7(7 \sin x+11 \cos x) \\
& =14 \cos x-22 \sin x+49 \sin x+77 \cdot \cos x \\
& =91 \cos x+27 \sin x \text {. } \\
& =\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{1}{D^{2}+7 p+12}(27 \sin x+91 \cos x)\right] \\
& =\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{1}{7 D+11}(27 \sin x+91 \cos x)\right] \\
& =\frac{e^{x}}{170}\left[x\left(7 \sin x+11 \cos x-\frac{7 p-11}{4-p^{2}-121}(2=1 \sin x+911 \cos x)\right]\right. \\
& =\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{7 D-11}{-170}(27 \sin x+91 \cos x)\right]
\end{aligned}
$$

$$
\begin{aligned}
& (70-11)(27 \sin x+91 \cos x)= \\
& =189 \cos x-637 \sin x+91 \cos x)-1(27 \sin x-91 \cos x) \\
& =-812 \cos x-934 \sin x \\
& =\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{1}{170}(812 \cos x+934 \cos x\right.
\end{aligned}
$$

sub (2), (3), (4) in (1).

$$
\begin{aligned}
& y_{p}=x e^{-2 x}+\frac{1}{6}\left[x^{2}-\frac{1}{3}+\frac{5 x}{3}+\frac{25}{18}\right]+ \\
& \frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{1}{170} \cdot[812 \cos x+934 \sin x)\right]
\end{aligned}
$$

The G.S is $y=y_{c}+y_{p}$. : \because it

$$
\begin{aligned}
y & =c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{1}{x} e^{-2 x}+\frac{1}{6}\left[x^{2}-\frac{1}{3}+\frac{5 x}{3}+\frac{25}{18}\right] \\
& +\frac{e^{x}}{170}\left[x(7 \sin x+11 \cos x)-\frac{1}{170}(812 \cos x+934 \sin x)\right]
\end{aligned}
$$

a
Q) Solve $\frac{d^{2} y}{d x^{2}}+4 y=x \sin x+e^{-2 x}+e^{x}\left(x^{2}\right)$

S0): G.T, $\frac{d^{2} y}{d x^{2}}+4 y=x \sin x+e^{-2 x}+e^{x} x^{2}$.
An operator form of the given D, E is $f(D) y=$.
i.e $\left(y^{2}+4\right) y=x \sin x+e^{-2 x}+e^{x} x^{2}$.

Here $f(D)=D^{2}+4$

$$
Q=x \sin x+e^{-2 x}+e^{x} x^{2}
$$

Ar auxilary eq is $f(m)=0$.

$$
\begin{align*}
& m^{2}+4=0 \\
& m= \pm 2 i \\
& C F=y_{c}=\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right) i^{i x} \\
& P . I=y_{D}=\frac{1}{f(D)} Q \\
& =\frac{1}{b^{2}+4}\left(x \sin x+e^{-2 x}+e^{x} x^{2}\right) \\
& y_{p}=\frac{1}{D^{2}+4} x \sin x+\frac{1}{D^{2}+4} e^{-2 x}+\frac{1}{D^{2}+4} e^{x} x^{2} . \tag{1}\\
& \frac{1}{D^{2}+4}=\frac{1}{(-2)^{2}+4} e^{-2 x}=\frac{1}{8} e^{-2 x} \\
& \frac{1}{D^{2}+4} e^{x^{2}}=e^{x} \frac{1}{(D+1)^{2}+4} x^{2} \\
& \text { W.K.T , } \frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(D+a)} v \text {. } \\
& =e^{x} \frac{1}{D^{2}+1+2 D+4} x^{2}=e^{x} \frac{1}{D^{2}+2 D+5} x^{2} \\
& =e^{x} \frac{1}{5\left[1+\left(\frac{D^{2}+2 D}{5}\right)\right]} x^{2}=\frac{e^{x}}{5}\left[1+\left(\frac{D^{2}+2 D}{5}\right)\right]^{-1} x^{2} .
\end{align*}
$$

W.K.T, $(1+x)^{-1}=1-x+x^{2}-x^{3}+\ldots .$.

$$
\begin{align*}
& \therefore=\frac{e^{x}}{5}\left[1-\left(\frac{D^{2}+2 D}{5}\right)+\left(\frac{D^{2}+2 D}{5}\right)^{2}\right] x^{2} . \\
& =\frac{e^{x}}{5}\left[1-\frac{D^{2}}{5} \div \frac{2}{3} D+\frac{4 D^{2}}{25}\right] \dot{x}^{2} . \\
& =\frac{e^{x}}{5}\left[x^{2}-\frac{1}{5} D^{2}\left(x^{2}\right)+\frac{2}{5} D\left(x^{2}\right)+\frac{4}{25} D^{2}\left(x^{2}\right)\right] \\
& =\frac{e^{x}}{5}\left[x^{2}-\frac{1}{5}(2)+\frac{2}{5}(2 x)+\frac{4}{25}(2)\right] \\
& =\frac{e^{x}}{5}\left(x^{2}-\frac{2}{5}+\frac{4 x}{5}+\frac{8^{6}}{25}\right)^{\prime}=0=\text {. } \\
& \begin{array}{l}
\frac{1}{b^{2}+4} x \sin x=: \\
\text { wik.T, } \frac{1^{\prime}}{f(D)} x V=\left[x-\frac{f^{\prime}(D)}{f(D)}\right] \frac{1}{f(D)^{\prime}} .
\end{array} \\
& =\left[x-\frac{2 D}{D^{2}+4}\right] \frac{1}{D^{2}+4} \sin x . \\
& =\left[x-\frac{2 p}{D^{2}+4}\right] \cdot \frac{1}{-1^{2}+4} \sin x \text {. } \\
& =\left[x-\frac{2 D}{D^{2}+4}\right] \frac{1}{3} \sin x \\
& =\frac{1}{3} x \sin x-\frac{2}{3} \frac{D(\sin x)}{D^{2}+4} \\
& =\frac{1}{3} x \sin x-\frac{2}{3} \frac{\cos x}{D^{2}+4} \\
& =\frac{1}{3}\left[x \sin x-\frac{2}{D^{2}+4} \cos x\right] \\
& =\frac{1}{3}\left[x \sin x-\frac{2}{-1^{2}+4} \cos x\right] \\
& =\frac{1}{3}\left[x \sin x-\frac{2}{3} \cos x\right] \tag{4}
\end{align*}
$$

※ぃ, (6) S. (4)

$$
i_{5}=\frac{1}{3}\left[x \sin x-\frac{2}{5} \cos x\right] \text { i } \frac{1}{5} e^{-2 \cdot x}+\frac{c^{x}}{5}\left(x^{2}-\frac{2}{3}+\frac{4 x}{5}+\frac{8}{25}\right)
$$

Tice E.S is $y=y_{c}+y_{c}$

$$
\begin{aligned}
y= & e^{i x}\left(c_{1} \cos 2 x+c_{2} \sin 2 x\right)+\frac{1}{3}\left[x \sin x-\frac{2}{3} \cos x\right]+\frac{1}{8} e^{-2 x} \\
& +\frac{e^{x}}{5}\left(x^{2}-\frac{1}{5}-\frac{4 x}{5}+\frac{1}{25}\right) .
\end{aligned}
$$

S) Solve $\frac{d^{2} y}{d x^{2}}-y=x \cos x+x^{2} e^{x}+e^{-x}$.
sil: G.T, $\frac{d^{2} y}{d x^{2}}-y=x \cos x+x^{2} e^{x}+e^{-1}$.
In oparitor form of giver D, E is $p(D) y=Q$.

$$
\text { i.e. }\left(D^{2}-1\right) y=x \cos x+x^{2} \cdot e^{x}+e^{-x} \text {. }
$$

Here, $f(D)=D^{2}-1$

$$
Q=x \cos x+x^{2} e^{x}+e^{-x}
$$

sh $A E$ is $f(m)=0$. .

$$
\begin{align*}
& \quad \cdot \quad m^{2}-1=0 \\
& C \cdot F=y_{c}=c_{1} e^{x}+c_{2} e^{-x} . \\
& P \cdot I=y_{p}=\frac{1}{f(D)} Q \\
& =\frac{1}{D^{2}-1}\left(x \cos x+x^{2} e^{x}+e^{-x}\right) \\
& y_{p}=\frac{1}{D^{2}-1}(x \cos x)+\frac{1}{D^{2}-1} \cdot x^{2} e^{x}+\frac{1}{D^{2}-1} e^{-x} . \\
& \frac{1}{D^{2}-1} e^{-x}=\frac{x}{1} \cdot \frac{e^{-x}}{-2}-(3) \tag{1}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{p^{2}-1} x^{2} e^{x}=e^{x} \frac{1}{(p+1)^{2}+1} x^{2} \\
& \text { W.K.T } \frac{1}{f \cdot(D)} e^{a x} v=e^{a x} \frac{1}{f(D+a)} \cdot v \text {. } \\
& =e^{x} \frac{1}{D^{2}+1+2 D-1} x^{2} \\
& =e^{x} \frac{1}{D^{2}+2 D} x^{2}=e^{x} \frac{1}{2 D\left[1+\frac{D}{2}\right]} x^{2}=\frac{e^{x}}{2} \frac{1}{D}\left[1+\frac{D}{2}\right]^{-1} x^{2} . \\
& =\frac{e^{x}}{2} \frac{1}{D} \cdot\left[1-\frac{D}{2}+\frac{D^{2}}{4}\right] x^{2} \\
& =\frac{e^{x}}{2} \frac{1}{D}\left[x^{2}-\frac{1}{2} D\left(x^{2}\right)+\frac{1}{4} D^{2}\left(x^{2}\right)\right] . \\
& =\frac{e^{x}}{2} \frac{1}{D}\left[x^{2}-\frac{1}{2}(2 x)+\frac{1}{4}(2)\right]=\frac{e^{x}}{2} \frac{1}{D}\left[x^{2}-x+\frac{1}{2}\right] \\
& =\frac{e^{x}}{2}\left[\int x^{2}-\int x+\frac{1}{2} \int 1\right] d x^{.} . \\
& =\frac{e^{x}}{2}\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x}{2}\right] \tag{4}\\
& \frac{1}{D^{2}-1: \cdots \cos x .} \\
& \text { W.K.T, } \frac{1}{f(D)} x v=\left[x-\frac{f^{i}(D)}{f(D)}\right] \frac{1}{f(D)} v . \\
& =\left[x-\frac{2 D}{D^{2}-1}\right] \frac{1}{D^{2}-1} \cos x \\
& =\left[x-\frac{2 D}{b^{2}-1}\right] \frac{1}{-1^{2}-1} \cos x \\
& =\left[x-\frac{2 p}{b^{2}-1}\right] \frac{1}{-2} \cos x \\
& =\frac{-1}{2} x \cos x+\frac{2 D}{D^{2}-1} \cos x
\end{align*}
$$

$$
\begin{align*}
& =\frac{-1}{2} x \cos x+\frac{D^{\prime} p}{x^{2}\left(D^{2}-1\right)} \cos x . \\
& =\frac{-1}{2} x \cos x+\frac{D}{D^{2}-1} \cos x \\
& =\frac{-1}{2} x \cos x+\frac{(-\sin x)}{D^{2}-1} \\
& =\frac{-1}{2} x \cos x-\frac{1}{D^{2}-1} \sin x \\
& =\frac{-1}{2} x \cos x-\frac{1}{-1^{2}-1} \sin x \\
& =\frac{-1}{2} x \cos x-\frac{1}{-2} \sin x \\
& =-\frac{1}{2} x \cos x+\frac{1}{2} \sin x
\end{align*}
$$

sub all these in eq (0).

$$
y_{p}=\frac{1}{2} \sin x-\frac{1}{2} x \cos x+\frac{e^{x}}{2} \cdot\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x}{2}\right]-\frac{x e^{-x}}{2}
$$

The G.S is $y=y_{c}+y_{p}$

$$
\begin{array}{r}
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2} \sin x-\frac{1}{2} x \cos x+\frac{e^{x}}{2}\left[\frac{x^{3}}{3}-\frac{x^{2}}{2}+\frac{x}{2}\right] \\
-\frac{-x e^{-x}}{2}
\end{array}
$$

Melted -(5) \rightarrow Case -ii:-
when $m>1$
Consider the D, E of the form $f(D) y=Q, Q=x^{m} \cdot V$.
where $V=\sin b x$ or $\cos 6 x$
W.K.T, $e^{i b x}=\cos b x+i \sin b x$

$$
\begin{aligned}
& \text { Real part }\left(e^{i b x}\right)=\cos b x \\
& \text { I. } P\left(e^{i b x}\right)=\sin b x
\end{aligned}
$$

i)

$$
\begin{aligned}
& Q=x^{m} \sin b x \\
& P_{1} I=y_{p}=\frac{1}{f(D)} Q=\frac{1}{f(D)} x^{m} \sin b x \\
&=\frac{1}{f(D)} x^{m} I P\left(e^{i b x}\right) \\
&=I \cdot p \frac{1}{f(D)} x^{i b x} .
\end{aligned}
$$

ii) $\quad Q=x^{m} \cos b x$

$$
\begin{aligned}
P \cdot I=y_{p} & =\frac{1}{f(D)} Q \\
\because \quad y_{p} & =\frac{1}{f(D)} x^{m} \cos b x \\
& =\frac{1}{f(D)} x^{m} R_{1} p\left(e^{i b x}\right) \\
& =R, P \frac{1}{f(D)} x^{m} e^{i b x}
\end{aligned}
$$

there first we apply method (4) and steen we apply method (3)

*) Solve $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \operatorname{Sin} 2 x+\cos x+e^{2 x}$
So): GIT, $\left(D^{2}-4 D+4\right) y=8 x^{2} e^{2 x} \sin 2 x+\cos x+e^{2 x}$
An eq of the form $f(D) y=Q$

$$
\begin{aligned}
& f(D)=D^{2}-4 D+4 \\
& Q=8 x^{2} e^{2 x} \sin 2 x+\cos y+e^{2 x}
\end{aligned}
$$

An A.E is $f(m)_{1}=0: \therefore \quad \because \quad . \quad$. $:$

$$
\begin{aligned}
& m^{2}-4 m+4=0 . \therefore \quad \therefore \quad \because \\
& m=2,2 .
\end{aligned}
$$

The roots are, real \& repeated'.

$$
\begin{align*}
& C_{1} F=y_{c} z_{i} \cdots\left(e_{1}+c_{2} x\right) e^{2 x} \\
& \text { PhI }=y_{P_{1}}=\frac{1}{1} Q \\
& \left.y_{p}=\frac{1}{D^{2}-4 D+4}\left[8 x^{2} e^{2 x} \sin 2 x+\cos x\right]+e^{2 x}\right] \\
& y_{p}=\frac{1}{D^{2}-4 D+4} \cos x+\frac{1}{D^{2}-4 D+4} 8 x^{2} e^{2 x} \sin 2 x+\frac{1}{D^{2}-4 D+4} e^{2 x} \\
& \frac{1}{D^{2}+4 D+4} \cos x=\frac{1.1}{-1^{2}-4 \dot{D}+4} \cdot \cos x \\
& =\frac{1}{-4 D+3} \cos x=\frac{3+4 D}{9-16 D^{2}} \cos x \\
& \therefore \quad=\frac{3+4 D}{9-16\left(-1^{2}\right)} \cos x=\frac{3+4 D}{25} \cos x: \\
& =\frac{1}{25}[3 \cos x+4 D \cos x] \\
& =\frac{1}{25}[3 \cos x-4 \sin x] \tag{2}
\end{align*}
$$

$$
\begin{align*}
& \frac{1}{D^{2}=40+4 \cdots \cdot x^{2 x} \cdot x^{2} \sin 2 x-\ldots} \\
& \frac{1}{D^{2}-4 D+4} e^{2 x}=\frac{1}{(p-2)^{2}} e^{2 x}=\frac{x^{2}}{2!} \frac{e^{2 x}}{1}=-x^{2} \cdot e^{2 x} \tag{3}\\
& \frac{1}{D^{2}-4 D+4} 8 x^{2} e^{2 x} \sin 2 x=-8 \cdot \frac{1}{(D-2)^{2}} e^{2 x} x^{2} \sin 2 x . \\
& \text { W.KT, } \frac{1}{f(D)} e^{a x} v \div \cdot \frac{a x}{f(D+a)} v \\
& \therefore \therefore=8 e^{2 x} \frac{7}{(D+2-2)^{2}} x^{2} \sin 2 x . \\
& =8 e^{2 x} \frac{1}{D^{2}} x^{2} \sin 2 x \text {. } \\
& =8 e^{2 x} I P \frac{1}{D^{2}} e^{i 2 x} x^{2} . \\
& \begin{array}{l}
\because i=\frac{1}{} \quad \therefore 8 e^{2 x} \text { I. } P \cdot e^{2 i x} \frac{1}{(D+2 i)^{2}} x^{2} .
\end{array} \\
& =88 e^{2 x} I \cdot p: e^{2 i x} \cdot \frac{1}{(2 i)^{2}\left[1+\frac{p}{2 i}\right]^{2}} x^{2} . \\
& =-2 e^{2 x} I, p \text { of } e^{2 i x}\left(1+\frac{p}{2 i}\right)^{-2} x^{2} \\
& \text { w. k.T, }(1+x)^{-2}=1-2 x+3 x^{2}-4 x^{3}+\cdots \\
& =-2 e^{2 x} I \cdot P \text { of } k^{2 i x}\left[1-2\left(\frac{D}{2 i}\right)+3\left(\frac{D^{2}}{4 I^{2}}\right)\right] x^{2} \\
& =-2 e^{2 x} I \cdot \rho q e^{2 i x}\left[x^{2}+i D\left(x^{2}\right)-\frac{3}{4} D^{2}\left(x^{2}\right)\right] \\
& =-2 e^{2 x} \text { I.P of. } e^{2 i x}\left[\left(x^{2}-\frac{3}{2}\right)+i 2 x\right] \\
& =-2 e^{2 x} I \cdot P_{\text {of }}(\cos 2 x+i \sin 2 x)\left[\left(x^{2}-\frac{3}{x}\right)+i 2 x\right]
\end{align*}
$$

$$
\begin{align*}
& =-2 e^{2 x} \text { I, P of }\left[\left(x^{2}-\frac{3}{2}\right) \cos 2 x-2 x \sin 2 x\right]+1\left[2 x \cos 2 x+\left(x^{2} \frac{3}{2}\right)\right. \\
& =-2 e^{2 x}\left[(2 x \cos 2 x)+\left(x^{2}-\frac{3}{2}\right) \sin 2 x\right] \ldots! \tag{4}\\
& y_{p}=\frac{1}{25}[3 \cos x-4 \sin x]+\frac{x^{2} e^{2 x}}{2}-7 e^{2 x}\left[2 x \cos x+\left(x^{2}-\frac{3}{2}\right) \sin 2 x\right]
\end{align*}
$$

The G.S of s

$$
\begin{aligned}
& \begin{array}{r}
\left(c_{1}+c_{2} x\right) e^{2 x}+\frac{1}{25}[3 \cos x+4 \sin x]+\frac{x^{2} e^{2 x}}{2}
\end{array} \\
& \begin{array}{l}
-2 e^{2 x}\left[2 x \cos x+\left(x^{2}-\frac{3}{x}\right) \sin 2 x\right] \\
\cdots
\end{array}
\end{aligned}
$$

Q) Solve $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos ^{2} x+e^{-x}+x^{3}$.

Sol: G.T, $\left(D^{4}+2 D^{2}+1\right) y=x^{2} \cos ^{2} x+e^{-x}+x^{3}$
Area is of the form " $f(D) y=Q$

$$
\begin{aligned}
& f(D)=p^{4}+2 D^{2}+1 \\
& : Q=x^{2} \cos ^{2} x+e^{-x}+x^{3}
\end{aligned}
$$

An A, E is $f(m)=0$.

$$
\begin{gathered}
m^{4}+2 m^{2}+1=0 \\
\left(m^{2}+1\right)^{2}=0 \\
{[(m+i)(m-i)]_{1}^{2}=0} \\
\quad m= \pm i, \pm i .
\end{gathered}
$$

- Roots ai imagiviary.

$$
C_{1} F=y_{c}=e^{0 x}\left[\left(c_{1} x_{2}^{0}+c_{2} x^{\prime}\right) \cos x+\left(c_{3} x^{0}+c_{4} x^{\prime}\right) \sin x\right]
$$

$$
\begin{align*}
& \beta_{P}, y_{p}=\frac{1}{f(D)} Q \\
& I_{\left.5^{\prime} x_{2}\right)^{i}} y_{p}=\frac{1}{D^{4}+2 D^{2}+1}\left(x^{2} \cos ^{2} x+e^{-x}+x^{3}\right)^{1} . \\
& y_{p}=\frac{1}{D^{4}+2 D^{2}+1} x^{2} \cos ^{2} x+\frac{1}{D^{4}+2 D^{2}+1} e^{-x}+\frac{1}{D^{4}+2 D^{2}+1} x^{3} . \tag{1}\\
& \frac{1}{D^{4}+2 D^{2}+1} e^{-x}=\frac{1}{(-1)^{4}+2(-1)^{2}+1} e^{-x}=\frac{1}{1+2+1} e^{-x}=\frac{1}{4} e^{-x} \tag{2}\\
& \frac{1}{x^{4}+2 D^{2}+1} x^{3}=\left[1+\left(D^{4}+2 D^{2}\right)\right]^{-1} x^{3} . \\
& =\left[1+D^{4}+2 D^{2}\right] x^{3} \\
& =x^{3}+2 D^{2}\left(x^{3}\right)=x^{3}+2[6 x]=x^{3}+12 x \tag{3}\\
& \frac{1}{D^{4}+2 D^{2}+1} x^{2} \cos ^{2} x=\frac{1}{D^{4}+2 D^{2}+1} x^{2}\left[\frac{1+\cos 2 x}{2}\right] \\
& =\frac{1}{2} \frac{1 \cdot}{b^{4}+2 D^{2}+1} x^{2}+\frac{1}{2} \frac{1}{D^{4}+2 D^{2}+1} x^{2} \cos 2 x \\
& \frac{1}{2} \frac{1}{D^{4}+2 D^{2}+1} x^{2}=\frac{1}{2}\left[\frac{1}{1+\left(D^{4}+2 D^{2}\right)}\right] x^{2}=\frac{1}{2}\left[1+\left(D^{4}+2 D^{2}\right)\right]^{-1} x^{2} \\
& \frac{1}{2}\left[1+b^{4}+2 D^{2}\right]^{2} \dot{x}^{2}=\frac{1}{2}\left[x^{2}+2 D^{2}\left(x^{2}\right)\right]=\frac{1}{2}\left[x^{2}+2\right] \\
& =\frac{x^{2}}{2}+1 \\
& \frac{1}{2} \frac{1}{D^{4}+2 D^{2}+1} x^{2} \cos 2 x=\frac{1}{2} \frac{1}{b^{4}+2 D^{2}+1} e^{o x} x^{2} \cos 2 x \\
& W, K=T, \frac{1}{f(D)} e^{a x} v=e^{a x} \frac{1}{f(D+a)} v .
\end{align*}
$$

$$
\begin{aligned}
& \frac{1}{2} \frac{1}{D^{4}+2 D^{2}+1} e^{0 x} x^{2} \cos 2 x \\
& =\frac{1}{2} e^{0 x} \frac{1}{D^{4}+2 D^{2}+1!} x 0^{2}-2 x:-1.1 \\
& =\frac{1}{2} \cdot e^{0 x} \frac{1}{p^{4}+2 j^{2}+1} \cdot R \cdot P \frac{1}{p^{4}+2 p^{2}+1} x^{2} e^{i 2 x^{1+4}} \therefore \text {. } \\
& =\frac{1}{2 x} \frac{1}{D^{4}+2 b^{2}+1}{ }^{16 i^{4}+4 i i^{2}+1} \cdot x^{2}-e^{2 i x} \\
& \approx \frac{1}{2}-\frac{1}{16-4+1} x^{2}-e^{2 i x}=\frac{1}{2} \frac{1}{13} x^{2} e^{2 i x} . \\
& =-\frac{1}{2} \cdot R, p \cdot e^{2 i x} \frac{1 \cdot}{(p+2 i)^{2}+2(D+2 i)^{2}+1} x^{2 i} \\
& =\frac{1}{2}-R, \rho e^{2 i x}\left[\frac{x^{2}}{2}-2\right] \\
& =\text { RaP }[\cos 2 x+i \sin 2 x]\left[\frac{3^{2}}{2}-2\right] \\
& =\cos 2 x\left(\frac{x^{2}}{2}\right)-2 \cos 2 x . \\
& y_{p}=\frac{1}{4} e^{-x}+\left(\frac{x^{2}}{2}-2\right)+\cos 2 x\left(\frac{x^{2}}{2}\right)-2 \cos 2 x+x^{3}+12 x \text {. }
\end{aligned}
$$

\therefore The G.S is $y=y c+y_{p}$.

$$
\begin{gathered}
y=c_{1} \cos x-c_{2} \sin x+c_{3} \cos x-c_{4} \sin x+\frac{e^{-x}}{4}+\left(\frac{x^{2}}{2}-2\right) \\
+\cos 2 x\left(\frac{x^{2}}{2}\right)-2 \cos ^{2} 2 x+x^{3}+12 x
\end{gathered}
$$

General Method :-

1) Solve $\left(D^{2}+3 D+2\right) y=e^{e^{x}}$

Sol: Let $f(D)=D^{2}+3 D+2, \quad Q=e^{x}$
The Auxiliary equation is $f(m)=0$ i.e $m^{2}+3 m+2=0$

$$
\begin{aligned}
& (m+1)(m+2)=0 \\
& m=-1,-2 \\
& c \cdot F=y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x} .
\end{aligned}
$$

$$
P \cdot I=y_{P}=\frac{1}{f(0)} Q
$$

$$
y_{p}=\frac{1}{D^{2}+3 D+2} e^{e^{x}}=\frac{1}{(D+2)(D+1)} e^{e^{x}}
$$

$$
=\frac{1}{D+2} \frac{1}{D+1} e^{e^{2}}
$$

$$
\left[\because \frac{1}{D+\alpha} \alpha=e^{-\mu x} \int Q e^{\alpha \cdot x}\right]
$$

$$
=\frac{1}{D+2}\left[e^{-x} \int e^{e^{x}} e^{x} d x\right]
$$

$$
\left[\because \int e^{f(x)} f^{\prime}(x) d x=e^{f(x)}\right]
$$

$$
=\frac{1}{-D+2}\left(e^{-x} e^{x}\right)
$$

$$
=e^{-21} \int e^{-x} e^{x} e^{2 x} d x \text {. }
$$

$$
=e^{-x x} \int e^{e^{x}} e^{x} d x
$$

$$
y_{p}=e^{-2 x} e^{e^{x}}
$$

\therefore The general solution of (1) is $y=y_{c}+y_{p}$.

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-2 x} e^{e^{x}} .
$$

2.) Solve $\left(D^{2}-1\right) y=\left(1+e^{-x}\right)^{-2}$.
so! Let $f(D)=D^{2}-1 \quad Q=\left(1+e^{-x}\right)^{-2}$
The Auxiliary equation is $f(m)=0$ i.e $m^{2}-1=0 m^{2}=1$ $m= \pm$!

$$
\begin{aligned}
\text { C.F }=y_{c} & =c_{1} e^{x}+c_{2} e^{-x} . \\
\mathbb{P . I}=y_{p}=\frac{1}{f(D)} Q & =\frac{1}{D^{2}-1}\left(1+e^{-x}\right)^{-2}=\frac{1}{(D-1)(D+1)} \frac{1}{\left(1+e^{-x}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{1}{D-1}-\frac{1}{D+1}\right) \frac{1}{\left(1+\bar{e}^{-x}\right)^{2}} . \\
& \frac{1}{D+1} \frac{1}{\left(1+e^{-x}\right)^{2}}=\bar{e}^{-x} \int \frac{1}{\left(1+e^{-x}\right)^{2}} e^{x} d x \quad\left[\because \frac{1}{D+\alpha} Q=\epsilon^{-\alpha x} \int \alpha e^{\alpha x} c\right. \\
& =e^{-x} \int \frac{e^{2 x}}{\left(e^{x}+1\right)^{2}} e^{x} d x \\
& \text { Let. } \quad 1+e^{x}=t \quad e^{x} d x=d t \text {. } \\
& =e^{-x} \int \frac{(t-1)^{2}}{t^{2}} d t \\
& =e^{-t} \int\left(1-\frac{e}{t}+\frac{1}{t^{2}}\right) d t \\
& =e^{-t}\left(t-2 \log t-\frac{1}{t}\right) \\
& =e^{-x}\left[1+e^{x}-2 \log \left|1+e^{x}\right|-\frac{1}{1+e^{x}}\right] \\
& =e^{-x}+1-2 e^{-x} \log \left|1+e^{x}\right|-\frac{e^{-x}}{1+e^{x}} \\
& \frac{1}{D-1} \cdot \frac{1}{\left(1+e^{-x}\right)^{2}}=e^{x} \int \frac{1}{\left(1+e^{-x}\right)^{2}} e^{-x} d x \quad\left[\because \frac{1}{D-\alpha} Q=e^{\alpha x} \int Q e^{-\alpha x} d x\right] \\
& \text { Let } 1+e^{-x}=t \quad-e^{-x} d x=d t \quad \Rightarrow e^{-x} d x=-d t \text {. } \\
& \frac{1}{(D-1)} \frac{1}{\left(1+e^{-x}\right)^{2}}=e^{x} \int \frac{1}{t^{2}}(-d t)=e^{x} \cdot \frac{1}{t} \text {. } \\
& =\frac{e^{x}}{1+e^{-x}} \\
& \therefore P . I=y_{p}=\frac{1}{2}\left[\frac{e^{x}}{1+e^{-x}}-e^{-x}-1+2 e^{-x} \log \left(1+e^{x}\right)+\frac{e^{-x}}{1+e^{x}}\right]
\end{aligned}
$$

Hence the geneal solution is $y=y_{c}+y_{p}$.

$$
y=c_{1} e^{x}+c_{2} e^{-x}+\frac{1}{2}\left[\frac{e^{x}}{1+e^{-x}}-e^{-x}-1+2 e^{-x} \log \left|1+e^{x}\right|+\frac{e^{-x}}{1+e^{x}}\right] .
$$

Solve $\left(D^{2}-3 D+2\right) y=\sin \left(e^{-x}\right)$.
Sol:- Given that $\left(D^{2}-3 D+2\right) y=\sin \left(e^{-x}\right)$.
The given differential equation is of the form $f(D) y=Q$

$$
f(D)=D^{2}-3 D+2, \quad Q=\sin \left(e^{-x}\right)
$$

The Auxiliary equation is $f(m)=0$ i.e $m^{2}-3 m+2=0$

$$
\begin{gathered}
(m-1)(m-2)=0 \\
m=1,2
\end{gathered}
$$

The roots are real and distinct.

$$
\begin{align*}
& \therefore \quad c \cdot F=y_{c}=c_{1} e^{x}+c_{2} e^{1 x} . \\
& P \cdot I=y_{P}=\frac{1}{f(D)} Q . \\
& y_{p}=\frac{1}{D^{2}-3 D+2} \sin \left(e^{-x}\right)=\frac{1}{(D-1) \cdot(D-2)} \sin \left(e^{-x}\right)=\left[\frac{1}{D-2}-\frac{1}{D-1}\right] \sin \left(e^{-x}\right) \\
& =\frac{1}{D-2} \sin e^{-x}-\frac{1}{D-1} \sin e^{-x} \text {. } \\
& \frac{1}{D-2} \sin \left(e^{-x}\right)=e^{2 x} \int e^{-2 x} \sin \left(e^{-x}\right) d x \\
& \text {. Put } e^{-x}=t \\
& e^{-x} d x=-d t \text {. } \\
& =e^{2 t} \int-t-\sin t d t \\
& =-e^{2 x} \int t \sin t d t \text {. } \\
& =-e^{2 x}\left[t(-\cos t)-\int(-\cos t) d t\right] \\
& =-e^{e_{1}}[-t \cos t+\sin t] \\
& \frac{1}{D-2} \sin \left(e^{-x}\right)=-e^{2 x}\left[-e^{-x} \cos \left(e^{-7}\right)+\sin \left(e^{-x}\right)\right]=e^{x} \cos \left(e^{-x}\right)-e^{2 x} \sin \left(e^{-x}\right) \\
& \frac{1}{D-1} \sin \left(e^{-x}\right)=e^{x} \int e^{-x} \sin \left(e^{-x}\right) d x \\
& =e^{x} \int-\sin t d t=-e^{x}[-\cos t] \\
& \text { fut } e^{-x}=t \\
& e^{-x} d x=-d t \\
& \frac{1 \cdot \sin \left(e^{-x}\right)}{p-1}=e^{x} \cos \left(e^{-x}\right) \tag{3}
\end{align*}
$$

sub (2) and (3) in (1), we get $y_{p}=\left[e^{-x} \cos \left(e^{-x}\right)-e^{2 x} \sin \left(e^{-x}\right)\right]-e^{x}\left(\cos e^{-x}\right)$

$$
y_{p}=-e^{2 x} \sin \left(e^{-x}\right)
$$

The general solution is $y=y_{c}+y_{p}, y=c_{1} e^{x}+c_{2} e^{2 x}-e^{2 x} \sin \left(e^{-x}\right)$.
(1) Solve $\left(0^{2}+D\right) y=\frac{1}{1+e^{x}}$

Sol:- Given that $\left(D^{2}+D\right) y=\frac{1}{1+e^{x}}$
The given differential equation is of the form $f(D) y=Q$

$$
f(D)=D^{2}+D, \quad Q=\frac{1}{1+e^{2}}
$$

The $A \cdot E$ is $f(m)=0$ le $m^{2}+m=0$

$$
m=0,-1
$$

The roots are real and distinct.

$$
\begin{aligned}
C \cdot F & =y_{C}
\end{aligned}=C_{1}+c_{2} e^{-x} . ~\left(\begin{array}{rl}
P \cdot I=y_{P} & =\frac{1}{f(D)} Q \\
y_{P} & =\frac{1}{D^{2}+D} \frac{1}{1+e^{-x}}=\frac{1}{D(D+1)} \frac{1}{1+e^{-x}} \\
& =\left[\frac{1}{D}-\frac{1}{D+1}\right] \frac{1}{1+e^{x}} \\
& =\frac{1}{D} \frac{1}{1+e^{x}}-\frac{1}{D+1} \frac{1}{1+e^{x}} \\
& =\int \frac{d x}{1+e^{x}}-e^{-x} \int e^{x} \cdot \frac{1}{1+e^{-x}} d x \\
& =-\int \frac{-e^{-x}}{e^{-x}+1} d x-e^{-x} \int \frac{e^{x} d x}{1+e^{x}} \\
y_{P} & \left.=-\log \mid e^{x}+1\right)-e^{-x} \log \left|1+e^{x}\right|
\end{array}\right.
$$

\therefore The general solution of (1) is $y=y_{c}+y_{p}$

$$
y=c_{1}+c_{2} e^{-x}-\log \left|e^{-x}+1\right|-e^{-x} \log \left|1+e^{x}\right|
$$

Solve $\left(D^{2}+5 D+6\right) y=e^{-2 x} \sec ^{2} x(1+2 \tan x)$.
sol: Let $f(D)=D^{2}+5 D+6 \quad Q(x)=e^{-2 x} \sec ^{2} x(1+2 \tan x)$.
The Auxiliary equation is $f(m)=0$ le $m^{2}+5 m+6=0$

$$
\begin{aligned}
& (m+2)(m+3)=0 \\
& m=-2,-3 .
\end{aligned}
$$

$$
c \cdot F=y_{c}=c_{1} e^{-2 x}+c_{2} e^{-3 x}
$$

$$
P . I=y_{P}=\frac{1}{f(D)} Q
$$

$$
y_{p}=\frac{1}{D^{2}+5 D+6} e^{-2 d} \sec ^{2} x(1+2 \tan x)
$$

$$
=\frac{1}{(D+2)(D+3)} e^{-2 x} \sec ^{2} x(1+2 \tan x)
$$

$$
=\left(\frac{1}{D+2}-\frac{1}{D+3}\right) e^{-2 x} \sec ^{2} x(1+2 \tan x)
$$

$$
\frac{1}{D+2} e^{-2 x} \sec ^{2} x(1+2 \tan x)=e^{-2 x} \int e^{-2 x} \sec ^{2} x(1+2 \tan x) e^{2 x} d x \text {. }
$$

$$
\begin{array}{r}
=e^{-2 x} \int(1+2 \tan x) \sec ^{2} x d x . \\
\because(f c
\end{array}
$$

$$
\because \int f(x) f^{\prime}(x) d x=\frac{[f(x)]^{2}}{2}
$$

$$
=\frac{e^{-2 x}}{2} \cdot \frac{(1+2 \tan x)^{2}}{2}
$$

$$
\begin{aligned}
\frac{1}{D+3} e^{-2 x} \sec ^{2} x(1+2 \tan x) & =\frac{e^{-3 x}}{2} \int e^{-2 x} \sec ^{2} x(1+2 \tan x) e^{3 x} d x . \\
& =-3 x\left[\int e^{x} \sec ^{2} x d x+\left(e^{x} \sec ^{2} x .2\right.\right.
\end{aligned}
$$

$$
=e^{-3 x}\left[\int e^{x} \sec ^{2} x d x+\int e^{x} \sec ^{2} x \cdot 2 \tan x d x\right]
$$

$$
=e^{-3 x}\left[\begin{array}{r}
e^{x} \sec ^{2} x-\int e^{x} 2 \sec x \cdot \beta \sec x \tan x d x+ \\
\left.\int e^{x} \sec x \cdot e \tan x d x\right]
\end{array}\right.
$$

$$
\left.\int e^{x} \sec x / e \tan x d x\right]
$$

$$
=e^{-2 x} \sec ^{2} x
$$

$$
\therefore P . I=\frac{e^{-2 x}}{4}(1+2 \tan x)^{2}-e^{-2 x} \sec ^{2} x .
$$

$$
\begin{aligned}
& =\frac{e^{-2 x}}{4}(1+2 \tan x)^{2}-e^{-2} \sec ^{2} x . \\
& =\frac{e^{-2 x}}{4}\left(1+4 \tan ^{2} x+4 \tan x\right)-e^{-2 x}\left(1+\tan ^{2} x\right)=\frac{e^{-2 x}}{4}\left(4 \tan x-\frac{2}{x}\right. \\
& \quad 4=y_{c}+y_{p} .
\end{aligned}
$$

\therefore The general solution is $y=y_{c}+y_{p}$.

$$
y=c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{\frac{-}{2}^{-2 x}}{4}(4 \tan x-3)
$$

Scanned with CamScanner

Method of variation of parameters :-
An equation of the form $\frac{d^{2} y}{d x^{2}}+P_{1} \frac{d y}{d x}+P_{2} y=Q(x)$. Where ρ_{1}, r_{2} and Q are real valued functions of x. is called the linear differential of 2 ind order with variable coefficients.

Working Procedure:-
Step 1:- Reduce the given D.E to the standaral form

$$
\frac{d^{2} y}{d x^{2}}+p_{1} \frac{d y}{d x}+P_{2} y=Q(x)
$$

Step 2:- Find the general solution of $\frac{d^{2} y}{d x^{2}}+p_{1} \frac{d y}{d x}+p_{2} y=0$. and let the solution be $y_{c}=c_{1} u(x)+c_{2} v(x)$.
Step 3: - Take particular integral $P \cdot I=y_{p}=A u(x)+B v(x)$
Where A and B are functions of x.
step 4:- Find $W=u v^{\prime}-v u^{\prime}$ and observe that $W^{\prime}(u, v) \neq 0$. Which is called Wronsklan.

$$
w=\left|\begin{array}{cc}
u & v \\
u^{\prime} & v^{\prime}
\end{array}\right|
$$

Step 5:. Find A and B using $A=-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}}$ and $B=\int \frac{u Q d x}{u v^{\prime}-v u^{\prime}}$
The general solution of a given D.E is $y=y_{c}+y_{p}$.
\rightarrow Solve $\left(0^{2}+a^{2}\right) y=\tan a x$ by the method of variation of parameters.
Sol:- Given that $\left(D^{2}+a^{2}\right) y=\tan a x$.
Which is of the form $f(D) y=Q$

$$
f(D)=D^{2}+a^{2} \quad Q=\tan a x
$$

An Auxiliary Eqn. is $f(m)=0$ ie $m^{2}+a^{2}=0$
$m= \pm a i$ The roots are imaginary

$$
c . F=y_{c}=c_{1} \cos a x+c_{2} \sin a x
$$

Which is of the form $y_{c}=c_{1} u(x)+c_{2} v(x)$

$$
\begin{aligned}
& u=\cos a x \quad a_{2} \quad v=\sin a x . \\
& u^{\prime}=-a \sin a x \quad v^{\prime}=a \cos a x \\
& u v^{\prime}-v u^{\prime}=a \cos ^{2} a x+a \sin ^{2} a x=a \neq 0 .
\end{aligned}
$$

$$
\text { Let } \begin{aligned}
u v^{\prime}-v u^{\prime} & =u_{p}
\end{aligned}=A u(x)+B v(x) .
$$

$$
\begin{aligned}
& y_{p}=A u(x) T \\
& y_{p}=A \cos a x+B \sin a x .
\end{aligned}
$$

Where $A=-\int \frac{v Q}{u v^{\prime}-v u^{\prime}} d x \quad B=\int \frac{u Q}{u v^{\prime}-v u^{\prime}} d x$

$$
\begin{aligned}
A & =-\int \frac{\sin a x \tan a x}{a} d x=-\int \frac{\sin ^{2} a x}{a \cos a x} d x \\
& =-\frac{1}{a} \cdot \int \cdot \frac{1-\cos ^{2} a x}{\cos a x} d x=\frac{-1}{a}\left[\int \sec a x d x-\int \cos a x d x\right] \\
A & =-\frac{1}{a^{2}} \log |\sec a x+\tan a x|+\frac{1}{a^{2}} \sin a x . \\
B & =\int \frac{u Q}{u v 1-v u^{\prime}} d x=\int \frac{\cos a x \tan a x}{a} d x=\frac{1}{a} \int \sin a x d x=\frac{-1}{a^{2}} \cos a x
\end{aligned}
$$

Sub. A and B in u_{p}, we get

$$
\begin{gathered}
\text { sub. A and } B \text { in up, we ge } \\
y_{p}=\left[-\frac{1}{a^{2}} \log |\sec a x+\tan a x|+\frac{1}{a^{2}} \sin a x\right] \cos a x-\frac{1}{a^{2}} \cos a x \sin a x .
\end{gathered}
$$

\therefore The general solution is given by $y=y_{c}+y_{p}$

$$
\left.y=c_{1} \cos a x+c_{2} \sin a x+\left[\left.\frac{-1}{a^{2}} \log \right\rvert\, \sec a x+\tan a x\right)+\frac{1}{a^{2}} \sin a x\right] \cos a x-\frac{1}{a^{2}} \cos a x \sin a x
$$

\rightarrow Solve $\left(f^{f}-1\right) y=e^{-x} \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)$
sol: Let $f(D)=D^{8}-1, Q=e^{-x} \sin \left(e^{-1}\right)+\cos \left(e^{-x}\right)$.
The Auxiliary equation is $f(m)=0$. ie $m^{2}-1=0 \Rightarrow m^{2}=1$

$$
m= \pm 1 .
$$

$$
c \cdot F=y_{c}=c_{1} e^{x}+c_{2} e^{-x} .
$$

Let particular solution is $P \cdot I=y_{p}=A(x) e^{x}+B(x) e^{-x}$
Let $u(x)=e^{x} \quad v(x)=e^{-x}$

$$
\begin{array}{ll}
u(x)=e^{\prime} \\
u^{\prime}(x)=e^{x} & v^{\prime}(x)=-e^{-x}
\end{array}
$$

Wrorskian $W^{\prime}=u v^{\prime}-v u^{\prime}=-e^{0}-e^{0}=-2 \neq 0$

$$
\begin{aligned}
A & =-\int \frac{V Q}{W} d x \\
& =-\int \frac{e^{-x}\left[e^{-x} \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)\right]}{-2} d x
\end{aligned}
$$

Put $e^{-x}=t \Rightarrow-e^{-x} d x=d t$.

$$
A=\int \frac{-\cdot[t \sin t+\cos t]}{2} d t
$$

$$
=-\frac{1}{2} \int(t-\sin t+\cos t) d t
$$

$$
=\frac{-1}{2}[t(-\cos t)-(-\sin t)+\sin 1-]
$$

$$
=\frac{1}{2} t-\cos t-\sin t
$$

$$
=\frac{1}{2} e^{-x} \cos \left(e^{-x}\right)-\sin \left(e^{-x}\right)
$$

$$
B=\int \frac{u Q}{w} d x
$$

$$
=\int \frac{e^{x}\left[e^{-x} \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)\right]}{-2} d x
$$

$$
=\int \frac{e^{x}\left[\cos e^{-x}+e^{-x} \sin \left(e^{-x}\right)\right]}{-2} d x: \quad \because \int e^{x}\left\{f(x)+f^{\prime}(x)\right\} d x=e^{x} f(x)
$$

$$
=\frac{-1}{2} e^{x} \cos \left(e^{-x}\right)
$$

here $f(x)=\cos e^{-x}$.

$$
P \cdot I=-e^{-x} \sin \left(e^{-x}\right)
$$

\therefore The general solution is $y=y_{c}+y_{p} \cdot y=c_{1} e^{x}+c_{2} e^{-x}-e^{-x} \sin e^{-x}$.
\rightarrow Solve $\left(D^{2}+3 D+2\right) y=e^{x^{7}}$. by Method of variation of parameters.
sol:- Given that $\left(D^{2}+3 D+2\right) y=e^{e^{x}}$.

$$
f(D)=D^{2}+3 D+2 \quad Q=e^{e^{x}}
$$

The $A \cdot E$ is $f(m)=0$ lie $m^{2}+3 m+2=0$.

$$
m=-1,-2 .
$$

The roots are real and distinct.

$$
\begin{aligned}
& C \cdot F=y_{c}=c_{1} e^{-x}+c_{2} e^{-2 x} \\
& u(x)=e^{-x} \quad v(x)=e^{-2 x} \\
& u^{\prime}(x)=-e^{-x} \quad v^{\prime}(x)=-2 e^{-2 x}
\end{aligned}
$$

Wronskian $u=\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|=u v^{\prime}-v u^{\prime}=-2 e^{-3 x}+e^{-3 x}=-e^{-3 x} \neq 0$.
Let $P \cdot I=y_{p}=A u(x)+B v(x)$

$$
\begin{align*}
y_{p} & =A e^{-x}+B e^{-2 x} \tag{1}\\
A & =-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}} \\
A & =-\int \frac{e^{-2 x} e^{e^{x}}}{-e^{-3 x}} d x \\
& =\int e^{x} e^{e^{x}} d x \\
& =\int e^{t} d t \\
A & =\int \frac{e^{t}}{u v^{\prime}-v u^{\prime}}=e^{e^{x}} \\
B= & e^{x} d x=d t \\
= & \frac{e^{-x} \cdot e^{e^{x}} d x}{-e^{-3 x}}=-\int e^{2 x} e^{e^{x}} d x \\
& =-\int e^{x} \cdot e^{x} e^{e^{x}} d x \\
& =-\int t e^{t} d t \cdot
\end{align*}
$$

$$
\begin{aligned}
& =-\left(t e^{t}-e^{t}\right) \\
B & =-e^{x} e^{e^{x}}+e^{e^{x}}
\end{aligned}
$$

sub. A and B in (1), we get

$$
\begin{aligned}
p \cdot I=y_{p} & =e^{e^{x}} e^{-x}+e^{-2 x}\left(-e^{x} e^{e^{x}}+e^{x}\right) \\
y_{p} & =e^{-2 x} e^{e^{x}}
\end{aligned}
$$

\therefore The a.sol. is $y=y_{c}+y_{p}$.

$$
y=c_{1} e^{-x}+c_{2} e^{-2 x}+e^{-2 x} e^{e^{x}} .
$$

\rightarrow Solve $\left(D^{2}+5 D+6\right) y=e^{-2 x} \sec ^{2} x(1+2 \tan x)$ by method of variation of parameters.
Sol:- Given that $\left(D^{2}+5 D+6\right) y=e^{-2 x} \sec ^{2} x(1+2 \tan x)$.

$$
f(D)=D^{2}+5 D+6, \quad Q=e^{-2 x} \sec ^{2} x(1+2 \tan x)
$$

The $A \cdot E$ is $f(m)=0$ le $m^{2}+5 m+6=0$

$$
m=-2,-3
$$

The roots are real and distinct.

$$
\begin{aligned}
& \text { C.F }= y_{c}=c_{1} e^{-2 x}+c_{2} e^{-3 x} . \\
& u(x)=e^{-2 x} \quad v(x) x e^{-3 x} \\
& u^{\prime}(x)=-2 e^{-2 x} \quad v^{\prime}(x)=-3 e^{-3 x} \\
& \text { Wronskian } W=\left|\begin{array}{cc}
u(x) & v(x) \\
u^{\prime}(x) & v^{\prime}(x)
\end{array}\right|=u v^{\prime}-v u^{\prime} \\
&=-3 e^{-5 x}+2 e^{-5 x}=-e^{-5 x} \neq 0 .
\end{aligned}
$$

Let P.I $=y_{p}=A u(x)+B V(x)$

$$
\begin{aligned}
y_{p} & =A e^{-2 x}+B e^{-3 x} \\
A & =-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}} \\
& =-\int \frac{e^{-3 x} \cdot e^{-2 x} \sec ^{2} x(1+2 \tan x)}{-e^{-5 x}} d x . \\
& =\int(1+2 \tan x) \sec ^{2} x d x .
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{1}{2} \int(1+2 \tan x) 2 \sec ^{2} x d x \\
& =\frac{1}{2} \frac{(1+2 \tan x)^{2}}{2} \quad\left[\int f(x) f^{\prime}(x) d x=\frac{d f(x)\}^{2}}{2} .\right. \\
u & =\frac{1}{4}(1+2 \tan x)^{2} \\
v & =\int \frac{u x d x}{u v 1-v u^{\prime}} \\
& =\int \frac{e^{-2 x} \cdot e^{-2 x} \sec ^{2} x(1+2 \tan x)}{-e^{-5 x}} d x \\
& =-\int e^{x} \sec ^{2} x(1+2 \tan x \\
& =-\int e^{x}\left(\sec ^{2} x+2 \sec ^{2} x \tan x\right) d x \\
& =-e^{x} \sec ^{2} x
\end{aligned} \quad\left[\because \int e^{x}\left[\bar{f}(x)+f^{\prime}(x)\right] d x=e^{x} f(x) .\right.
$$

\therefore The G. sol. is $y=y_{c}+y_{p}$.

$$
y=c_{1} e^{-2 x}+c_{2} e^{-3 x}+\frac{e^{-2 x}}{4}(1+2 \tan x)^{2}+e^{-2 x} \sec ^{2} x .
$$

Solve $\left(D^{2}+1\right) y=\frac{1}{1+\sin x}$
Sol:- The \quad U.E is $\left(D^{2}+1\right) y=\frac{1}{1+\sin x}$
given

$$
f(D)=D^{2}+1 \quad Q=\frac{1}{1+\sin x} .
$$

The $A \cdot E$ is $f(m)=0$ i.e $m^{2}+1=0$

$$
m= \pm i
$$

The roots are imaginary.

$$
\begin{aligned}
c \cdot F=y_{c} & =c_{1} \cos x+c_{2} \sin x . \\
u(x) & =\cos x \quad v(x)=\sin x \\
u^{\prime}(x) & =-\sin x \quad v^{\prime}(x)=\cos x .
\end{aligned}
$$

Wronskian $w^{\prime}=\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|=u v^{\prime}-v u^{\prime}=\cos ^{2} x+\sin ^{2} x=1 \neq 0$.
Let

$$
\begin{aligned}
& P \cdot I=y_{p}=A u(x)+B v(x) \\
& y_{p}=A \cos x+B \sin x \text {. } \\
& A=-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}} \\
& A=-\int \sin x \cdot \frac{1}{1+\sin x} d x \text {. } \\
& =-\int \frac{\sin x}{1+\sin x} \frac{1-\sin x}{1-\sin x} \cdot d x .=-\int \frac{\sin x-\sin ^{2} x}{1-\sin ^{2} x} d x . \\
& =-\int \frac{\sin x-\sin ^{2} x}{\cos ^{2} x} d x \\
& =-\int\left(\tan x \sec x-\tan ^{2} x\right) d x \text {. } \\
& =-\int\left(\tan x \sec x-\sec ^{2} x+1\right) d x \text {. } \\
& A=-(\sec x-\tan x+x) \\
& B=\int \frac{u Q d x}{u v^{\prime}-v u^{\prime}} \\
& =\int \cos x \cdot \frac{1}{1+\sin x} d x \\
& B=\log |1+\sin x|
\end{aligned}
$$

sub. A and B in $(1$, we get

$$
\left.P \cdot I=y_{p}=-(\sec x-\tan x+x) \cos x+\sin x \log \mid 1+\sin x\right) .
$$

\therefore The G.Sol. is $y=y_{c}+y_{p}$

$$
y=c_{1} \cos x+c_{2} \sin x-\cos x(\sec x-\tan x+x)+\sin x \log |1+\sin x|
$$

Solve $\left(D^{2}-2 D+2\right) y=e^{x} \tan x$ by the method of variation of parameters. Sol: Given that $\left(0^{2}-2 D+2\right) y=e^{x} \tan x$.

$$
f(D)=D^{2}-2 D+2 \quad Q=e^{x} \tan x
$$

The A.E is $f(m)=0$ i.e $m^{2}-2 m+2=0$

$$
m=1 \pm i
$$

The roots are imaginary.

$$
\begin{aligned}
\text { C.F }=y_{c} & =e^{x}\left(c_{1} \cos x+c_{2} \sin x\right) \\
u(x) & =e^{x} \cos x \quad v(x)=e^{x} \sin x . \\
u^{\prime}(x) & =e^{x} \cos x-e^{x} \sin x \quad v^{\prime}(x)=e^{x} \sin x+e^{x} \cos x .
\end{aligned}
$$

Wronskian $W=\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|=u v^{\prime}-v u^{\prime}$

$$
\begin{aligned}
& =e^{x} \cos x\left(e^{x} \sin x+e^{x} \cos x\right)-e^{x} \sin x\left(e^{x} \cos x-e^{x} \sin x\right) \\
& =e^{2 x} \neq 0 .
\end{aligned}
$$

Let $p \cdot I=y_{p}=A u(x)+B v(x)$

$$
\begin{aligned}
y_{p} & =A e^{x} \cos x+B e^{x} \sin x \\
A & =-\int \frac{v a d x}{u v^{\prime}-v u^{\prime}} \\
& =-\int \frac{e^{x} \sin x \cdot e^{x} \tan x}{e^{2 x}} d x \cdot=-\int \sin x \cdot \frac{\sin x}{\cos x} d x \\
& =-\int \frac{\sin ^{2} x}{\cos x} d x=-\int \frac{1-\cos ^{2} x}{\cos x} d x . \\
& =-\int \sec x d x+\int \cos x d x \\
& =-\log |\sec x+\tan x|+\sin x . \\
B & =\int \frac{u Q d x}{u v^{\prime}-v u^{\prime}} \\
& =\int \frac{e^{x} \cos x \cdot e^{x} \tan x}{e^{2 x}} d x \cdot=\int \sin x d x \\
B & =-\cos x .
\end{aligned}
$$

Sub. A and B in (1), we get

$$
\begin{aligned}
P \cdot I=y_{p} & =[-\log \mid \sec x+\tan x)+\sin x] e^{x} \cos x+(-\cos x) e^{x} \sin x . \\
y_{p} & =-e^{x} \cos x \log (\sec x+\tan x) .
\end{aligned}
$$

The G.Sol. is $y=y_{c}+y_{p}$

$$
y=e^{x}\left(c_{1} \cos x+c_{2} \sin x\right)-e^{x} \cos x \log |\sec x+\tan x| .
$$

\rightarrow Solve $\frac{d^{2} y}{d x^{2}}-y=\frac{2}{1+e^{x}}$ by the Method of Variation of parameters.
Sol: An operator form of the given D.E is $\left(D^{2}-1\right) y=\frac{2}{1+e^{x}}$

$$
f(D)=D^{2}-1 \quad Q=\frac{2}{1+e^{x}}
$$

The A.E is $f(m)=0$ i.e $m^{2}-1=0$

$$
m= \pm 1
$$

The roots are real and distinct

$$
\begin{aligned}
& c \cdot F=y_{c}=c_{1} e^{x}+c_{2} e^{-x} . \\
& u(x)=e^{x} \quad v(x)=e^{-x} \\
& u^{\prime}(x)=e^{x} \quad v^{\prime}(x)=-e^{-x}
\end{aligned}
$$

Wronskian $W=\left|\begin{array}{cc}u & v \\ u^{\prime} & v^{\prime}\end{array}\right|=u v^{\prime}-v u^{\prime}=e^{x}\left(-e^{-x}\right)-e^{x} e^{-x}=-2 \neq 0$
Let $\quad P \cdot I=y_{p}=A u(x)+B \cdot V(x)$.

$$
\begin{aligned}
y_{p} & =A e^{x}+B e^{-x} \\
A & =-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}} \\
& =-\int \frac{e^{-x} \cdot \frac{R}{1+e^{x}}}{-2} d x=\int \frac{1}{e^{x}\left(1+e^{x}\right)} d x \\
& =+\int\left(\frac{1}{e^{-x}}-\frac{1}{1+e^{x}}\right) d x \\
& =\int e^{-x} d x+\int \frac{-e^{-x}}{e^{-x}+1} d x
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{e^{-x}}{-1}+\log \left|1+e^{-x}\right| \\
& =\log \left|1+e^{-x}\right|-e^{-x} \\
B & =\int \frac{u Q d x}{u v 1-v u^{\prime}} \\
& =\int \frac{e^{x} \frac{2}{1+e^{x}}}{-2} d x \\
& =-\int \frac{e^{x}}{1+e^{x}} d x \\
B & =-\log \left|1+e^{x}\right| .
\end{aligned}
$$

Sub. A and B in (1), we get

$$
p \cdot I=y_{p}=e^{x} \log \left|1+e^{-x}\right|-1+e^{-x} \log \left|1+e^{x}\right|
$$

The G. sol. is $y=y_{c}+y_{p}$

$$
\begin{aligned}
& \text { sol. is } y=x_{c}+x p \\
& y=c_{1} e^{x}+c_{2} e^{-x}+e^{x} \log \left|1+e^{-x}\right|-1-e^{-x} \log \left|1+e^{x}\right| .
\end{aligned}
$$

Solve $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log x$.
Given that $y^{\prime \prime}-2 y^{\prime}+y=e^{x} \log n$.
An operator form of given eqn. is. $\left(D^{2}-2 D+1\right) y=e^{x} \log x$.
Which is of the form $f(D) y=Q$.
where $f(D)=D^{2}-2 D+1 \quad Q=e^{x} \log x$.
An auxiliary equation is $f(m)=0$ i.e $m^{2}-2 m+1=0$

$$
m=1,1
$$

The roots are real and repeated

$$
\text { c. } F=y_{c}=\left(c_{1} x^{0}+c_{2} x\right) e^{x}
$$

Which is of the form $y_{c}=c_{1} u(x)+c_{2} v(x)$

$$
\begin{aligned}
& u(x)=e^{x} \quad v(x)=x e^{x} . \\
& u^{\prime}=e^{x} \quad v^{\prime}=e^{x}+x e^{x} . \\
& \nu^{\prime}=u v^{\prime}-v u^{\prime}=e^{x}\left(e^{x}+x e^{x}\right)-e^{7} \cdot x e^{x}=e^{e x} \neq 0 .
\end{aligned}
$$

Let P.I be, $P \cdot I=y_{p}=A u(x)+B v(x)$

$$
y_{p}=A e^{x}+B x e^{x}
$$

Where $A=-\int \frac{v Q}{u v^{\prime}-v u^{\prime}} d x \quad B=\int \frac{u Q}{u v^{\prime}-v u^{\prime}} d x$.

$$
\begin{aligned}
& A=-\int \frac{x e^{x} e^{x} \log x}{e^{2 x}} \cdot d x=-\int x \log x d x \\
& A=-\left[(\log x) \int x d x-\int\left[\frac{1}{x} \cdot \int x d x\right] d x\right] \\
& A=-\left[\log x \cdot \frac{x^{2}}{2}-\int \frac{x}{2} d x\right] \\
& A=-\frac{x^{2}}{2} \log x+\frac{x^{2}}{4} \\
& B=\int \frac{u Q}{u v^{\prime}-v u^{\prime}} d x \\
& B=\int \frac{e^{x} e^{x} \log x}{e^{2 x}}=\int \log x d x \\
& B=x \log x-x
\end{aligned}
$$

Sub. A and B in y_{p}

$$
\begin{aligned}
& \text { Sub. } A \text { and } B \text { y }=\left[\frac{x^{2}}{4}-\frac{x^{2}}{2} \log x\right] e^{x}+[x \log x-x] e^{x} \cdot x \\
& y_{p}=\left[\frac{x^{2}}{4}-\frac{x^{2}}{2} \log x\right] e^{x}+x^{2}[\log x-1] e^{x} \\
& y=y+y_{p}
\end{aligned}
$$

The General sol. is $y=y_{c}+y_{p}$.
\rightarrow Solve $\left(D^{2}-3 D+2\right) y=\cos \left(e^{-x}\right)$
Sol:- Given that $\left(D^{2}-3 D+2\right) y: \cos \left(e^{-x}\right)$.
Which is of the form, $f(D) y=Q$.
Where $f(D)=D^{2}-3 D+2 \quad Q=\cos \left(e^{-x}\right)$
An Auxiliary Equation is $f(m)=0$ i.e $m^{2}-3 m+2=0$

$$
m=1,2 .
$$

The roots are real and distinct

$$
y_{c}=c_{1} e^{2 x}+c_{2} e^{x}
$$

Which is of the from $y_{c}=c_{1} u(x)+c_{2} v(x)$

$$
\begin{aligned}
u & =e^{2 x} \quad v=e^{x} \\
u^{\prime} & =2 e^{2 x} \cdot v^{\prime}=e^{x} \\
w=u v^{\prime}-v u^{\prime} & =e^{2 x} \cdot e^{x}-2 e^{2 x} e^{x}=-e^{3 x} \neq 0
\end{aligned}
$$

Let $P . I=y_{p}=A u(x)+B V(x)$

$$
\begin{aligned}
y_{p} & =A e^{2 x}+B e^{x} \\
\text { Where } A & =-\int \frac{v Q d x}{u v^{\prime}-v u^{\prime}} \quad B=\int \frac{u Q}{u v^{\prime}-v u^{\prime}} \\
A & =-\int \frac{e^{x} \cos \left(e^{-x}\right)}{-e^{3 x}} d x=\int\left(e^{-x}\right)^{2} \cos \left(e^{-x}\right) d x
\end{aligned}
$$

$$
A=-\int t \operatorname{tcost} d t
$$

$$
\text { Put } e^{-x}=t
$$

$$
-e^{-x} d x=d t
$$

$$
A=-[t(\sin t)-1(-\cos t)]
$$

$$
e^{-x} d x=-d t
$$

$$
A=-(t \sin t+\cos t)
$$

$$
A=-\left[e^{-x} \cdot \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)\right]
$$

$$
B=\int \frac{u Q \cdot d x}{u v^{\prime}-v u^{\prime}}
$$

$$
=\int \frac{e^{2 x} \cdot \cos \left(e^{-x}\right)}{-e^{3 x}} d x=-\int e^{-x} \cos \left(e^{-x}\right) d x
$$

$$
\text { Put } e^{-x}=t
$$

$$
-e^{-x} d x=d t
$$

sub. A and B in y_{p}, we get

$$
\begin{gathered}
\operatorname{sub} \text {. A and } \\
y_{p}=-e^{2 x}\left[e^{-x} \sin \left(e^{-x}\right)+\cos \left(e^{-x}\right)\right]+e^{x} \sin \left(e^{-x}\right) \\
y_{p}=-e^{2 x} \cos \left(e^{-x}\right)
\end{gathered}
$$

\therefore The general sol. is $y=y_{c}+y_{p}$

$$
y=c_{1} e^{2 x}+c_{2} e^{x}-e^{2 x} \cos \left(\bar{e}^{x}\right)
$$

MODULE -IV

SERIES SOLUTION TO THE DIFFERENTIAL EQUATIONS

SERIES SOLUTION TO THE DIFFERENTIAL EQUATIONS
MOTIVATION FOR SERIES SOLUTION:- The factors that motivate the use of Series solutions are,
(i) Series solutions are of great importance in determining the solutions for second order differential Equations.
(ii) These solutions facilitate series expansions and generate several new functions of different classes.
(iii) It is a standard method for solving initial value problems with variable coefficients.

Power Series:- An infinite series is of the form $\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=a_{0}+a_{1}\left(x-x_{0}\right)+a_{2}\left(x-r_{0}\right)^{2}+\ldots$ where $a_{0}, a_{1}, a_{2} \ldots \ldots$ are real constants is called "Power series in powers of $\left(x-x_{0}\right)$." If $x_{0}=0$, then $\varepsilon q u \cdot(1)$ becomes

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdots \longrightarrow(2)
$$

If $x=x_{0}$ in qu. (1), then the power series (1) is always convergent.
If $x=0$ in qu. (2), then the power series (2) is always convergent.
If $\operatorname{It~}_{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|=R$ exists then the power series (1) is convergence for all $\cdot x$ such that $\left|x-x_{0}\right|<R$.

Since, $\quad\left|x-x_{0}\right|<R$

$$
\begin{aligned}
& \Rightarrow \quad-R<x-x_{0}<R \\
& \Rightarrow \quad x_{0}-R<x<x_{0}+R . \\
& \Rightarrow \quad x \in\left(x_{0}-R, x_{0}+R\right)
\end{aligned}
$$

In this case, \vec{R} is said to be radius of convergence of the power series. If $R=\infty$, then the power series converges for all values of ' x '. and also we can say that the power series has infinite radius of convergence.
The interval $\left(x_{0}-R, x_{0}+R\right)$ is said to be the interval of convergence.
For Eau. $(2),(-R, R)$ is said to the interval of convergence.

NOIE:- A pacer series represents a contrucus function within the inbivil of convergence. Also, a power series can be differentiated tommie whin its interval of convergence.

ANALYTIC FUNCTION: - Let a function " $f(x)$ " be derivable at every point " x " in an - neighbourhood of ' x_{0}^{\prime} " ie, $f^{\prime}(x)$ exists ford ' x ' such that $\left|x-x_{0}\right|<\varepsilon$ where $\varepsilon>0$ then $f(x)$ is said t_{0} be analytic at x_{0}^{*}.
NOTE:- if $f(x)$ is analytic at " x_{0} "
(i) $f^{\prime}\left(x_{0}\right)$ exists and.
(ii) $f^{\prime}(x)$ exists at every point ' x ' in an ε-nba of x_{0}.

ORDINARY POINT (REGULAR POINT) AND SINGULAR POINT:-
Consider the differential Equation

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \tag{1}
\end{equation*}
$$

Where $P(x), Q(x)$ and $R(x)$ are polynomials in ' x :
ORDINARY PoInt (REGULAR POINT):-
A point $x=a$ is said to be an ordinary point of diff. Equ.13)
if $P(a) \neq 0$.
Eg:- (1) $\quad\left(1+x^{2}\right) \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}-y=0$.
Here, $P(x)=1+x^{2}$.
$\Rightarrow x=0$, is an ordinary point $(x=\ldots-3,-2,-1,1,2,3 \ldots$ are all Ordinary Points)
(2). $x^{2} \frac{d^{2} y}{d x^{2}}+a x \frac{d y}{d x}+b y=0$.

Here, $P(x)=x^{2}$.
\therefore Except $x=0$, all other points are ordinary points (Regular points).
SINGULAR POINT:-
A point $x=a$ is said to be a singular point of the diff. Equ. (1)
if $\quad p(a)=0$
Eger. (1) $\quad x^{2} y^{\prime \prime}+a x y^{\prime}+b y=0$.
Here, $P(x)=x^{2}$
For $x=0, P(0)=0^{2}=0$
$\Rightarrow \quad x=0$ is a singular point while all other points are regular points.
(2) $\quad\left(1-x^{2}\right) \frac{d y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$

Here, $\quad P(x)=1-x^{2}$
If $P(x)=0 \Rightarrow 1-x^{2}=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$.
$\therefore x= \pm 1$ are the singular points, remaining all are ordinary points.
Problem:- (1) Find the regular points and Singular points of diff. Exp.

$$
y^{\prime \prime}+\frac{1}{x-2} y^{\prime}+\frac{6}{x^{3}(x-2)} y=0
$$

sol:- Given diff. Equ. is

$$
\begin{align*}
& y^{\prime \prime}+\frac{1}{x-2} y^{\prime}+\frac{6}{x^{3}(x-2)} y=0 . \\
\Rightarrow & x^{3}(x-2) y^{\prime \prime}+x^{3} y^{\prime}+6 y=0 \\
\Rightarrow & x^{3}(x-2) \frac{d^{2} y}{d x^{2}}+x^{3} \frac{d y}{d x}+6 y=0 \tag{1}
\end{align*}
$$

Comparing (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=x^{3}(x-2) ; \quad Q(x)=x^{3} ; \quad R(x)=6 .
$$

Now, $\quad P(x)=0$

$$
\begin{aligned}
& \Rightarrow x^{3}(x-2)=0 \\
& \Rightarrow x=0, x=2 .
\end{aligned}
$$

$\therefore x=0,2$ are singular points and the remaining all are regular points (ordinary Points),

TYPES (OR KINDS OF SINGULAR POINTS:-
The singular points are of two types:
(i) Regular singular point.
(ii) Irregular singular point.

Regular Singular point:- consider the diff. Equ.

$$
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \longrightarrow(1) .
$$

Now, the standard form of Equ.(1) is given by

$$
\begin{aligned}
& \quad \frac{d^{2} y}{d x^{2}}+\frac{Q(x)}{P(x)} \frac{d y}{d x}+\frac{R(x)}{P(x)} y=0 . \\
& \Rightarrow \quad y^{\prime \prime}+Q_{1}(x) y^{\prime}+Q_{2}(x) y=0 \text { where } Q_{1}(x)=\frac{Q(x)}{P(x)} \\
& Q_{2}(x)=\frac{R(x)}{P(x)} .
\end{aligned}
$$

The above differential Equation can be written in the form as:

$$
\frac{d^{2} y}{d x^{2}}+\frac{Q_{1}(x)}{x-a} \frac{d y}{d x}+\frac{Q_{2}(x)}{(x-a)^{2}} y=0 \longrightarrow \text { (2). }
$$

Where $Q_{1}(x)=\frac{(x-a) Q(x)}{P(x)}$

$$
Q_{2}(x)=\frac{(x-a)^{2} R(x)}{P(x)}
$$

A singular point $x=a$ of Exp. (2) is said to be regular Singular Point if " $Q_{1}(x)$ " and " $Q_{2}(x)$ " are analytic at $x=a$. (ie., $Q_{1}(x) \& Q_{2}(x)$ are differentiable at $x=a$ and at every point in its neighbourhood).
Irregular Singular Point :- A singular point which is not regular is called an" irregular singular point".

Regular Singular Point :- consider the differential Equation:

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \tag{1}
\end{equation*}
$$

Now the standard form of Equ.(1) is given by

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}+\frac{Q(x)}{P(x)} \frac{d y}{d x}+\frac{P(x)}{P(x)} y=0 \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0 \rightarrow(2) \text { where } P_{1}(x)=\frac{Q(x)}{P(x)} \\
& P_{2}(x)=\frac{R(x)}{P(x)}
\end{aligned}
$$

A singular point $x=a$ of Equ. (2) is called regular Singular point, if $(x-a) P_{1}(x)$ and $(x-a)^{2} P_{2}(x)$ are analytic (le, not infinite).
TRREGULAR SNGULAR PoINT :- A Singular point which is not regular is called an "irregular Singular point."
Problem:- Find the singular points of the following differential Equations and classify them:

$$
\text { (a) } x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0 \text {. }
$$

Sol:- Given differential Equation is

$$
\begin{align*}
x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y & =0 \\
\Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-n^{2}\right) y & =0 \tag{1}
\end{align*}
$$

comparing Equ.(1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=x^{2} ; \quad Q(x)=x ; \quad R(x)=x^{2}-n^{2} .
$$

For, $P(x)=0 \Rightarrow x^{2}=0 \Rightarrow x=0$.
$\therefore x=0$ is a singular point.
From. Equ. (1) we have,

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}+\frac{x}{x^{2}} \frac{d y}{d x}+\frac{x^{2}-n^{2}}{x^{2}} y=0 \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(\frac{x^{2}-n^{2}}{x^{2}}\right) y=0 \tag{2}
\end{align*}
$$

Comparing (2) with $\frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0$ we have,

$$
P_{1}(x)=\frac{1}{x} ; \quad P_{2}(x)=\frac{x^{2}-n^{2}}{x^{2}}
$$

When $x=0$,

$$
\begin{aligned}
& (x-a) P_{1}(x)=(x-0)\left(\frac{1}{x}\right)=1 \neq \infty \\
& (x-a)^{2} P_{2}(x)=(x-0)^{2}\left(\frac{x^{2}-n^{2}}{x^{2}}\right)=x^{2}-n^{2} \neq \infty
\end{aligned}
$$

\therefore Given diff. Equ. (1) has a regular Singular point at $x=0$.
(b) $\quad x^{3}(2-x)^{2} y^{\prime \prime}-2 x^{2}(2-x) y^{\prime}+3 y=0$

Sol:- Given differential Equation is

$$
\begin{align*}
& x^{3}(2-x)^{2} y^{\prime \prime}-2 x^{2}(2-x) y^{\prime}+3 y=0 \\
\Rightarrow & x^{3}\left(2-x^{2}\right)^{2} \frac{d^{2} y}{d x^{2}}-2 x^{2}(2-x) \frac{d y}{d x}+3 y=0 \tag{1}
\end{align*}
$$

Comparing Equ. (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+B(x) y=0$ son we have,

$$
P(x)=x^{3}\left(2-x^{2}\right)^{2} ; \quad Q(x)=-22^{2}(2-x) ; \quad R(x)=3 .
$$

for, $P(x)=0 \Rightarrow x^{3}\left(2-x^{2}\right)^{2}=0$

$$
\begin{aligned}
& \Rightarrow x^{3}=0 ; \quad(2-x)^{2}=0 \\
& \Rightarrow x=0 \quad \text { and } x=2
\end{aligned}
$$

$\therefore x=0$ and $x=2$ are Singular points while all other points are ordinary points. From squ. (1) we have,

$$
\frac{d^{2} y}{d x^{2}}-\frac{2 x^{2}(2-x)}{x^{3}(2-x)^{2}} \frac{d y}{d x}+\frac{3}{x^{3}(2-x)^{2}} y=0
$$

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{2}{x(2-x)} \frac{d y}{d x}+\frac{3}{x^{3}(2-x)^{2}} y=0 \\
& \text { (2) with } \frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0 \text { we have, } \\
& P_{1}(x)=\frac{-2}{x(2-x)} ; \quad P_{2}(x)=\frac{3}{x^{3}(2-x)^{2}}
\end{aligned}
$$

Comparing Equ. (2) with $\frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0$ we have,

Case (i):- At the punt $x=0:-$

$$
(x-a) P_{1}(x)=(x-0)\left(\frac{-2}{x(2-x)}\right)=\frac{-2}{2-x}
$$

Now, $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{-2}{2-x}\right)=\operatorname{Lt}_{x \rightarrow 0}\left(\frac{2}{x-2}\right)=-1 \neq \alpha$
$\therefore x P_{1}(x)$ is analytic at $x=0$.
Also, $(x-a)^{2} P_{2}(x)=(x-0)^{2}\left(\frac{3}{x^{3}(2-x)^{2}}\right)=\frac{3}{x(2-x)^{2}}$.
Now, $\operatorname{Lt}_{x \rightarrow 0}\left(\frac{3}{x(2-7)^{2}}\right)=\infty$.
$\therefore x^{2} P_{2}(x)$ is not analytic at $x=0$.
$\therefore x=0$ is an irregitor singular point.
Case (ii):- At the point $x=2$:-

$$
(x-a) P_{1}(x)=(x-2)\left(\frac{-2}{x(2-x)}\right)=\frac{2}{x}
$$

Now,

$$
\operatorname{lt}_{x \rightarrow 2}\left(\frac{2}{x}\right)=\frac{2}{2}=1 \neq \infty
$$

$$
\therefore(x-2) P_{1}(x) \text { is analytic at } x=2 \text {. }
$$

$$
(x-a)^{2} P_{2}(x)=(x-2)^{2}\left[\frac{3}{x^{3}(2-x)^{2}}\right]=\frac{3}{x^{3}}
$$

Now, $\operatorname{Lt}_{x \rightarrow 2}\left[\frac{3}{x^{3}}\right]=\frac{3}{2^{3}}=\frac{3}{8} \neq \alpha$
$\therefore(x-2)^{2} P_{2}(x)$ is analytic at $x=2$.
Hence, $x=2$ is an irregular singubr point.

SERIES SOLUTIOM About The ORDINACY POINT $x=0$:-
WORKING Procedure :-
Let $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \longrightarrow$ (1) be the given differential Equation where $P(x), Q(x)$ and $R(x)$ are polynomials in x and observe that $P(x) \neq 0$ at $x=0$. ie, $x=0$ is an ordinary point of diff. qu. (1).
Stop (1):- Assume that the solution of the given diff. Squ. (1) is of the form

$$
\begin{aligned}
y & =\sum_{n=0}^{\infty} a_{n} x^{n} \\
\Rightarrow \quad y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots \cdots \cdots \rightarrow(2)
\end{aligned}
$$

where $a_{0}, a_{1}, a_{2}, a_{3} \ldots \ldots$ are constants.
step (2):- Find $\frac{d y}{d x}, \frac{d^{2} y}{d x^{2}}$ form (2) and substitute the values of y, y^{\prime} and $y^{\prime \prime}$ in Equ.(1). step p(3):- Now Equate the coefficients of Various pours of ' x ' to zero. Now, we will get the number of Equations involving a_{0}, a_{1}, a_{2}

The result obtained by Equating the coefficient of x^{n} to zero is called
"Recurrence Relation" and it can be used to compute additional constants.
Step (4):- Substitute the values of $a_{2}, a_{3}, a_{4} \ldots .$. in Equ. (2), we get the required solution.
Problem- (1) Solve in Series the Equation:

$$
\frac{d^{2} y}{d x^{2}}+x y=0 \quad \text { (By series method) }
$$

Solution:- Given diff. Equation is

$$
\begin{equation*}
\frac{d^{2} y}{d x^{2}}+x y=0 \tag{1}
\end{equation*}
$$

Compare he given diff. qu. (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=1 ; \quad Q(x)=0 ; \quad R(x)=x .
$$

Here, $\quad P(x)=1$.

$$
\Rightarrow P(x) \neq 0 \text { at } x=0
$$

$\therefore x=0$ is an ordinary point of given diff. Eqc.(1).
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the series solution of Equ.(1).

$$
\Rightarrow y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \cdots \longrightarrow \text { (2). }
$$

Diff. (2) writ. ' 3 ' we have,

$$
\begin{equation*}
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\ldots++n a_{n} x^{n-1}+ \tag{3}
\end{equation*}
$$

Diff. (3) w.r.t. ' x ' we have,

$$
y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots \cdot+n(n-1) a_{n} x^{n-2}+
$$

Nos, substitute in the given diff. Equation (1) we have,
$\Rightarrow\left[2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots+n(n-1) a_{n} x^{n-2}+\cdots \cdot\right]+x\left[a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots\right]=0$.
$\Rightarrow 2 a_{2}+\left(6 a_{3}+a_{0}\right) x+\left(12 a_{4}+a_{1}\right) x^{2}+\cdots \cdots+\left[(n+2)(n+1) a_{n+2}+a_{n-1}\right] x^{n}+\cdots \cdots=0$.
Comparing the coefficients of x, x^{2} and constant terms on both sids, we get
constant term, $\quad 2 a_{2}=0 \Rightarrow a_{2}=0$.
coff. of $x, \quad 6 a_{3}+a_{0}=0$

$$
\begin{aligned}
& \Rightarrow 6 a_{3}=-a_{0} \\
& \Rightarrow a_{3}=-\frac{a_{0}}{6}=-\frac{a_{0}}{3!}
\end{aligned}
$$

coff of $x^{2}, \quad 12 a_{4}+a_{1}=0$.

$$
\Rightarrow 12 a_{4}=-a_{1} \Rightarrow a_{4}=\frac{-a_{1}}{12}=\frac{-2 a_{1}}{4!}
$$

Now, Equate the coefficient of ' $x^{n \prime}$ to zero we have

$$
\begin{aligned}
& (n+2)(n+1) a_{n+2}+a_{n-1}=0 . \\
& \Rightarrow \quad a_{n+2}=\frac{-a_{n-1}}{(n+2)(n+1)} \longrightarrow(5) \text {, which is a recurrence relation. }
\end{aligned}
$$

substitute $n=3,4,5 \cdots$ in Equ. (5) we have,

$$
\begin{aligned}
& a_{5}=\frac{-a_{2}}{20}=0 \quad\left(\because a_{2}=0\right) \\
& a_{6}=\frac{-a_{3}}{30}=\frac{a_{0}}{180}=\frac{4 a_{0}}{6!} \quad\left(\because a_{3}=-\frac{a_{0}}{3!}\right) \\
& a_{7}=\frac{-a_{4}}{42}=\left(\frac{2 a_{1}}{4!}\right)\left(\frac{1}{42}\right)=\frac{a_{1}}{504}=\frac{10 a_{1}}{7!} \quad\left(\because a_{4}=-\frac{2 a_{1}}{4!}\right)
\end{aligned}
$$

substitute these values in $\varepsilon_{q u(}(2)$ we have,

$$
\begin{aligned}
& y=a_{0}+a_{1} x+0-\frac{a_{0}}{3!} x^{3}-\frac{2 a_{1}}{4!} x^{4}+\frac{4 a_{0}}{6!} x^{6}+\frac{10 a_{1}}{7!} x^{7}+\cdots \\
& \Rightarrow y\left.=a_{0}\left[1-\frac{x^{3}}{3!}+\frac{4}{6!} x^{6}-1 \cdots\right]+a_{1}\left[x-\frac{2 x^{4}}{4!}+\frac{10 x^{7}}{7!} \cdots\right]\right] \\
& \text { which is the required solution. }
\end{aligned}
$$

Problem:- Solve in Series

$$
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0
$$

Sol:- Given diff. Equation is

$$
\begin{equation*}
\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0 \tag{1}
\end{equation*}
$$

comparing (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=1-x^{2} ; G(x)=-x ; \quad R(x)=4 .
$$

Here, $P(x)=1-x^{2}$.

$$
\Rightarrow P(0)=1 \neq 0 \text { when } x=0
$$

$\therefore x=0$ is an ordinary point of given diff. Equ. (1).
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the series solution of Equ.(1).

$$
\Rightarrow y=a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdots+a_{n} n^{n}+\cdots \cdots(2) .
$$

Diff. (2) w.r.t. ' x ' we have,

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots+n a_{n} x^{n-1}+\ldots \ldots \rightarrow(3)
$$

Diff. (3) wert. ' x ' we have,

$$
y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots+n(n-1) a_{n} x^{n-2}+\cdots \cdots \rightarrow(4)
$$

Now, substitute in the given diff. Equ.(1) we have,

$$
\begin{aligned}
& \text { from }(1) \Rightarrow \frac{d^{2} y}{d x^{2}}-\frac{x}{1-x^{2}} \frac{d y}{d x}+\frac{4}{1-x^{2}} y=0 . \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}-x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+4 y=0 . \\
& \Rightarrow\left[2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots+n(n-1) a_{n} x^{n-2}\right]-\left[2 x^{2} a_{2}+6 a_{3} x^{3}+12 a_{4} x^{4}+\cdots \cdots+n(n-1) a_{n} x^{n}+\cdots\right] \\
& \\
& -\left[a_{1} x+2 a_{2} x^{2}+3 a_{3} x^{3}+\cdots+n a_{n} x^{n}+\cdots\right] \\
& \\
& +4\left[a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}+\cdots\right]=0 . \\
& \Rightarrow\left(2 a_{2}+4 a_{0}\right)+\left(6 a_{3}+3 a_{1}\right) x+\left(12 a_{4}-2 a_{2}-2 a_{2}+4 a_{2}\right) x^{2}+\cdots \cdots \cdots=0 \\
&
\end{aligned}
$$

Now, Equate the constant term we trave,

$$
\begin{aligned}
& 2 a_{2}+4 a_{0}=0 \\
\Rightarrow & 2 a_{2}=-4 a_{0} \\
\Rightarrow & a_{0}=\frac{-2 a_{2}}{4}=\frac{-a_{2}}{2} \Rightarrow a_{2}=-2 a_{0}
\end{aligned}
$$

Equating the corf of ' x ' we have,

$$
\begin{aligned}
& 6 a_{3}+3 a_{1}=0 . \\
\Rightarrow & 6 a_{3}=-3 a_{1} \\
\Rightarrow & a_{3}=-\frac{a_{1}}{2}
\end{aligned}
$$

Equating the coetf. of " x " "we have,

$$
\begin{aligned}
& (n+2)(n+1) a_{n+2}-n(n-1) a_{n}-n a_{n}+4 a_{n}=0 \\
\Rightarrow & (n+2)(n+1) a_{n+2}-n^{2} a_{n}+n a_{n}-n a_{n}+4 a_{n}=0 \\
\Rightarrow & (n+2)(n+1) a_{n+2}=n^{2} a_{n}-4 a_{n} \\
\Rightarrow & (n+2)(n+1) a_{n+2}=\left(n^{2}-4\right) a_{n} \\
\Rightarrow & (n+2)(n+1) a_{n+2}=(n+2)(n-2) a_{n}
\end{aligned}
$$

$\Rightarrow \quad a_{n+2}=\frac{n-2}{n+1} a_{n} \longrightarrow$ (5), which is a recurrence relation. substitute $n=2,3,4,5 \ldots$ in Equ. (5) we have,

$$
\begin{aligned}
& a_{4}=0 \\
& a_{5}=\frac{3-2}{3+1} a_{3}=\frac{1}{4} a_{3}=\frac{1}{4}\left(-\frac{a_{1}}{2}\right)=\frac{-a_{1}}{8} \\
& a_{6}=\frac{4-2}{4+1} a_{4}=\frac{2}{5} a_{4}=0 \\
& a_{7}=\frac{5-2}{5+1} a_{5}=\frac{3}{6} a_{5}=\frac{3}{6}\left(-\frac{a_{1}}{8}\right)=\frac{-a_{1}}{16}
\end{aligned}
$$

substitute these values in Equ.(2) we have,

$$
\begin{aligned}
y & =a_{0}+a_{1} x-2 a_{0} x^{2}-\frac{a_{1}}{2} x^{3}-\frac{a_{1}}{8} x^{5}-\frac{a_{1}}{16} x^{7}+\cdots \\
\Rightarrow y & =\left(1-2 x^{2}\right) a_{0}+a_{1} x\left[1-\frac{x^{2}}{2}-\frac{x^{4}}{8}-\frac{x^{6}}{16}-\cdots \cdot\right]
\end{aligned}
$$

which is the required solution.

Problem:- Find the power series solution about the origin of the following first cider Equation

$$
y^{\prime}+2 x y=\frac{1}{1-x}
$$

Sol:- Given diff. Equ is $y^{\prime}+2 x y=\frac{1}{1-x} \longrightarrow(1)$
It is also given that, $x=0$ is an ordinary point of given diff. Equ-(1).
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the Series solution of Equ. (1).

$$
\Rightarrow y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\cdots+a_{n} x^{n}+\cdots \cdots \longrightarrow \text { (2) }
$$

Diff. (2) w.r.t. ' x ' we have,

$$
y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \cdots+n a_{n} x^{n-1}+\cdots \cdots \longrightarrow(3)
$$

Diff. (3) w.r.t. ' x ' we have,

$$
y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots+n(n-1) a_{n} x^{n-2}+\cdots \cdots \rightarrow \text { (4). }
$$

Now, substitute in the given diff. Squ.(1) we have,

$$
\begin{aligned}
& \text { from (1) } \Rightarrow\left(a_{1}+2 a_{2} x+3 a_{3} x^{2}+\cdots \cdots \cdots+n a_{n} x^{n-1}+\cdots \cdot\right) \\
& \\
& +2 x\left(a_{0}+a_{1} x+a_{2} x^{2}+\cdots \cdots+a_{n} x^{n}+\cdots\right)=(1-x)^{-1} \\
& =1+x+x^{2}+x^{3}+x^{4}+\cdots+x^{n}+\cdots \\
& \Rightarrow a_{1}+\left(2 a_{0}+2 a_{2}\right) x+\left(3 a_{3}+2 a_{1}\right) x^{2}+\left(4 a_{4}+2 a_{2}\right) x^{3}+\cdots \cdots \\
& \\
& \\
& +\left(n+1 a_{n+1}+2 a_{n-1}\right) x^{n}+\cdots \cdots=1+x+x^{2}+\cdots+x^{n}+\cdots \cdot
\end{aligned}
$$

Now, Equating the constants, $x, x^{2}, x^{3} \ldots \ldots$ on both sides we have,

$$
\begin{aligned}
& a_{1}=1 \\
& 2 a_{0}+2 a_{2}=1 \Rightarrow 2 a_{2}=1-2 a_{0} \Rightarrow a_{2}=\frac{1-2 a_{0}}{2} \\
& 3 a_{3}+2 a_{1}=1 \Rightarrow 3 a_{3}=1-2 a_{1} \Rightarrow 3 a_{3}=1-2=-1 \Rightarrow a_{3}=-\frac{1}{3}
\end{aligned}
$$

Now, Equating the coefficient of x^{n}, we have,

$$
\begin{aligned}
& (n+1) a_{n+1}+2 a_{n-1}=1 \\
& \Rightarrow(n+1) a_{n+1}=1-2 a_{n-1}
\end{aligned}
$$

$$
\Rightarrow a_{n+1}=\frac{1-2 a_{n-1}}{n+1}, n \geqslant 1 \longrightarrow(5) \text { which is a recurrence relation. }
$$

Substitute $n=3,4,5 \ldots$ in Equ.(5) we have,

$$
a_{4}=\frac{1-2 a_{2}}{4}=\frac{1}{4}\left[1-2\left(\frac{1-2 a_{0}}{2}\right)\right]=\frac{2 a_{0}}{4}=\frac{a_{0}}{2}
$$

$$
\begin{aligned}
& a_{5}=\frac{1-2 a_{3}}{5}=\frac{1}{5}[1-2(-1 / 3)]=\frac{1}{5}\left[1+\frac{2}{3}\right]=\frac{1}{5}\left[\frac{5}{3}\right]=\frac{1}{3} \\
& a_{6}=\frac{1-2 a_{4}}{6}=\frac{1}{6}\left[1-2\left(\frac{a_{0}}{2}\right)\right]=\frac{1}{6}\left(1-a_{0}\right) .
\end{aligned}
$$

Substitute these values in Equ.(2) we have,

$$
\begin{aligned}
y & =a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+a_{5} x^{5}+a_{6} x^{6}+\cdots \\
\Rightarrow y & =a_{0}+x+\left[\frac{1-2 a_{0}}{2}\right] x^{2}+\left(-\frac{1}{3}\right) x^{3}+\frac{a_{0}}{2} x^{4}+\frac{1}{3} x^{5}+\frac{1}{6}\left(1-a_{0}\right) x^{6}+\cdots \\
\Rightarrow y & =\left(1-x^{2}+\frac{x^{4}}{2}-\frac{x^{6}}{6}\right) a_{0}+\left(x+\frac{x^{2}}{2}-\frac{x^{3}}{3}+\frac{x^{5}}{3}+\frac{x^{6}}{6}+\cdots \cdots\right)
\end{aligned}
$$

Which is the required solution.
Problem:- Find the Power series solution about $x=0$ of the differential Equation

$$
\left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0
$$

Sol:- Given diff. Equ is

$$
\begin{align*}
& \left(1-x^{2}\right) y^{\prime \prime}-2 x y^{\prime}+2 y=0 \\
\Rightarrow & \left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0 \tag{1}
\end{align*}
$$

Comparing Equ. (1) with $P(x) \frac{d^{2} y}{d t^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=1-x^{2} ; \quad Q(x)=-2 x ; \quad R(x)=2 .
$$

Here, $\quad p(x)=1-x^{2}$.
At $x=0 \Rightarrow P(0)=1-0^{2}=1 \neq 0$.
$\therefore x=0$ is an ordinary point. of given diff. Equ. (1).
Let $y=\sum_{n=0}^{\infty} a_{n} x^{n}$ be the series solution of Equ. (1).

$$
\Rightarrow y=a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots+a_{n} x^{n}+\cdots \cdots \text { (2) }
$$

Diff. (2) w.r.t. ' x ' we have,

$$
\begin{aligned}
& \Rightarrow y^{\prime}=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots+n a_{n} x^{n-1}+\cdots \\
& \text { Again diff. (3) w.r.t. }
\end{aligned}
$$

Again diff. (3) w.r.t. ' x ' we have,

$$
\Rightarrow y^{\prime \prime}=2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots \cdots+n(n-1) a_{n} x^{n-2}+\cdots \cdots \rightarrow(4)
$$

Now, substitute in the given diff. Equ.(1) then we have,

$$
\frac{d^{2} y}{d x^{2}}-x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=0
$$

$$
\begin{aligned}
& \Rightarrow\left[2 a_{2}+6 a_{3} x\right.\left.+12 a_{4} x^{2}+\cdots+n(n-1) a_{n} x^{n-2}+\cdots\right]-x^{2}\left[2 a_{2}+6 a_{3} x+12 a_{4} x^{2}+\cdots\right. \\
&\left.\cdots+n(n-1) a_{n} x^{n-2}\right]-2 x\left[a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots+n a_{n} x^{n-1}+\cdots\right] \\
&+2\left[a_{0}+a_{1} x+a_{2} x^{2}+\cdots a_{n} x^{n}+\cdots\right]=0 \\
& \Rightarrow\left(2 a_{2}+2 a_{0}\right)+\left(6 a_{3}-2 a_{1}+2 a_{1}\right) x+\left(12 a_{4}-2 a_{2}-4 a_{2}+2 a_{2}\right) x^{2}+\ldots \ldots \\
&+\left[(n+2)(n+1) a_{n+2}-n(n-1) a_{n}-2 n a_{n}+2 a_{n}\right] x^{n}+\cdots \cdots=0 .
\end{aligned}
$$

Now, Equate the constant term we have,

$$
2 a_{2}+2 a_{0}=0 \quad \Rightarrow a_{2}=-a_{0}
$$

Equating the coefficient of x, we have,

$$
\begin{aligned}
& 6 a_{3}-2 a_{1}+2 a_{1}=0 \\
& \Rightarrow 6 a_{3}=0 \Rightarrow a_{3}=0
\end{aligned}
$$

Equating the coefficient of x^{2}, we have,

$$
\begin{aligned}
& 12 a_{4}-2 a_{2}-4 a_{2}+2 a_{2}=0 \\
\Rightarrow & 12 a_{4}-4 a_{2}=0 \\
\Rightarrow & 12 a_{4}-4\left(-a_{0}\right)=0 \\
\Rightarrow & 12 a_{4}=-4 a_{0} \\
\Rightarrow & a_{4}=-\frac{4 a_{0}}{12}=-\frac{a_{0}}{3} \quad \Rightarrow a_{4}=-\frac{a_{0}}{3} .
\end{aligned}
$$

Equating the coefficient of x^{n} we have,

$$
\begin{aligned}
& (n+2)(n+1) a_{n+2}-n(n-1) a_{n}-2 n a_{n}+2 a_{n}=0 \\
\Rightarrow & (n+2)(n+1) a_{n+2}=n(n-1) a_{n}+2 n a_{n}-2 a_{n}
\end{aligned}
$$

$$
\Rightarrow \quad a_{n+2}=\frac{\left(n^{2}+n-2\right) a_{n}}{(n+2)(n+1)} \rightarrow(5) \text {, which is a re currence } \text { relation. }
$$

substitute $n=3,4,5 \ldots \ldots$ in Equ.(5) we have,

$$
\begin{aligned}
& a_{5}=\frac{(9+3-2)}{(3+2)(3+1)} a_{3}=0 \quad\left(\because a_{3}=0\right) \\
& a_{6}=\frac{(16+4-2)}{(4+2)(4+1)} a_{4}=\frac{18}{30} a_{4}=\frac{18^{6}}{30}\left(-\frac{a_{0}}{3}\right)=\frac{-a_{0}}{5} \\
& a_{7}=\frac{(49+7-2)}{(7+2)(7+1)} a_{5}=0 \quad\left(\because a_{5}=0\right)
\end{aligned}
$$

Substitute these values in Equ.(2) we have,

$$
\begin{aligned}
y & =a_{0}+a_{1} x-a_{0} x^{2}+0-\frac{a_{0}}{3} x^{4}+0-\frac{a_{0}}{5} x^{6}+0 \ldots \\
\Rightarrow y & =a_{0}\left(1-x^{2}-\frac{x^{4}}{3}-\frac{x^{6}}{5}+\cdots\right)+a_{1} x \text {. where } a_{0}, a_{1} \text { are arbitrary constants. }
\end{aligned}
$$ which is the required solution.

NOTE:- Various tests for convergence are available for testing the convergence and finding the interval of convergence of the power series.
RAT 10 TEST:- The series $y(x)=\sum_{n=0}^{\infty} a_{n}\left(x-x_{0}\right)^{n}=\sum_{n=0}^{\infty} u_{n}$ converges if $2 t\left|\frac{u_{n+1}}{u_{n}}\right|<1$.
NUTE:- (1) The Radius of convergence of the power Series is given by

$$
R=\operatorname{Lt}_{n \rightarrow \infty}\left|\frac{a_{n}}{a_{n+1}}\right|
$$

(2) The series converges in the interval $\left|x-x_{0}\right|<R$.

If the limit is α ie,, $R=\alpha$ then the series converges for all ' x :
Problem: - Find the Radius of convergence of the series:

$$
1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{4}}{2^{2}}+\frac{(x-1)^{6}}{2^{3}}+\cdots \cdots \cdots
$$

Sol:- Given Series is

$$
\begin{aligned}
& 1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{4}}{2^{2}}+\frac{(x-1)^{6}}{2^{3}}+\cdots . \\
\Rightarrow & \frac{(x-1)^{0}}{2^{0}}+\frac{(x-1)^{2}}{2^{1}}+\frac{(x-1)^{4}}{2^{2}}+\frac{(x-1)^{6}}{2^{3}}+\cdots . . \\
& 0,2,4,6 \ldots \text { are in A.P. }
\end{aligned}
$$

Now, $\quad t_{n}=a+(n-1) d$

$$
\Rightarrow t_{n}=0+(n-1)(2)=2 n-2
$$

Also, $0,1,2,3 \ldots$ are in A.P.
Now, $\quad t_{n}=a+(n-1) d$

$$
\begin{gathered}
t_{n}=0+(n-1) 1=n-1 \\
\therefore \quad u_{n}=\frac{(x-1)^{2 n-2}}{2^{n-1}} \\
1+\frac{(x-1)^{2}}{2}+\frac{(x-1)^{4}}{2^{2}}+\frac{(x-1)^{6}}{2^{3}}+\cdots=\sum_{n=1}^{\infty} \frac{(x-1)^{2 n-2}}{2^{n-1}}
\end{gathered}
$$

Now, $a_{n}=\frac{1}{2^{n-1}} \Rightarrow a_{n+1}=\frac{1}{2^{n}}$
Radius of convergence of the Series is given by

$$
\begin{aligned}
& R=\operatorname{Lt}_{n \rightarrow \alpha}\left|\frac{a_{n}}{a_{n+1}}\right|=\operatorname{Lt}_{n \rightarrow \alpha}\left|\frac{1}{2^{n-1}} \times \frac{2^{n}}{1}\right|=\operatorname{lt}_{n \rightarrow \alpha}\left|\frac{1}{2^{n} \cdot 2^{-1}} \cdot 2^{n}\right| \\
& R={\underset{n t \alpha}{ }}_{\operatorname{st}}\left|\frac{1}{1 / 2}\right|=\operatorname{Lt}_{n \rightarrow \alpha}^{\operatorname{tt}}|2|=2 .
\end{aligned}
$$

\therefore Radius of convergence of the Series is $R=2$.
Interval of convergence of the series is $\left|(x-1)^{2}\right|<2$.

$$
\begin{aligned}
& \Rightarrow|x-1|<\sqrt{2} \\
& \Rightarrow-\sqrt{2}<x-1<\sqrt{2} \\
& \Rightarrow 1-\sqrt{2}<x<1+\sqrt{2} \\
& \therefore x \in(1-\sqrt{2}, 1+\sqrt{2})
\end{aligned}
$$

Problem: - Solve

$$
y^{\prime \prime}-2 x^{2} y^{\prime}+4 x y=x^{2}+2 x+4
$$

sol:-

$$
\begin{aligned}
a_{2} & =2 \\
a_{3} & =\frac{1-2 a_{0}}{3} \\
a_{4} & =\frac{1-6 a_{1}}{12} \\
a_{n+2} & =\frac{a_{n-1}(2 n-6)}{(n+2)(n+1)}
\end{aligned}
$$

$$
y=a_{0}\left[1-\frac{2}{3} x^{3}-\frac{2}{45} x^{6}+\cdots\right]+a_{1}\left[x-\frac{1}{6} x^{4}-\frac{1}{63} x^{7}+\cdots\right]
$$

$$
+2 x^{2}+\frac{x^{3}}{3}+\frac{x^{4}}{12}+\frac{x^{6}}{45}+\frac{x^{7}}{126}+
$$

METHOD OF SERIES SOUTION ABOUT THE ORDINARY POINT $x=a(a+0):-$
WORKING PROCEDURE:-
step (I):- consider the diff. Equ.

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \tag{1}
\end{equation*}
$$

Observe that $P(x) \neq 0$ when $x=a$, then $x=a$ is called an "ordinary point".
slip (2):- We shift the origin to $x=a$ by taking $x=a+s(81) s=x-a \longrightarrow$ (2)
Step (3):- Diff (2) w.r.t. ' x ' we have,

$$
\frac{d s}{d x}=1
$$

Now, $\frac{d y}{d x}=\frac{d y}{d s} \frac{d s}{d x}=\frac{d y}{d s}(1)=\frac{d y}{d s}$

$$
\therefore \frac{d y}{d x}=\frac{d y}{d s} \longrightarrow \text { (3). }
$$

Again diff. (3) w.r.t. ' x ' we have,

$$
\begin{aligned}
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d s}\right)=\frac{d}{d s}\left(\frac{d y}{d x}\right) \frac{d s}{d x} \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d s}\left(\frac{d y}{d s}\right) \cdot(1) \quad\left(\because \frac{d y}{d x}=\frac{d y}{d s}\right) \\
& \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d s^{2}} \quad \longrightarrow(4)
\end{aligned}
$$

step (4):- substitute (2), (3) and (4) in Equ. (1) we have,

$$
P(s) \frac{d^{2} y}{d s^{2}}+Q(s) \frac{d y}{d s}+R(s) y=0 \longrightarrow(5)
$$

for which $S=0$ is an ordinary point.
Step (5):- Let $y=\sum_{n=0}^{\infty} a_{n} s^{n}$ be the Series solution of Equ.(5).
Find $\frac{d y}{d s}, \frac{d^{2} y}{d s^{2}}$ and substitute $y, \frac{d y}{d s}, \frac{d^{2} y}{d s^{2}}$ in qu. (5).
We follow the previous method and we obtain the solution in Power of ' s '.
Step (b):- Replace 'S' by ' $x-a$ ' to get the solution of power Series in $(x-a)$.

Problem:- Find the power series solution about the point $x=2$ of the initial value problem $4 y^{\prime \prime}-4 y^{\prime}+y=0, y(2)=0, y^{\prime}(2)=\frac{1}{e}$. Also find the indics of convergence.
Solution:- Given diff Equ is

$$
\begin{align*}
& 4 y^{\prime \prime}-4 y^{\prime}+y=0 . \\
\Rightarrow & 4 \frac{d^{2} y}{d x^{2}}-4 \frac{d y}{d x}+y=0 \tag{I}
\end{align*}
$$

We shift the origin to the point $x=2$ by taking $x=S+2$ (ot) $S=x-2 \longrightarrow$ (2).
Diff (2) w.r.t. ' x ' we have,

$$
\begin{equation*}
\Rightarrow \frac{d s}{d x}=1 \tag{3}
\end{equation*}
$$

Now, $\frac{d y}{d x}=\frac{d y}{d s} \cdot \frac{d s}{d x}=\frac{d y}{d s}(1)=\frac{d y}{d s} \Rightarrow \frac{d y}{d x}=\frac{d y}{d s}$
Again diff. (3) w.r.t. ' x ' we have,

$$
\begin{gathered}
\frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d s}\right)=\frac{d}{d s}\left(\frac{d y}{d x}\right) \frac{d s}{d x} \\
\Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d}{d s}\left(\frac{d y}{d s}\right)(t)=\frac{d^{2} y}{d s^{2}} \\
\therefore \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d s^{2}} \longrightarrow(4)
\end{gathered}
$$

Substitute. Equ.(2), (3) \& (4) in Equ. (1) we have,

$$
4 \frac{d^{2} y}{d s^{2}}-4 \frac{d y}{d s}+y=0 \quad \longrightarrow(5)
$$

$\therefore S=0$ is the ordinary point of Equ. (5).
Let $y=\sum_{n=0}^{\alpha} a_{n} s^{n}$ be the series solution of Equ. (5).

$$
\Rightarrow y=a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4}+\cdots+a_{n} s^{n}+\cdots \cdots(6)
$$

Diff. (6) w.r.t. 's' we have,

$$
\Rightarrow \frac{d y}{d s}=a_{1}+2 a_{2} s+3 a_{3} s^{2}+4 a_{4} s^{3}+\cdots \cdots+n a_{n} s^{n-1}+\cdots \cdots(7)
$$

Diff. (7) w.r.t. 's' we have,

$$
\Rightarrow \frac{d^{2} y}{d s^{2}}=2 a_{2}+6 a_{3}+12 a_{4} s^{2}+\ldots+n(n-1) a_{n} s^{n-2}+\ldots \rightarrow(8)
$$

Substitute Equ.(6), (7), \&(8) in Equ.(5) we have,

$$
\begin{aligned}
& \Rightarrow 4\left[2 a_{2}+6 a_{3} s+12 a_{4} s^{2}+\cdots+n(n-1) a_{n} s^{n-2}+\cdots\right]-4\left[a_{1}+2 a_{2} s+3 a_{3} s^{2}+4 a_{4} s^{3}+\cdots\right. \\
&\left.+n a_{n} s^{n-1}+\cdots\right]+\left[a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4}+\cdots+a_{n} s^{n}\right]=0
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow\left[8 a_{2}-4 a_{1}+a_{0}\right]+\left[24 a_{3}-8 a_{2}+a_{1}\right] s+\left[48 a_{4}-12 a_{3}+a_{2}\right] s^{2}+\ldots \ldots . \cdot \\
& +\left[4(n+1)(n+2) a_{n+2}-4(n+1) a_{n+1}+a_{n}\right] s^{n}+\cdots \cdots=0 .
\end{aligned}
$$

Now, Equate the constant term we have,

$$
\begin{aligned}
& 8 a_{2}-4 a_{1}+a_{0}=0 \\
\Rightarrow & 8 a_{2}=4 a_{1}-a_{0} \\
\Rightarrow & a_{2}=\frac{4 a_{1}}{8}-\frac{a_{0}}{8} \Rightarrow a_{2}=\frac{a_{1}}{2}-\frac{a_{0}}{8}
\end{aligned}
$$

Equating the coefficient of ' s ' we have,

$$
\begin{aligned}
& 24 a_{3}-8 a_{2}+a_{1}=0 \\
\Rightarrow & 24 a_{3}=8 a_{2}-a_{1} \\
\Rightarrow & a_{3}=\frac{8 a_{2}}{24}-\frac{a_{1}}{24} \\
\Rightarrow & a_{3}=\frac{a_{2}}{3}-\frac{a_{1}}{24} \Rightarrow a_{3}=\frac{1}{3}\left(\frac{a_{1}}{2}-\frac{a_{0}}{8}\right)-\frac{a_{1}}{24} \\
\Rightarrow & a_{3}=\frac{a_{1}}{6}-\frac{a_{0}}{24}-\frac{a_{1}}{24} \\
\Rightarrow & a_{3}=\frac{3 a_{1}}{24}-\frac{a_{0}}{24}=\frac{1}{24}\left(3 a_{1}-a_{0}\right) \Rightarrow a_{3}=\frac{1}{24}\left(3 a_{1}-a_{0}\right)
\end{aligned}
$$

Equating the coefficient of ' $s^{n \prime}$ we have,

$$
\begin{aligned}
& 4(n+1)(n+2) a_{n+2}-4(n+1) a_{n+1}+a_{n}=0 \\
\Rightarrow \quad & a_{n+2}=\frac{4(n+1) a_{n+1}-a_{n}}{4(n+1)(n+2)}, \rightarrow \text { (9) }
\end{aligned}
$$

Substitute $n=0,1,2,3,4,5 \ldots$ in the above Equ. we have,

$$
\begin{aligned}
& a_{2}=\frac{4 a_{1}-a_{0}}{8}=\frac{a_{1}}{2}-\frac{a_{0}}{8} \\
& a_{3}=\frac{8 a_{2}-a_{1}}{24}=\frac{a_{2}}{3}-\frac{a_{1}}{24}=\frac{1}{3}\left(\frac{a_{1}}{2}-\frac{a_{0}}{8}\right)-\frac{a_{1}}{24}=\frac{a_{1}}{6}-\frac{a_{0}}{24}-\frac{a_{1}}{24} \\
& a_{3}=\frac{3 a_{1}}{24}-\frac{a_{0}}{24}=\frac{1}{24}\left(3 a_{1}-a_{0}\right)=\frac{a_{1}}{8}-\frac{a_{0}}{24} \\
& a_{4}=\frac{4(3) a_{3}-a_{2}}{4(2+1)(2+2)}=\frac{12 a_{3}-a_{2}}{48}=\frac{a_{3}}{4}-\frac{a_{2}}{48} \\
& a_{4}=\frac{1}{4}\left(\frac{a_{1}}{8}-\frac{a_{0}}{24}\right)-\frac{1}{48}\left(\frac{a_{1}}{2}-\frac{a_{0}}{8}\right)=\frac{a_{1}}{32}-\frac{a_{0}}{96}-\frac{a_{1}}{96}+\frac{a_{0}}{384}
\end{aligned}
$$

Now, substitute a_{2}, a_{3} in Equ. (6) we have,

$$
\begin{aligned}
& y \\
&=a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4}+\ldots \ldots \\
& \Rightarrow y=a_{0}+a_{1} s+\left(\frac{a_{1}}{2}-\frac{a_{0}}{8}\right) s^{2}+\left(\frac{a_{1}}{8}-\frac{a_{0}}{24}\right) s^{3}+\ldots . . . \\
& \Rightarrow y=a_{0}\left(1-\frac{s^{2}}{8}-\frac{s^{3}}{24}+\cdots \cdots\right)+a_{1}\left(s+\frac{s^{2}}{2}+\frac{s^{3}}{8}+\ldots \ldots\right)
\end{aligned}
$$

Replace ' S ' by " $x-2$ " in the above Equation.

$$
\Rightarrow y=a_{0}\left[1-\frac{(x-2)^{2}}{8}-\frac{(x-2)^{3}}{24}+\cdots\right]+a_{1}\left[(x-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{8}+\cdots\right] \rightarrow(10)
$$

where a_{0}, a_{1} are arbitrary constants.
Which is the required solution.
Given that $y(2)=0$ ie, $y=0$ when $x=2$.

$$
\begin{aligned}
\text { from (10) } & \Rightarrow 0=a_{0}\left[1-\frac{(2-2)^{2}}{8}-\frac{(2-2)^{3}}{24}+\cdots\right]+a_{1}\left[(2-2)+\frac{(2-2)^{2}}{2}+\frac{(2-2)^{3}}{8}+\cdots\right] \\
& \Rightarrow 0=a_{0}[1-0-0+\cdots]+a_{1}[0+0+0+\cdots] \\
& \Rightarrow a_{0}=0
\end{aligned}
$$

Now, diff. (10) w.r.t. ' x ' we have,

$$
\begin{align*}
& y^{\prime}=a_{0}\left[0-\frac{2(x-2)}{8}-\frac{3(x-2)^{2}}{24}+\cdots\right]+a_{1}\left[1+\frac{2(x-2)}{2}+\frac{3(x-2)^{2}}{8}+\cdots\right] \tag{11}\\
& \text { ven that } y^{\prime}(2)=\frac{1}{c} \text { ie., } y^{\prime}=1
\end{align*}
$$

$$
\text { from (II) } \Rightarrow \frac{1}{c}=a_{0}[0-0-0+\cdots]+a_{1}[1+0+0+\cdots]
$$

$$
\Rightarrow a_{1}=\frac{1}{e}
$$

Substitute " a_{0} " and " a_{1} " values in Equ. (10) we have,

$$
\Rightarrow y=\frac{1}{e}\left[(x-2)+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{8}+\cdots . .\right]
$$

Radius of convergence:-

$$
y=\frac{1}{e}\left[\frac{(x-2)^{\prime}}{1}+\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{2 \cdot 4}+\frac{(x-2)^{4}}{2 \cdot 4 \cdot 6}+\cdots\right]
$$

Let us consider

$$
y=\frac{1}{e}\left[\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{2 \cdot 4}+\frac{(x-2)^{4}}{2 \cdot 4.6}+\ldots . \cdot\right]
$$

Now, $2,3,4 \ldots$ are in A.P.

$$
t_{n}=a+(n-1) d=2+(n-1) 1=2+n-1=n+1 .
$$

Also, $2,4,6 \ldots$ are in A.P.

$$
\begin{aligned}
& t_{n}=a+(n-1) d=2+(n-1) 2=2+2 n-2=2 n . \\
& \therefore y=\frac{1}{e} \\
& \sum_{n=1}^{\infty} \frac{(x-2)^{n+1}}{2 \cdot 4 \cdot 6 \cdots(2 n)}
\end{aligned}
$$

Now, $u_{n}=\frac{1}{2 \cdot 4.6 \ldots(2 n)} \Rightarrow u_{n+1}=\frac{1}{2 \cdot 4 \cdot 6 \ldots(2 n)(2 n+2)}$.
Radius of convergence is given by

$$
\begin{aligned}
& R=\operatorname{lt}_{n \rightarrow \infty}\left|\frac{u_{n}}{u_{n+1}}\right|=\operatorname{lt}_{n \rightarrow \alpha}\left|\frac{1}{2,4 \cdot 6 \ldots(2 n)} \cdot \frac{2 \cdot 4,6 \cdots(2 n)(2 n+2)}{1}\right| \\
& R=\operatorname{ltr}_{n \rightarrow \infty}|(2 n+2)|=\alpha .
\end{aligned}
$$

\therefore Radius of convergence of the Series is $R=\infty$.
\therefore Interval of convergence of the Series is " R ".
Problem:- Find the power series solution about the point $x=2$ of the equation $y^{\prime \prime}+(x-1) y^{\prime}+y=0$.
solution:- Given diff. Equ is

$$
\begin{align*}
& y^{\prime \prime}+(x-1) y^{\prime}+y=0 . \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}+(x-1) \frac{d y}{d x}+y=0 \tag{1}
\end{align*}
$$

It is also given that, $x=2$ is an ordinary point
We shift the origin to the point $x=2$ by taking $x=s+2(81) s=x-2 \longrightarrow$ (2).
biff. (I) writ. ' x ' we have,

$$
\frac{d s}{d x}=1
$$

Now, $\frac{d y}{d x}=\frac{d y}{d s} \cdot \frac{d s}{d x}=\left(\frac{d y}{d s}\right)(1)=\frac{d y}{d s} \Rightarrow \frac{d y}{d x}=\frac{d y}{d s} \longrightarrow$ (3).
Again diff (3) w.r.t. ' x ' we have,

$$
\begin{aligned}
& \frac{d^{2} y}{d x^{2}}=\frac{d}{d x}\left(\frac{d y}{d s}\right)=\frac{d}{d s}\left(\frac{d y}{d x}\right) \frac{d s}{d x} \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}=\frac{d}{d s}\left(\frac{d y}{d s}\right)(1)=\frac{d^{2} y}{d s^{2}} \Rightarrow \frac{d^{2} y}{d x^{2}}=\frac{d^{2} y}{d s^{2}} \longrightarrow \text { (4) }
\end{aligned}
$$

Substitute Equ.(2),(3) \&(4) in Equ(1) we have,

$$
\begin{equation*}
\frac{d^{2} y}{d s^{2}}+(x-1) \frac{d y}{d s}+y=0 \longrightarrow \text { (5) (oi) } \frac{d^{2} y}{d s^{2}}+(s+1) \frac{d y}{d s}+y=0 \tag{5}
\end{equation*}
$$

$\therefore S=0$ is an ordinary point of Equ. (5).

Let $y=\sum_{n=0}^{\infty} a_{n} s^{n}$ be the series solution of Equ. (5).

$$
\Rightarrow y=a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4}+\cdots \cdots+a_{n} s^{n}+\cdots \cdots \longrightarrow(6)
$$

Diff (6) w.r.t.'s' we have,

$$
\Rightarrow \frac{d y}{d s}=a_{1}+2 a_{2} s+3 a_{3} s^{2}+4 a_{4} s^{3}+\cdots \cdots+n a_{n} s^{n-1}+\cdots \cdots(7)
$$

Jiff (7) w.r.t. 's' we have,

$$
\Rightarrow \frac{d^{2} y}{d s^{2}}=2 a_{2}+6 a_{3} s+12 a_{4} s^{2}+\cdots \cdots+n(n-1) a_{n} s^{n-2}+\cdots \cdots \rightarrow(8) .
$$

Substitute Equ. (6), (7) \& (8) in Equ. (5) we have,

$$
\begin{gathered}
\Rightarrow\left[2 a_{2}+6 a_{3} s+12 a_{4} s^{2}+\cdots+n(n-1) a_{n} s^{n-2}+\cdots\right]+s\left[a_{1}+2 a_{2} s+3 a_{3} s^{2}+4 a_{4} s^{3}+\cdots \cdot\right. \\
\left.\cdots+n a_{n} s^{n-1}+\cdots\right]+\left[a_{1}+2 a_{2} s+3 a_{3} s^{2}+4 a_{4} s^{3}+\cdots+n a_{n} s^{n-1}+\cdots \cdot\right. \\
+\left[a_{0}+a_{1} s+a_{2} s^{2}+a_{3} s^{3}+a_{4} s^{4}+\cdots+a_{n} s^{n}+\cdots \cdots=0\right. \\
\Rightarrow\left[2 a_{2}+a_{1}+a_{0}\right]+\left[6 a_{3}+a_{1}+2 a_{2}+a_{1}\right] s+\left[12 a_{4}+2 a_{2}+3 a_{3}+a_{2}\right] s^{2}+\cdots \cdots \\
\cdots+\left[(n+1)(n+2) a_{n+2}+n a_{n}+(n+1) a_{n+1}+a_{n}\right] s^{n}+\cdots \cdots=0
\end{gathered}
$$

Now, Equate the constant term we have,

$$
\begin{aligned}
& 2 a_{2}+a_{1}+a_{0}=0 \\
& \Rightarrow 2 a_{2}=-a_{0}-a_{1} \\
& \Rightarrow \quad a_{2}=-\frac{a_{0}}{2}-\frac{a_{1}}{2} .
\end{aligned}
$$

Equating the coefficient of s, we have,

$$
\begin{aligned}
& 6 a_{3}+a_{1}+2 a_{2}+a_{1}=0 \\
\Rightarrow & 6 a_{3}+2 a_{2}+2 a_{1}=0 \\
\Rightarrow & 6 a_{3}=-2 a_{2}-2 a_{1}=-2\left[\frac{-a_{0}}{2}-\frac{a_{1}}{2}\right]-2 a_{1} \\
\Rightarrow & 6 a_{3}=a_{0}+a_{1}-2 a_{1} \\
\Rightarrow & 6 a_{3}=a_{0}-a_{1} \\
\Rightarrow & a_{3}=\frac{a_{0}}{6}-\frac{a_{1}}{6}
\end{aligned}
$$

Equating the coefficient of s^{n} we have,

$$
\begin{aligned}
& (n+1)(n+2) a_{n+2}+n a_{n}+(n+1) a_{n+1}+a_{n}=0 \\
\Rightarrow & (n+1)(n+2) a_{n+2}=-\left[n a_{n}+(n+1) a_{n+1}+a_{n}\right] \\
\Rightarrow & (n+1)(n+2) a_{n+2}=-\left[(n+1) a_{n}+(n+1) a_{n+1}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow(n+1)(n+2) a_{n+2}=-(n+1)\left(a_{n}+a_{n+1}\right) \\
& \Rightarrow \quad(n+2) a_{n+2}=-\left(a_{n}+a_{n+1}\right) \\
& \Rightarrow \quad a_{n+2}=\frac{-\left(a_{n}+a_{n+1}\right)}{n+2}, n \geqslant 0 \longrightarrow \text { which is a rearrence relation. }
\end{aligned}
$$

substitute $n=0,1,2,3,4,5 \ldots .$. in Equ. (9) we have,

$$
\begin{aligned}
& a_{2}=\frac{-\left(a_{0}+a_{1}\right)}{2}=-\frac{a_{0}}{2}-\frac{a_{1}}{2} . \\
& a_{3}=\frac{-\left(a_{1}+a_{2}\right)}{3}=-\frac{a_{1}}{3}-\frac{a_{2}}{3}=-\frac{a_{1}}{3}-\left[\frac{1}{3}\left(-\frac{a_{0}}{2}-\frac{a_{1}}{2}\right)\right] \\
& a_{3}=-\frac{a_{1}}{3}+\frac{a_{0}}{6}+\frac{a_{1}}{6}=\frac{a_{0}}{6}-\frac{a_{1}}{6}
\end{aligned}
$$

Now, substitute a_{2} and a_{3} in Equ.(6) we have,

$$
\begin{aligned}
& \Rightarrow y=a_{0}+a_{1} s+\left(-\frac{a_{0}}{2}-\frac{a_{1}}{2}\right) s^{2}+\left(\frac{a_{0}}{6}-\frac{a_{1}}{6}\right) s^{3}+\ldots \\
& \Rightarrow y=a_{0}\left[1-\frac{s^{2}}{2}+\frac{s^{3}}{6}+\ldots . .\right]+a_{1}\left[s-\frac{s^{2}}{2}-\frac{s^{3}}{6}+\ldots . .\right]
\end{aligned}
$$

Replace " S " by " $x-2$ " then we have,

$$
\left.\Rightarrow y=a_{0}\left[1-\frac{(x-2)^{2}}{2}+\frac{(x-2)^{3}}{6}+\cdots\right]+a_{1}\left[(x-2)-\frac{(x-2)^{2}}{2}-\frac{(x-2)^{3}}{6}+\cdots\right]\right]
$$

Where a_{0}, a_{1} are arbitrary constants.
which is the required series solution.

SOLUTION IN A SERIES AT A REGULAR SINGULAR POINT:-
METHOD OF FROBENUS:-
WORKING PROCEDURE :- Consider the differential Equation

$$
\begin{equation*}
P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0 \tag{1}
\end{equation*}
$$

Equate the coefficient of " $\frac{d^{2} y \text { ' }}{d x^{2}}$ to zero ie., $P(x)=0$.
$P(x)=0$ when $x=a$ then $x-a$ is called singular point of the given differental Equation.
Step (1):- Divide Equ.(1) with $P(x)$ and the resultant Equation is of the form

$$
\begin{aligned}
& \text { th } P(x) \text { and the resultant Equation is } \\
& \Rightarrow y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0 \quad \text { fram(1) } \Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{Q(x)}{P(x)} \frac{d y}{d x}+\frac{R(x)}{P(x)} y=0 \text {. }
\end{aligned}
$$

where $P_{1}(x)=\frac{Q(x)}{P(x)}$ and $P_{2}(x)=\frac{P(x)}{P(x)}$
$(x-a) P_{1}(x)$ and $(x-a)^{2} P_{2}(x)$ are analytic at $x=a$.
$\therefore x=a$ is called Regular Singular point.
Sty p(2):- Assume that the solution of the differential Equation is

$$
y=\sum_{n=0}^{\infty} a_{n}(x-a)^{m+n} \longrightarrow(2) .
$$

Step (3):- Diff (2) w.r.t. ' x ' we have,

$$
\begin{aligned}
& y^{\prime}=\frac{d y}{d x}=\sum_{n=0}^{\infty} a_{n}(m+n)(x-a)^{m+n-1} \\
& y^{\prime \prime}=\frac{d^{2} y}{d x^{2}}=\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1)(x-a)^{m+n-2}
\end{aligned}
$$

step (4):- substitute $y, y^{\prime}, y^{\prime \prime}$ in given differential Equation and Equate the coefficient of lower powers of ' x ' to zero. Then a quadratic Equation in ' m ' is obtained it is known as Indicial Equation.
step (5):- Equating the coefficient of various other powers of ' x ' to zero, we get the number of Equations involving the constants $a_{0}, a_{1} \ldots . . a_{n}$. Determination of the values of these constants will give rise to the solution.
step (6):- Formation of solution: The indicial Equation obtained in previous step given two values of ' m ', which may be
(i) The roots are distinct and do not differ by an integer.
(ii) The roots are Equal.
(iii) The roots are distinct and differ by an integer $x /$ making a coefficient of ' y ' infinite.
(iv) The roots are distinct and differ by an integer, making a coefficient of ' y ' inderminate.
(V) The roots are unequal and differing by an integer.

Step (7):- We equate the coefficient of general power (in Equ. $(x-a)^{m+n}$ of $(x-a)^{m+n-1}$ whichever may be the lowest) in the identity obtained in step (4). The equation so obtained will be called the recurrence relation because it connects together the coefficient in a_{n}, a_{n-2} (or) a_{n}, a_{n-1} etc.,
Step (8):- If the recurrence relation connects a_{n}, a_{n-2} then we in general determine a_{1} by equating to zero. The coefficient of the next higher power that already used for the indicial Equation). On the other hand if the recurrence relation connects a_{n}, a_{n-1} this step may be omitted.
Step (9):- After getting various coefficients with the help of step (7) and step (8), the solution of the differential Equation is obtained by substituting these values in

$$
y=\sum_{n=0}^{\infty} a_{n}(x-a)^{m+n}
$$

WORKING RULE FOR GENERAL SOLUTION:-
Depending on the nature of the roots m_{1}, m_{2} of the indicial Equation we get five cases:
TYPE (1) ON FROBENIOUS METHOD:-
Roots of indicial Equation are Unequal and not differ by an integer.
RULE:- Let m_{1} and m_{2} be the roots of the indicial Equation. If m_{1} and m_{2} do not differ by an integer then in general two linearly independent solutions y_{1} and y_{2} are obtained by putting $m=m_{1}$ and $m=m_{2}$ in the series of y. Then the general solution is $y=a y_{1}+b y_{2}$ where ' a ' and ' b ' are arbitrary constants.
Problem:- Solve in series the differential Equation

$$
2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0
$$

Solution:- Given diff Eau is

$$
\begin{align*}
& 2 x^{2} y^{\prime \prime}-x y^{\prime}+\left(1-x^{2}\right) y=0 . \\
\Rightarrow & 2 x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+\left(1-x^{2}\right) y=0 \tag{1}
\end{align*}
$$

Compare Equ.(1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=2 x^{2} ; Q(x)=-x ; \quad R(x)=1-x^{2} .
$$

Now, $P(x)=0$.

$$
\begin{gathered}
\Rightarrow 2 x^{2}=0 \Rightarrow x^{2}=0 \Rightarrow x=0 \\
\therefore P(x)=0 \text { when } x=0
\end{gathered}
$$

$\Rightarrow x=0$ is a singular point.

Divide Equ.(1) with $2 x^{2}$ we have,

$$
\Rightarrow y^{\prime \prime}-\frac{1}{2 x} y^{\prime}+\left(\frac{1-x^{2}}{2 x^{2}}\right) y=0 \longrightarrow \text { (2) }
$$

Compare Eau. (2) with $y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(x) y=0$ we have,

$$
P_{1}(x)=\frac{-1}{2 x} ; \quad P_{2}(x)=\frac{1-x^{2}}{2 x^{2}}
$$

Now, $(x-a) P_{1}(x)=(x-0)\left(\frac{-1}{2 x}\right)=-1 / 2 \neq \alpha$.

$$
(x-a)^{2} P_{2}(x)=(x-0)^{2}\left(\frac{-1-x^{2}}{2 x^{2}}\right)^{2}=\frac{1-x^{2}}{2} \neq \alpha
$$

$\therefore x P_{1}(x), x^{2} P_{2}(x)$ are analytic at $x=0$.
Hence, $x=0$ is a regular singular point.
Let us assume that the series solution of the given diff Equ. be

$$
y=\sum_{n=0}^{\infty} a_{n} x^{m+n} \longrightarrow(3)
$$

Diff. (3) w.r.t. ' x ' we have,

$$
\frac{d y}{d x}=y^{\prime}=\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1} \longrightarrow(4) \text {. }
$$

Again diff. (4) w.r.t. ' x we have,

$$
\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2} \longrightarrow \text { (5). }
$$

Substitute (3), (4) and (5) in Equ. (1) we have,

$$
\begin{aligned}
& \Rightarrow 2 x^{2} \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2}-x \sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}+\left(1-x^{2}\right) \sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} 2 a_{n}(m+n)(m+n-1) x^{m+n}-\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n}-\sum_{n=0}^{\infty} a_{n} x^{m+n+2}=0 \\
& \Rightarrow \sum_{n=0}^{\infty}[2(m+n)(m+n-1)-(m+n)+1] a_{n} x^{m+n}-\sum_{n=0}^{\infty} a_{n} x^{m+n+2}=0 \longrightarrow(6)
\end{aligned}
$$

Now, Equating the coefficient of lowest power to zero, we get
(Lowest power x^{m} is obtained from first term when $n=0$ in Equ.(6))

$$
\begin{aligned}
& \therefore \quad 2 m(m-1)-m+1=0 \\
& \Rightarrow \quad 2 m^{2}-2 m-m+1=0
\end{aligned}
$$

$\Rightarrow 2 m^{2}-3 m+1=0$, which is the indicial Equation.

Now, $\quad 2 m^{2}-3 m+1=0$.

$$
\begin{aligned}
& \Rightarrow 2 m^{2}-2 m-m+1=0 \\
& \Rightarrow 2 m(m-1)-1(m-1)=0 \\
& \Rightarrow(m-1)(2 m-1)=0 \\
& \therefore \quad m-1=0 ; 2 m-1=0
\end{aligned}
$$

$\Rightarrow m=1, \frac{1}{2}$ are the roots of the indicial Equation.
Hence, the roots of the indicial Equation are distinct and not differ by an integer. For the recurrence relation equating the coefficient of x^{m+n} to zero.
(The lowest power of x^{m+n} and x^{m+n+2} is x^{m+n} in Equ (6))

$$
\begin{aligned}
& \Rightarrow a_{n}[2(m+n)(m+n-1)-(m+n)+1]-a_{n-2}=0 \\
& \Rightarrow a_{n}[2(m+n)(m+n)-2(m+n)-(m+n)+1]=a_{n-2} \\
& \Rightarrow a_{n}\left[2(m+n)^{2}-3(m+n)+1\right]=a_{n-2} \\
& \Rightarrow a_{n}=\frac{a_{n-2}}{2(m+n)^{2}-3(m+n)+1} \\
& \Rightarrow a_{n}=\frac{a_{n-2}}{(m+n)[2(m+n)-3]+1}
\end{aligned}
$$

$\Rightarrow a_{n}=\frac{a_{n-2}}{(m+n)(2 m+2 n-3)+1}$, which is the recurrence relation.
Now, Equate the coefficient of x^{m+1} to zero, we get

$$
\begin{aligned}
& \Rightarrow a_{1}[2(m+1) m-(m+1)+1]=0 \\
& \Rightarrow a_{1}\left[2 m^{2}+2 m-m-1+1\right]=0 \\
& \Rightarrow a_{1}\left[2 m^{2}+m\right]=0 \\
& \Rightarrow a_{1} m(2 m+1)=0 \\
& \Rightarrow a_{1}=0 \quad(\because m=1,1 / 2)
\end{aligned}
$$

Case (1):- when $m=1$

$$
\text { Now, } \begin{aligned}
a_{n}=\frac{a_{n-2}}{(m+n)(2 m+2 n-3)+1}, n \geqslant 2 \\
\Rightarrow a_{n}=\frac{a_{n-2}}{(n+1)(2 n-1)+1}, n \geqslant 2
\end{aligned}
$$

If $n=2, a_{2}=\frac{a_{0}}{10}$
If $n=3, \quad a_{3}=\frac{a_{1}}{21}=0 \quad\left(\because a_{1}=0\right)$
If $n=4, \quad a_{4}=\frac{a_{2}}{36}=\frac{1}{36}\left(\frac{a_{0}}{10}\right)=\frac{a_{0}}{360}$
If $n=5, \quad a_{5}=\frac{a_{3}}{55}=0 \quad\left(\because a_{3}=0\right)$
If $n=6, \quad a_{6}=\frac{a_{4}}{78}=\frac{1}{78}\left(\frac{a_{0}}{360}\right)=\frac{a_{0}}{360 \times 78}$
Substitute the values of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5}, a_{6} \ldots .$. in $y=\sum_{n=0}^{\infty} a_{n} x^{m+n}$.

$$
\begin{aligned}
& \Rightarrow y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+a_{3} x^{m+3}+a_{4} x^{m+4}+a_{5} x^{m+5}+a_{6} x^{m+6}+\ldots \\
& \Rightarrow y_{1}=a_{0} x+a_{1} x^{2}+a_{2} x^{3}+a_{3} x^{4}+a_{4} x^{5}+a_{5} x^{6}+a_{6} x^{7}+\cdots \\
\Rightarrow y_{1} & =a_{0} x+0+\frac{a_{0}}{10} x^{3}+0+\frac{a_{0}}{360} x^{5}+0+\frac{a_{0}}{360 \times 78} x^{7}+\cdots \cdots \\
\Rightarrow y_{1} & =a_{0}\left[x+\frac{x^{3}}{2 \cdot 5}+\frac{x^{5}}{2 \cdot 4 \cdot 5 \cdot 9}+\frac{x^{7}}{360 \times 78}+\cdots\right.
\end{aligned}
$$

Case (2):- When $m=\frac{1}{2}$.

$$
\begin{aligned}
a_{n} & =\frac{a_{n-2}}{(m+n)(2 m+2 n-3)+1}, n \geqslant 2 \\
\Rightarrow a_{n} & =\frac{a_{n-2}}{\left(\frac{1}{2}+n\right)(1+2 n-3)+1} \\
\Rightarrow a_{n} & =\frac{2 a_{n-2}}{(2 n+1)(2 n-2)+2}, n \geqslant 2
\end{aligned}
$$

If $n=2, a_{2}=\frac{2 a_{0}}{12}=\frac{a_{0}}{6}$
If $n=3, \quad a_{3}=\frac{2 a_{1}}{30}=\frac{a_{1}}{15}=0 \quad\left(\because a_{1}=0\right)$
if $n=4, \quad a_{4}=\frac{2 a_{2}}{56}=\frac{a_{2}}{28}=\frac{1}{28}\left(\frac{a_{0}}{6}\right)=\frac{a_{0}}{28 \times 6}=\frac{a_{0}}{168}$
If $n=5, \quad a_{5}=\frac{2 a_{3}}{90}=0 \quad\left(\because a_{3}=0\right)$.
Substitute the values of $a_{1}, a_{2}, a_{3}, a_{4}, a_{5} \cdots \cdots$ in $y=\sum_{n=0}^{\infty} a_{n} x^{m+n}$.

$$
\Rightarrow y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+a_{3} x^{m+3}+a_{4} x^{m+4}+a_{5} x^{m+5}+\cdots \cdot
$$

$$
\begin{aligned}
& \Rightarrow y=a_{0} x^{1 / 2}+0+\frac{a_{0}}{6} x^{1 / 2+2}+0+\frac{a_{0}}{168} x^{\frac{1}{2}+4}+0+ \\
& \Rightarrow y=a_{0} x^{1 / 2}+\frac{a_{0}}{6} x^{5 / 2}+\frac{a_{0}}{168} x^{q_{2}}+\ldots \ldots \\
& \Rightarrow y_{2}=a_{0} \sqrt{x}\left[1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\ldots \ldots\right.
\end{aligned}
$$

\therefore The complete solution of the given differential Equation is

$$
\begin{aligned}
& y=c_{1} y_{1}+c_{2} y_{2} \\
& \Rightarrow y=c_{1} a_{0}\left[x+\frac{x^{3}}{2 \cdot 5}+\frac{x^{5}}{2 \cdot 4 \cdot 5 \cdot 9}+\frac{x^{7}}{28080}+\cdots\right]+c_{2} a_{0} \sqrt{x}\left[1+\frac{1}{6} x^{2}+\frac{1}{108} x^{4}+\cdots\right] \\
& \Rightarrow y=c_{1} a_{0} x\left[1+\frac{x^{2}}{2 \cdot 5}+\frac{x^{4}}{2 \cdot 4 \cdot 5 \cdot 9}+\frac{x^{6}}{28080}+\cdots\right]+c_{2} a_{0} \sqrt{x}\left[1+\frac{1}{6} x^{2}+\frac{1}{168} x^{4}+\cdots\right] \\
& \Rightarrow y=A x\left[1+\frac{x^{2}}{2 \cdot 5}+\frac{x^{4}}{2 \cdot 4 \cdot 5 \cdot 9}+\frac{x^{6}}{28080}+\cdots\right]+B \sqrt{x}\left[1+\frac{x^{2}}{6}+\frac{x^{4}}{168}+\cdots\right]
\end{aligned}
$$

where $A=c_{1} a_{0} ; B=c_{2} a_{0}$ and A, B are arbitraly constants.
TYPE (\sim ON FROBENIUS METHOD:-
If the indicial Equation has two Equal roots $m_{1}=m_{2}$, we obtain two linearly independent solutions by substituting this value of ' m ' in series ' y ' and ' $\frac{\partial y}{\partial m}$ '.
\therefore The complete solution is $y=a y_{1}+b\left(\frac{\partial y}{\partial m}\right)_{m=m_{1}}$
Problem: - Solve in Series the equation $x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0$.
Solution:- Given diff. Equ is

$$
\begin{equation*}
x \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+x y=0 \tag{1}
\end{equation*}
$$

compare. Equ. (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=x ; \quad Q(x)=1 ; \quad R(x)=x
$$

Now, $\quad p(x)=0$

$$
\Rightarrow x=0
$$

$P(x)=0$ when $x=0$
$\therefore x=0$ is a singular point.
Divide Equ (1) with ' x ' we have,

$$
\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{d y}{d x} \frac{1}{x}+y=0 \quad \longrightarrow \text { (2) }
$$

Compare $\varepsilon q u(2)$ with $y^{\prime \prime}+P_{1}(x) y^{\prime}+P_{2}(v) y=0$ are have,

$$
P_{1}(x)=\frac{1}{x} \quad ; \quad P_{2}(x)=1 .
$$

Now, $(x-a) P_{1}(x)=(x-0)\left(\frac{1}{x}\right)=1 \neq \infty$

$$
(x-a)^{2} P_{2}(x)=(x-0)^{2}(1)=x^{2} \neq \alpha
$$

$\therefore x P_{1}(x), x^{2} P_{2}(x)$ are analytic at $x=0$.
Hence, $x=0$ is a regular singular point.
Let us assume that the series solution of the given differential equation be

$$
y=\sum_{n=0}^{\infty} a_{n} x^{m+n} \longrightarrow(3)
$$

Tiff (3) w.r.t. ' x ' we have,

$$
\frac{d y}{d x}=y^{\prime}=\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1} \longrightarrow(4)
$$

gif. (4) Wire. ' x ' we have,

$$
\frac{d^{2} y}{d x^{2}}=y^{n}=\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2} \longrightarrow \text { (5) }
$$

Substitute Equ.(3), (4) and (5) in Equ. (1) we have,

$$
\begin{align*}
& \Rightarrow x \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2}+\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}+x \sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}+\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n+1}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}(m+n-1+1)+\sum_{n=0}^{\infty} a_{n} x^{m+n+1}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)^{2} x^{m+n-1}+\sum_{n=0}^{\infty} a_{n} x^{m+n+1}=0 \longrightarrow \text { (6) } \tag{6}
\end{align*}
$$

Now, Equating the coefficient of lowest powers of ' x to zero ie., the coefficient of x^{m-1} to zero (\because By substituting $n=0$ in Equ.(6))

$$
\Rightarrow \quad a_{0}(m+0)^{2}=0
$$

$\Rightarrow \quad m^{2}=0$, which is the indicial Equation.
Now, $\quad m^{2}=0$.
$\Rightarrow m=0,0$ are the roots of the indicial Equation.
Hence, the roots of the indicial Equation are Equal.

For the recurrence relation, equating the coefficient of x^{m+n-1} to zero.
(In Equ(6) x^{m+n-1} is the least degree term)

$$
\begin{aligned}
& \Rightarrow a_{n}(m+n)^{2}+a_{n-2}=0 \\
& \Rightarrow a_{n}(m+n)^{2}=-a_{n-2}
\end{aligned}
$$

$\Rightarrow \quad a_{n}=\frac{-a_{n-2}}{(m+n)^{2}}$, which is the recurrence relation.
Now, Equate the coefficient of x^{m} to zero, we get (ie., bubstitute $n=1$ in Equ(6)

$$
\begin{aligned}
& \Rightarrow \quad a_{1}(m+1)^{2}=0 \\
& \Rightarrow \quad a_{1}=0 \quad(\because m+1 \neq 0 \text { when } m=0) \\
& \therefore \quad a_{n}=\frac{-a_{n-2}}{(m+n)^{2}}
\end{aligned}
$$

If $n=3, \quad a_{3}=\frac{-a_{1}}{(m+3)^{2}}=0 \quad\left(\because a_{1}=0\right)$
If $n=5, \quad a_{5}=\frac{-a_{3}}{(m+5)^{2}}=0 \quad\left(\because a_{3}=0\right)$
If $n=7, \quad a_{7}=\frac{-a_{5}}{(m+7)^{2}}=0 \quad\left(\because a_{5}=0\right)$
If $n=9, \quad a_{9}=\frac{-a_{7}}{(m+9)^{2}}=0 \quad\left(\because a_{7}=0\right)$

If $n=2, \quad a_{2}=\frac{-a_{0}}{(m+2)^{2}}=-\frac{a_{0}}{2^{2}}$
If $n=4, \quad a_{4}=\frac{-a_{2}}{(m+4)^{2}}=\frac{a_{0}}{(m+2)^{2}(m+4)^{2}}=\frac{a_{0}}{2^{2} \cdot 4^{2}}$
If $n=6, a_{6}=\frac{-a_{4}}{(m+6)^{2}}=\frac{-a_{0}}{(m+2)^{2}(m+4)^{2}(m+6)^{2}}=\frac{a_{0}}{2^{2} \cdot 4^{2} \cdot 6^{2}}$.
Substitute all these values in $y=\sum_{n=0}^{\infty} a_{n} x^{m+n}$.

$$
\begin{aligned}
& \Rightarrow y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+a_{3} x^{m+3}+a_{4} x^{m+4}+a_{5} x^{m+5}+a_{6} x^{m+6}+\cdots \\
& \Rightarrow y=a_{0} x^{m}+0-\frac{a_{0}}{(m+2)^{2}} x^{m+2}+0+\frac{a_{0}}{(m+2)^{2}(m+4)^{2}} x^{m+4}+0+\frac{a_{0}}{(m+2)^{2}(m+4)^{2}(m+6)^{2}} x^{m+6}+ \\
& \Rightarrow y=a_{0} x^{m}\left[1-\frac{1}{(m+2)^{2}} x^{2}+\frac{1}{(m+2)^{2}(m+4)^{2}} x^{4}-\frac{1}{(m+2)^{2}(m+4)^{2}(m+6)^{2}} x^{6}+\cdots\right] \rightarrow(7)
\end{aligned}
$$

Which is a solution if $m=0$.
This gives only one solution instead of two and the second solution is given by $\left(\frac{d y}{\partial m}\right)$ when $m=0$.
The first solution of the differential Equation is obtained by substituting $m=0$ in equ.(7) we have,

$$
y_{1}=a_{0}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right]
$$

Diff. Equ.(7) w.r.t. ' m ' partially we have,

$$
\begin{align*}
\frac{d y}{d m} & =a_{0} x^{m} \log x\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}} \cdots \cdots\right]+a_{0} x^{m} \frac{\partial}{d m}\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}}-\cdots\right] \\
& =a_{0} x^{m} \log x\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}} \cdots \cdots+a_{0} x^{m}\left[0-x^{2} \frac{\partial}{d m}\left(\frac{1}{(m+2)^{2}}\right)+x^{4} \frac{\partial}{d m}\left(\frac{1}{(m+2)^{5}(m+4)^{2}}\right)\right]\right. \tag{8}
\end{align*}
$$

Consider, $\frac{\partial}{\partial m}\left(\frac{1}{(m+2)^{2}}\right)=\frac{\partial}{\partial m}\left[(m+2)^{-2}\right]=-2(m+2)^{-2-1}=\frac{-2}{(m+2)^{3}}$.

$$
\begin{align*}
& \frac{\partial}{d m}\left(\frac{1}{(m+2)^{2}(m+4)^{2}}\right)=\frac{\partial}{d m}\left[(m+2)^{-2}(m+4)^{-2}\right] \tag{9}\\
& =-2(m+2)^{-3}(m+4)^{-2}+(m+2)^{-2}\left[-2(m+4)^{3}\right] \\
& =\frac{-2}{(m+2)^{3}(m+4)^{2}}-\frac{2}{(m+2)^{2}(m+4)^{3}} \tag{10}
\end{align*}
$$

Substitute Equ. (9) \& Equ. (10) in Equ(8) we have,

$$
\begin{aligned}
& \frac{\partial y}{\partial m}=a_{0} x^{m} \log 2\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}}-\cdots \cdot\right]+a_{0} x^{m}\left[\frac{2 x^{2}}{(m+2)^{3}}+2^{4}\left\{\frac{-2}{(m+2)^{3}(m+4)^{2}}-\frac{2}{(m+2)^{2}(m)}\right\}\right. \\
& \Rightarrow \frac{\partial y}{\partial m}=a_{0} x^{m} \log x\left[1-\frac{x^{2}}{(m+2)^{2}}+\frac{x^{4}}{(m+2)^{2}(m+4)^{2}}-\cdots \cdot\right]+a_{0} x^{m}\left[\frac{2 x^{2}}{(m+2)^{3}}-\frac{2 x^{4}}{(m+2)^{2}(m+4)^{2}}\left\{\frac{1}{m+2}+\frac{1}{m+4}\right\}\right. \\
&+\cdots \cdots] \longrightarrow \text { (II) }
\end{aligned}
$$

The second solution of the differential Equation is obtained by substituting $m=0$ in Equ.(II) then we have,

$$
\begin{aligned}
& y_{2}=\left(\frac{\partial y}{\partial m}\right)_{m=0}=a_{0} \log x\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\cdots\right]+a_{0}\left[\frac{2 x^{2}}{2^{3}}-\frac{2 x^{4}}{2^{2} \cdot 4^{2}}\left(\frac{1}{2}+\frac{1}{4}\right)+\cdots\right] \\
& y_{2}=a_{0} \log x\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\cdots\right]+a_{0}\left[\frac{x^{2}}{2^{2}}-\frac{x 4}{2 \cdot 4^{2}}\left(\frac{1}{2}+\frac{1}{4}\right)+\cdots\right]
\end{aligned}
$$

Hence the general solution of the given diff Equation is

$$
\begin{gathered}
y=A y_{1}+B y_{2} \\
\Rightarrow y=A a_{0}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\ldots . .\right]+B\left[a_{0} \log x\left(1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\cdots\right)\right] \\
\left.\quad+a_{0}\left(\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2 \cdot 4^{2}}\left(\frac{1}{2}+\frac{1}{4}\right)+\cdots \cdot\right)\right] \\
\Rightarrow y=c_{1}\left[1-\frac{x^{2}}{2^{2}}+\frac{x^{4}}{2^{2} \cdot 4^{2}}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6^{2}}+\cdots\right]+c_{2}\left[y_{1} \log x+a_{0}\left(\frac{x^{2}}{2^{2}}-\frac{x^{4}}{2 \cdot 4^{2}}\left(\frac{1}{2}+\frac{1}{4}\right)+\cdots \cdot\right)\right]
\end{gathered}
$$

Where $C_{1}=A a_{0} 4 ; \quad C_{2}=B a_{0}$ and C_{1}, C_{2} are arbitrary constants.
TYPE (3) ON FROBENDUUS METHOD:-
Roots of the indicial Equation are Unequal and differing by an integer.
RULE:- If the indicial Equation has two Unequal roots m_{1} and m_{2} say m_{1} is greater than m_{2} cliffering by an integer and if the some of the coefficients of ' y ' become infinite when $m=m_{2}$. We modify the form of ' y ' by replacing ' a_{0} by bo $\left(m-m_{2}\right)$. Then we obtain two linearly independent solutions by putting $m=m_{2}$ in the modified form of ' y ' and ' $\frac{\partial y^{\prime}}{\partial m}$. The result of putting $m=m_{1}$ in y^{\prime} gives a numerical multiple of that obtained by putting $m=m_{2}$ and hence we reject the solution obtained by putting $m=m_{1}{ }^{n}{ }^{\prime} y^{\prime}$ '.
\therefore The complete solution of the given differential Equation is

$$
y=A[y]_{m=m_{2}}+B\left[\frac{\partial y}{\partial m}\right]_{m=m_{2}}
$$

Problem:- Solve $x^{2} y^{\prime}+x y^{\prime}+\left(x^{2}-1\right) y=0$ in series near $x=0$ (around/about $x=0$)
Solution:- Given differential Equation is

$$
\begin{align*}
& x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-1\right) y=0 \\
& \Rightarrow x^{2} \frac{d^{2} y}{d x^{2}}+x \frac{d y}{d x}+\left(x^{2}-1\right) y=0 \tag{1}
\end{align*}
$$

Compare Equ (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have

$$
P(x)=x^{2} ; \quad Q(x)=x ; \quad R(x)=x^{2}-1 .
$$

Here, $P(x)=x^{2}$
$\Rightarrow P(x)=0$ when $x=0$.
$\therefore x=0$ is a singular point.
Divide Equ(1) with ' x ' we have,

$$
\Rightarrow \frac{d^{2} y}{d x^{2}}+\frac{1}{x} \frac{d y}{d x}+\left(\frac{x^{2}-1}{x^{2}}\right) y=0 \quad \longrightarrow(2)
$$

Compare Equ(2) with $\frac{d^{2} y}{d x^{2}}+P_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0$ we have,

$$
P_{1}(x)=\frac{1}{x} ; \quad P_{2}(x)=\frac{x^{2}-1}{x^{2}}
$$

Now, $(x-a) P_{1}(x)=(x-0)\left(\frac{1}{x}\right)=1 \neq \infty$

$$
(x-a)^{2} P_{2}(x)=(x-0)^{2}\left(\frac{x^{2}-1}{x^{2}}\right)=x^{2}-1 \neq \alpha
$$

$\therefore \quad(x-0) P_{1}(x)$ and $(x-0)^{2} P_{2}(x)$ are analytic at $x=0$.
Hence, $x=0$ is a Regular Singular point.
Let us assume that the series solution of the given differential Equation be

$$
y=\sum_{n=0}^{\infty} a_{n} x^{m+n} \longrightarrow(3)
$$

Diff. (3) w.r.t. ' x ' we have,

$$
\frac{d y}{d x}=y^{\prime}=\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1} \longrightarrow(4)
$$

Diff. (4) w.r.t. ' x ' we have,

$$
\frac{d^{2} y}{d x^{2}}=y^{\prime \prime}=\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2} \longrightarrow \text { (5) }
$$

substitute Equ. (3), (4) and (5) in Equ. (1) we have,

$$
\begin{aligned}
& \Rightarrow x^{2} \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2}+x \sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}+\left(x^{2}-1\right) \sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n}+\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n+2}-\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}[(m+n)(m+n-1)+(m+n)-1] x^{m+n}+\sum_{n=0}^{\infty} a_{n} x^{m+n+2}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n} x^{m+n}\left[(m+n)^{2}-1\right]+\sum_{n=0}^{\infty} a_{n} x^{m+n+2}=0 \quad \text { (6). }
\end{aligned}
$$

Equating the coefficient of the smallest/least powers of ' x ' namely x^{m} (ie., put $n=0$ in Equ.(6)) to zero then we have,

$$
a_{0}\left(m^{2}-1\right)=0
$$

$\Rightarrow m^{2}-1=0$, which is an indicial Equation. $\quad\left(\because a_{0} \neq 0\right)$
Now, $\quad m^{2}-1=0$

$$
\begin{aligned}
& \Rightarrow m^{2}=1 \\
& \Rightarrow m= \pm 1 .
\end{aligned}
$$

$\therefore m=1$ and $m=-1$ are the roots of an indicial Equation.

Hence, the roots of an indicial Equation are thequal and differ by an integer.
Here the difference between the powers of ' x ' in Equ(b) is two. Hence, we equate The coefficient of x^{m+1} in Equi(6) to zero then we have, (Substitute $n=1$ in Epu.(6))

$$
\begin{aligned}
& \Rightarrow a_{1}\left[(m+1)^{2}-1\right]=0 \\
& \Rightarrow a_{1}\left[m^{2}+2 m+1-1\right]=0 \\
& \Rightarrow a_{1}\left[m^{2}+2 m\right]=0 \\
& \Rightarrow a_{1} m(m+2)=0 \\
& \therefore a_{1}=0 \quad(\because m(m+2) \neq 0)
\end{aligned}
$$

To get the recurrence relation we equate the coefficient of lowest degree of ' x ' ie, x^{m+n} to zero in Equ(6) we have, (:In Equ(6) x^{m+n} is the lowest power of x)

$$
\begin{aligned}
& \quad a_{n}(m+n+1)(m+n-1)+a_{n-2}=0 \\
& \Rightarrow a_{n}(m+n+1)(m+n-1)=-a_{n-2} \\
& \Rightarrow \quad a_{n}=\frac{-a_{n-2}}{(m+n+1)(m+n-1)}, n \geqslant 2 \longrightarrow(7) \text { which is the recurrence } \\
& \text { relation. } \\
& \text { Substitute } n=2,4,6 \ldots \text { in Equ.(7) we have, } \\
& \text { If } n=2 ; \quad a_{2}=\frac{-a_{0}}{(m+3)(m+1)} \\
& \text { If } n=4 ; \quad a_{4}=\frac{-a_{2}}{(m+5)(m+3)}=\frac{-1}{(m+5)(m+3)}\left[\frac{-a_{0}}{(m+3)(m+1)}\right]=\frac{a_{0}}{(m+1)(m+3)^{2}(m+5)} \\
& \text { If } n=6 ; \quad a_{6}=\frac{-a_{4}}{(m+7)(m+5)}=\frac{1}{(m+7)(m+5)}\left[\frac{-a_{0}}{(m+3)(m+1)}\right]=\frac{-a_{0}}{(m+1)(m+3)^{2}(m+5)^{2}(m+7)}
\end{aligned}
$$

If $n=2 ; \quad a_{2}=\frac{-a_{0}}{(m+3)(m+1)}$

Substitute $n=3,5,7 \ldots$ in equ.(7) we have,
If $n=3 ; \quad a_{3}=\frac{-a_{1}}{(m+4)(m+2)}=0$.
If $n=5 ; \quad a_{5}=\frac{-a_{3}}{(m+6)(m+4)}=0$
If $n=7 ; \quad a_{7}=\frac{-a_{5}}{(m+8)(m+6)}=0$
Substitute all these values in $y=\sum_{n=0}^{\infty} a_{n} x^{m+n}$.

$$
\begin{aligned}
& \Rightarrow y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+a_{3} x^{m+3}+a_{4} x^{m+4}+a_{5} x^{m+5}+a_{6} x^{m+6}+\ldots \ldots . a_{0} x^{m}+0-\frac{a_{0}}{(m+1)(m+3)} x^{m+2}+0+\frac{a_{0}}{(m+1)(m+3)^{2}(m+5)} x^{m+4}+0-\frac{a_{0}}{(m+1)(m+3)^{2}(m+5)^{2}(m+7)} x^{m+6} \\
& \Rightarrow y=\cdots] \rightarrow(8)
\end{aligned}
$$

Here we have $m=-1,1$.
If we take $m=-1$ in the above series the coefficients become infinite because the factor $(m+1)$ is in the denominator.

To avoid this difficulty, we substitute $a_{0}=b_{0}\left(m-m_{2}\right)$ ie, $a_{0}=b_{0}(m+1)$ where m_{2} is the least indicial root ie, $m_{2}=-1$.

We substitute $a_{0}=b_{0}(m+1)$ in equ.(8) we get the modified solutions as

$$
\begin{align*}
y & =b_{0}(m+1) x^{m}\left[1-\frac{x^{2}}{(m+1)(m+3)}+\frac{x^{4}}{(m+1)(m+3)^{2}(m+5)}-\frac{x^{6}}{(m+1)(m+3)^{2}(m+5)^{2}(m+7)}+\cdots\right] \\
\Rightarrow y & =b_{0} x^{m}\left[(m+1)-\frac{x^{2}}{(m+3)}+\frac{x^{4}}{(m+3)^{2}(m+5)}-\frac{x^{6}}{(m+3)^{2}(m+5)^{2}(m+7)}+\cdots\right] \rightarrow(9) \tag{9}
\end{align*}
$$

Put $m=-1$ in Equ.(9) we have,

$$
\begin{equation*}
\Rightarrow y_{1}=b_{0} x^{-1}\left[-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6}+\cdots\right] \tag{10}
\end{equation*}
$$

To obtain second solution, if we put $m=1$ in Equ (9) we have,

$$
\begin{align*}
y & =d_{0} x\left[2-\frac{x^{2}}{4}+\frac{x^{4}}{4^{2} \cdot 6}-\frac{x^{6}}{4^{2} 6^{2} \cdot 8}+\cdots\right] \\
\text { doubt } x y & =-2^{2} d_{0} x^{-1}\left[-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6}+\cdots\right] \tag{11}
\end{align*}
$$

Which is not distinct (ie; not linearly independent because the ratio of two series Equ.(10) $\&$ Equ. (I)) is a constant).
Hence Equ. (ii) will not serve the purpose of a second solution. In such a case the second independent solution $\left(\frac{\partial y}{\partial m}\right)_{m=-1}$.

Diff. (9) w.r.t ' m ' partially we have,

$$
\begin{aligned}
\frac{\partial y}{\partial m}=b_{0} x^{m} \log x & {\left[(m+1)-\frac{x^{2}}{(m+3)}+\frac{x^{4}}{(m+3)^{2}(m+5)}-\frac{x^{6}}{(m+3)^{2}(m+5)^{2}(m+7)}+\cdots\right] } \\
& +b_{0} x^{m} \frac{\partial}{\partial m}\left[(m+1)-\frac{x^{2}}{(m+3)}+\frac{x^{4}}{(m+3)^{2}(m+5)}-\frac{x^{6}}{(m+3)^{2}(m+5)^{2}(m+7)}+\cdots\right]
\end{aligned}
$$

Now, $\frac{d}{d m}(m+1)=1+0=1$

$$
\begin{align*}
& \frac{\partial}{\partial m}\left(\frac{1}{m+3}\right)=(-1)(m+3)^{-1}=-(m+3)^{-2}=-\frac{1}{(m+3)^{2}} \\
& \frac{\partial}{\partial m}\left(\frac{1}{(m+3)^{2}(m+5)}\right)= \frac{\partial}{\partial m}\left((m+3)^{-2}(m+5)^{-1}\right) \\
&=-(m+3)^{-2}(m+5)^{-1+1}+(-2)(m+3)^{-2-1}(m+5)^{-1} \\
&= \frac{-2}{(m+3)^{3}(m+5)}-\frac{1}{(m+3)^{2}(m+5)^{2}} \\
& \therefore \frac{\partial y}{d m}=b_{0} x^{m} \log x\left[(m+1)-\frac{x^{2}}{(m+3)}+\frac{x^{4}}{(m+3)^{2}(m+5)}-\cdots\right]+b_{0} x^{m}\left[1-x^{2}\left(\frac{-1}{(m+3)^{2}}\right)\right. \\
&\left.+x^{4}\left(\frac{-2}{(m+3)^{3}(m+5)}-\frac{1}{(m+3)^{2}(m+5)^{2}}\right)+\cdots\right]+b_{0} x^{m}\left[1+\frac{x^{2}}{(m+3)^{2}}-\right. \\
& \Rightarrow \frac{\partial y}{\partial m}=b_{0} x^{m} \log x\left[(m+1)-\frac{x^{2}}{(m+3)}+\frac{x^{4}}{(m+3)^{2}(m+5)}-\cdots\right] \\
& \therefore \quad x^{4}\left\{\frac{2}{(m+3)^{3}(m+5)}+\frac{1}{\left.(m+3)^{2}(m+5)^{2}\right\}}+\cdots\right]
\end{align*}
$$

Put $m=-1$ in Equ. (12) we have,

$$
\begin{aligned}
& \Rightarrow\left(\frac{\partial y}{\partial m}\right)_{m=-1}=b_{0} x^{-1} \log x\left[-\frac{x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}+\cdots\right]+b_{0} x^{-1}\left[1+\frac{x^{2}}{2^{2}}-x^{4}\left\{\frac{2}{2^{3} \cdot 4}+\frac{1}{2^{2} \cdot 4^{2}}\right\}+\cdots\right] \\
& \Rightarrow y_{2}=y_{1} \log x+b_{0} x^{-1}\left[1+\frac{x^{2}}{2^{2}}-x^{4}\left\{\frac{1}{2^{2} \cdot 4}+\frac{1}{2^{2} \cdot 4^{2}}\right\}+\cdots \cdot\right]
\end{aligned}
$$

\therefore The complete solution of Equ(1) is $y=A y_{1}+B y_{2}$

$$
\Rightarrow y=A b_{0} x^{-1}\left[\frac{-x^{2}}{2}+\frac{x^{4}}{2^{2} \cdot 4}-\frac{x^{6}}{2^{2} \cdot 4^{2} \cdot 6}+\cdots\right]+B\left[y_{1} \log x+b_{0} x^{-1}\left(1+\frac{x^{2}}{2^{2}}-x^{4}\left\{\frac{1}{2^{2} \cdot 4^{2}}+\frac{1}{2^{2} \cdot 4^{2}}\right\}+\cdots\right)\right]
$$

which is the required Solution of given diff. Equation.

Problem:- Solve in series $x(1-x) y^{\prime \prime}-3 x y^{\prime}-y=0$ near $x=0$.
solution:- Given diff. Equation is

$$
\begin{align*}
& x(1-x) y^{\prime \prime}-3 x y^{\prime}-y=0 . \\
\Rightarrow & x(1-x) \frac{d^{2} y}{d x^{2}}-3 x \frac{d y}{d x}-y=0 \tag{1}
\end{align*}
$$

compare Equ(1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we hove,

$$
P(x)=x(1-x) ; \quad Q(x)=-3 x ; \quad R(x)=-1 .
$$

Here, $\quad P(x)=x(1-x)$.
Now, $\quad P(x)=0$

$$
\begin{aligned}
& \Rightarrow x(1-x)=0 \\
& \Rightarrow x=0,1
\end{aligned}
$$

$\therefore x=0,1$ are the singular points.
Divide Equ.(1) with $x(1-x)$ we have,

$$
\begin{align*}
& \frac{d^{2} y}{d x^{2}}-\frac{3 x}{x(1-x)} \frac{d y}{d x}-\frac{y}{x(1-x)}=0 \\
\Rightarrow & \frac{d^{2} y}{d x^{2}}-\frac{3}{(1-x)} \frac{d y}{d x}-\frac{y}{x(1-x)}=0 \tag{2}
\end{align*}
$$

Compare Equ. (2) with $\frac{d^{2} y}{d x^{2}}+p_{1}(x) \frac{d y}{d x}+P_{2}(x) y=0$ we have

$$
P_{1}(x)=\frac{-3}{1-x} ; Q(x)=\frac{-1}{x(1-x)}
$$

Now we have to find the series of the given diff. Equ.(1) neal $x=0$, so we check $x=0$ is a regular (i) irregular Singular point.
Now, $\quad(x-a) P_{1}(x)=(x-0)\left(\frac{-3}{1-x}\right)=\frac{-3 x}{1-x} \neq \infty$

$$
(x-a)^{2} P_{2}(x)=(x-0)^{2}\left(\frac{-1}{x(1-x)}\right)=\frac{-x}{1-x} \neq \infty
$$

$\therefore(x-0) P_{1}(x)$ and $(x-0)^{2} P_{2}(x)$ are analytic at $x=0$.
Hence, $x=0$ is a Reguba Singular point.
Let us assume that the series solution of the given differential Equation be

$$
y=\sum_{n=0}^{\infty} a_{n} x^{m+n} \longrightarrow(3)
$$

Diff. (3) w.r.t. ' x ' we have,

$$
\frac{d y}{d x}=y^{\prime}=\sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1} \longrightarrow \text { (4) }
$$

Nav, Diff. (4) wry. ' x ' we have,

$$
\frac{d^{2} y}{d x^{2}}=y^{n}=\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2} \longrightarrow(5)
$$

Substitute Equ(3), (4) and (5) in Equ.(1) we have,

$$
\begin{align*}
& \Rightarrow\left(x-x^{2}\right) \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-2}-3 x \sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n}-3 \sum_{n=0}^{\infty} a_{n}(m+n) x^{m+n}-\sum_{n=0}^{\infty} a_{n} x^{m+n}=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n} x^{m+n}[(m+n)(m+n-1)+3(m+n)+1]=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n} 2^{m+n}\left[(m+n)^{2}-(m+n)+3(m+n)+1\right]=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n} x^{m+n}\left[(m+n)^{2}+2(m+n)+1\right]=0 \\
& \Rightarrow \sum_{n=0}^{\infty} a_{n}(m+n)(m+n-1) x^{m+n-1}-\sum_{n=0}^{\infty} a_{n} x^{m+n}\left[(m+n+1)^{2}\right]=0 \longrightarrow(6) . \tag{6}
\end{align*}
$$

Equating the coefficient of the smallest/least power of x, namely x^{m-1} to zero (ie, put $n=0$ in Equ(6)) we have,

$$
\begin{aligned}
a_{0} m(m-1) & =0 \\
\Rightarrow \quad m(m-1) & =0 \quad\left(\because a_{0} \neq 0\right)
\end{aligned}
$$

Which is an indicial Equation.
Now, $\quad m(m-1)=0 \Rightarrow m=0 ; \quad m-1=0 \Rightarrow m=0,1$
$\therefore m=0$ and $m=1$ are the roots of an indical Equation.
Hence the roots of an indicial Equation are Unequal and differ by an integer.
To get the recurrence relation, we equate the coefficient of lowest degree of ' x ' ie., 2^{m+n-1} to zero in (6) we have (ie., The lowest power of x^{m+n-1} and x^{m+n} is x^{m+n-1} in Equ(b))

$$
\begin{aligned}
& \Rightarrow a_{n}(m+n)(m+n-1)-a_{n-1}(m+n-1+1)^{2}=0 \\
& \Rightarrow a_{n}(m+n)(m+n-1)-a_{n-1}(m+n)^{2}=0 \\
& \Rightarrow a_{n}(m+n-1)(m+n)=a_{n-1}(m+n)^{2} \\
& \Rightarrow a_{n}(m+n-1)=a_{n-1}(m+n)
\end{aligned}
$$

$$
\Rightarrow \quad a_{n}=\frac{m+n}{m+n-1} a_{n-1}, n \geqslant 1 \longrightarrow \text { (7) which is a Recurrence relation. }
$$

substitute $n=1,2,3,4,5 \ldots$ in ε_{μ} (7) we have,

$$
\begin{aligned}
& a_{1}=\frac{m+1}{m+1-1} a_{0}=\frac{m+1}{m} a_{0} \\
& a_{2}=\frac{m+2}{m+2-1} a_{1}=\frac{m+2}{m+1}\left(\frac{m+1}{m} a_{0}\right)=\frac{m+2}{m} a_{0} \\
& a_{3}=\frac{m+3}{m+3-1} a_{2}=\frac{m+3}{m+2} a_{2}=\frac{m+3}{m+2}\left(\frac{m+2}{m} a_{0}\right)=\frac{m+3}{m} a_{0}
\end{aligned}
$$

Substitute all these values in $y=\sum_{n=0}^{\infty} a_{n} x^{m+n}$

$$
\begin{align*}
& \Rightarrow y=a_{0} x^{m}+a_{1} x^{m+1}+a_{2} x^{m+2}+a_{3} x^{m+3}+ \\
& \Rightarrow y=a_{0} x^{m}+\frac{m+1}{m} a_{0} x^{m+1}+\frac{m+2}{m} a_{0} x^{m+2}+\frac{m+3}{m} a_{0} x^{m+3}+ \\
& \Rightarrow y=a_{0} x^{m}\left[1+\left(\frac{m+1}{m}\right) x+\left(\frac{m+2}{m}\right) x^{2}+\left(\frac{m+3}{m}\right) x^{3}+\cdots\right. \tag{8}
\end{align*}
$$

Here, we have $m=0$ and $m=1$.
If we take $m=0$ in the above series the coefficients become in finite because the factor ' m ' is in the denominator.

To aviod this difficulty, we put $a_{0}=b_{0}\left(m-m_{2}\right)$ ie, $a_{0}=m b_{0}$ where ' m_{2} is the least indicial root ie:, $m_{2}=0$.
We substitute $a_{0}=b_{0}\left(m-m_{2}\right)$ ie, $a_{0}=m b_{0}$ in Equ.(8) and we get the modified Solution as :

$$
\begin{align*}
y & =m b_{0} x^{m}\left[1+\left(\frac{m+1}{m}\right) x+\left(\frac{m+2}{m}\right) x^{2}+\left(\frac{m+3}{m}\right) x^{3}+\cdots\right] \\
\Rightarrow y & =b_{0} x^{m}\left[m+(m+1) x+(m+2) x^{2}+(m+3) x^{3}+\cdots\right] . \tag{9}
\end{align*}
$$

put $m=0$ in Equ(9) we have,

$$
\begin{equation*}
\Rightarrow y_{1}=b_{0}\left[x+2 x^{2}+3 x^{3}+\cdots\right] \tag{10}
\end{equation*}
$$

To obtain a second solution, if we put $m=1$ in Equ(9), we have,

$$
\begin{align*}
& \Rightarrow y_{2}=d_{0} x\left[1+2 x+3 x^{2}+4 x^{3}+\cdots\right] \\
& \Rightarrow y_{2}=d_{0}\left[x+2 x^{2}+3 x^{3}+4 x^{4}+\cdots \cdot\right] \tag{II}
\end{align*}
$$

Which is not distinct.
(ie., not linearly independent because the ratio of the two stations (10) ξ (II) is a constant).
Hence, Eqq. (II) will not Serve the purpose of a dyyy. Second solution.
In such a case, the second independent solution is given by $\left(\frac{\partial y}{\partial m}\right)_{m=0}$
Equ(9) \Rightarrow

$$
y=b_{0} x^{m}\left[m+(m+1) x+(m+2) x^{2}+(m+3) x^{3}+\ldots \ldots\right]
$$

Inf (9) partially writ. ' m ' we have,

$$
\frac{d y}{d m}=b_{0} x^{m} \log x\left[m+(m+1) x+(m+2) x^{2}+(m+3) x^{3}+\cdots\right]+b_{0} x^{m}\left[1+x+x^{2}+x^{3}+\cdots\right] \rightarrow(12)
$$

Put $m=0$ in Equ(12), we have.

$$
\begin{aligned}
& \Rightarrow\left(\frac{\partial y}{\partial m}\right)_{m=0}=b_{0} \log x\left[x+2 x^{2}+3 x^{3}+\cdots\right]+b_{0}\left[1+x+x^{2}+x^{3}+\cdots\right] \\
& \rightarrow\left(\frac{\partial y}{\partial m}\right)_{m=0}=y_{1} \log x+b_{0}\left(1+x+x^{2}+x^{3}+\cdots\right)=y_{2} .
\end{aligned}
$$

\therefore The complete solution of Equ.(1) is $y=A y_{1}+B y_{2}$.

$$
\Rightarrow y=A b_{0} \log x\left[x+2 x^{2}+3 x^{3}+\cdots\right]+B\left[y_{1} \log x+b_{0}\left(1+x+x^{2}+\cdots\right)\right]
$$

Which is the required solution of the given diff. Equation.
(2) $\quad\left(1-x^{2}\right) \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+n(n+1) y=0$

Here, $\quad P(x)=1-x^{2}$
If $P(x)=0 \Rightarrow 1-x^{2}=0 \Rightarrow x^{2}=1 \Rightarrow x= \pm 1$.
$\therefore x= \pm 1$ are the singular points, remaining all are ordinary points.
Problem:- (1) Find the regular points and singular points of diff. Ensue.

$$
y^{\prime \prime}+\frac{1}{x-2} y^{\prime}+\frac{6}{x^{3}(x-2)} y=0
$$

sol:- Given diff. Equ. is

$$
\begin{align*}
& y^{\prime \prime}+\frac{1}{x-2} y^{\prime}+\frac{6}{x^{3}(x-2)} y=0 . \\
\Rightarrow & x^{3}(x-2) y^{\prime \prime}+x^{3} y^{\prime}+6 y=0 \\
\Rightarrow & x^{3}(x-2) \frac{d^{2} y}{d x^{2}}+x^{3} \frac{d y}{d x}+6 y=0 \tag{1}
\end{align*}
$$

comparing (1) with $P(x) \frac{d^{2} y}{d x^{2}}+Q(x) \frac{d y}{d x}+R(x) y=0$ we have,

$$
P(x)=x^{3}(x-2) ; \quad Q(x)=x^{3} ; \quad R(x)=6 .
$$

Now, $\quad P(x)=0$

$$
\begin{aligned}
& \Rightarrow x^{3}(x-2)=0 \\
& \Rightarrow x=0, x=2 .
\end{aligned}
$$

$\therefore x=0,2$ are singular points and the remaining all are regular points (ordinary Points),

MODULE -V

DIFFERENTIAL CALCULUS

Neighbourhood of a point : -
It $a \in R$ and $\varepsilon>0$ then the set $\{x \in R||x-a|<\varepsilon\}$ is called ε-neigh - boushood of ' a ' in R.

$$
\begin{aligned}
\varepsilon-n \text { of } a & =\{x \in R| | x-a \mid<\varepsilon\} \\
& =\{x \in R \mid-\varepsilon<x-a<\varepsilon\} \\
& =\{x \in R \mid a-\varepsilon<x<a+\varepsilon\} \\
& =(a-\varepsilon, a+\varepsilon), \text { an open interval. }
\end{aligned}
$$

ε-nide of ' a ' is denoted as $N_{\varepsilon}(a)$ or . $N(\varepsilon, a)$.
Note: - ε-nod of a point ρ is the set of all points which are with in ε-distance of P an either side.
Eg:- $\left(2-\frac{1}{2}, 2+\frac{1}{2}\right)=\left(\frac{3}{2}, \frac{5}{2}\right)$ is $\frac{1}{2}$-nad of 2 .

$$
\begin{aligned}
\text { Eg: }-\left(2-\frac{1}{2}, 2+\frac{1}{2}\right) & =\left(\frac{2}{2}, \frac{1}{2}\right) \\
\text { Deleted } \varepsilon \text {-nbd of } a & =\{x \in R| | x-a \mid<\varepsilon, 7 \neq a\} \\
& =\{r \in R|0<|x-a|<\varepsilon\} \\
& =(a-\varepsilon, a) \cup(a, a+\varepsilon)
\end{aligned}
$$

Deleted ε-nod of a is denoted as $N_{\varepsilon}(a)-\{a\}$
Limit of a function:-
Let $f: s \rightarrow R$ be a function ' a ' be a limit point of an aggregate s and $l \in R$. The function f tends to limit l as x tends to a if too each $\varepsilon>0$ then there exists $\delta>0$ such that $x \in S$ and $0<|x-a|<\delta$

$$
\Longrightarrow|f(x)-1|<\varepsilon
$$

We write $f(x) \rightarrow 1$ as $x \rightarrow a$ or $\operatorname{lt}_{x \rightarrow a} f(x)=1$.
Lt $f(x)=l$ is called limit from below or lett hand limit of the function.

Lt $f(1)=l$ is called limit tram above or right hand limit of $x \rightarrow a^{+}$
the function.
$\operatorname{LL}_{x \rightarrow a} f(x)=l$ is called limit if the function.
Continuity of a function at a point :-
Let s be an aggregate $f: s \rightarrow R$ be a function and $a \in S$. f is said to be continuous at ' a^{\prime} it given $\varepsilon>0$ there exists $\delta>0$ suchthat $x \in S,|x-a|<\delta \Rightarrow|f(r)-f(a)|<\varepsilon$
Detinition (Limit Notation of Continuity at a point) : -
Let $f: s \rightarrow R$ be a function and $a \in S$ be a limit point of s.
f is sold to be continuous at ' a ' from left if $\operatorname{ll}_{x \rightarrow a} \operatorname{fa} f(x)=f(a)$.
f is said to be continuous at' a from right if $\operatorname{lt}_{x \rightarrow a^{+}} f(x)=f(a)$
f is said to be continuous at ' a ' if $\underset{x \rightarrow a}{\operatorname{Lt}} f(x)=f(a)$.
Note: - (i) $f(x)$ is continuous at $x=a \Rightarrow$ There is no break in the. graph of $y=f(r)$ in a nod of the point- $(a, f(a))$.
(ii) $f(x)$ is continuous on $[a, b] \Rightarrow$ The graph of $y=-f(x)$ is unbroken from the point $(a, f(a))$ to the point $(b, f(b))$.
(iii) If f, g are continuous at ' a ', $a \in R$ then $f+g$ is continuous at ' a ' and $f-g$ is continuous at a.
(iv) It f, g are continuous at a then $f g$ is continuous at a.
(v) If g is continuous at ' a ' and $g(a) \neq 0$ then $\frac{1}{g}$ is continuous at a.
(vi) It f, g are continuous at ' a ' and $g(a) \neq 0$ then $\frac{f}{g}$ is continuous a' a '.
(vii) The constant function $f(x)=k, k \in R$ is continuous on R.
(viii) The trigonometric function $\sin x$ and $\cos x$ are continuous on R.
(ix) The function $f(x)=e^{x}, x \in R$ is continuous on R.
(x) The function $f(x)=\log x, y \in R^{+}$is continuous on R^{+}
(xi) The function $f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\cdots+a_{n} x^{n}$, where $a_{0}, a_{1}, a_{2} \ldots$ $\cdots a_{n} \in R$ and $n \in N$ is continuous on R (OR) Every polynomial function is continuous on R.
\rightarrow Check whether the function $f(x)=\left\{\begin{array}{ll}x^{2}+1, & 0 \leq x<1 \\ 3-x, & 1 \leq x \leq 2\end{array}\right.$ is continuous.
Sol:- Given that $f(x)= \begin{cases}x^{2}+1 & 0 \leq x<1 \\ 3-x & 1 \leq x \leq 2\end{cases}$
$\rightarrow f(x)=x^{2}+1$ is continuous in $0 \leq x<1$ since $f(x)$ is polynomial. $\rightarrow f(x)=3-x$ is continuous in $1 \leq x \leq 2$ since $f(x)$ is polynomial.

At $x=1, f(1)=3-1=2$

$$
\begin{aligned}
& \operatorname{Lt}_{x \rightarrow 1^{-}} f(x)=\operatorname{Lt}_{x \rightarrow 1^{-}} x^{2}+1=2 \\
& \operatorname{Lt}_{x \rightarrow 1^{+}} f(x)=\operatorname{Lt}_{x \rightarrow 1^{+}} 3-x=2 \\
& \therefore \operatorname{Lt}_{x \rightarrow 1} f(x)=f(1)
\end{aligned}
$$

$\therefore f(x)$ is continuous at $x=1$.
$\therefore f(x)$ is continuous in $[0,2]$.

Desirability of a function at a point :-
Let S be an aggregate and $F: S \rightarrow R$ be a function and let $C \in S$. be a limit point of s.
If $\operatorname{lt}_{x \rightarrow c} \frac{f(x)-f(c)}{x-c}(x \neq c)$ exists then we say that f is derivable at ' c '. The limit is called the derivative $c t-f$ at c and is denoted by $f^{\prime}(c)$.
\rightarrow Geometrically the derivative $f^{\prime}(c)$ represents the slope of the tangent line at $(c, f(c))$ to the graph $y=f(v)$.
It $f(x)$ is derivable in $[a, b]$ there exists a unique tangent to the cure at every point in the interval $[a, b]$.
It $f^{\prime}(c)$ is positive it means that $f(x)$ is an increasing function as x increases via C.
It $f^{\prime}(c)$ is negative it means that $f(r)$ is decreasing function as x increases via c.

$f^{\prime}(c)$ is the slope of the tangent to the curve $y=f(x)$ at $x=c$.
\rightarrow check whether the function $f(x)=\left\{\begin{array}{ll}x^{2}-2 & -1 \leq x<0 \\ x-2 & 0 \leq x \leq 1\end{array}\right.$ is derivable. of $x=0$.
\rightarrow Left hand derivative at $x=0$

$$
\begin{aligned}
f^{\prime}\left(0^{-}\right) & =\operatorname{Lt}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}=\operatorname{Li}_{x \rightarrow 0^{-}} \frac{\left(x^{2}-2\right)-(-2)}{x} \\
& =\operatorname{Lt}_{x \rightarrow 0^{-}} \frac{x^{2}-2+2}{x}=\operatorname{Lt}_{x \rightarrow 0^{-}} \frac{x^{2}}{x}=0
\end{aligned}
$$

\rightarrow Right hand derivative of $x=0$

$$
\begin{aligned}
& \text { desivative ot } x=0 \\
& \begin{aligned}
f^{\prime}\left(0^{+}\right) & =\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}=\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{(x-2)-(-2)}{x} \\
& =\operatorname{lt}_{x \rightarrow 0^{+}} \frac{x}{x}=1 \\
f^{\prime}\left(0^{-}\right) & \neq f^{\prime}\left(0^{+}\right)
\end{aligned}
\end{aligned}
$$

\therefore The function is not derivable at $x=0$.

Properties at continuous function: -

1) It $f(x)$ is continuous in $[a, b] \quad f(x)$ is bounded in $[a, b]$ Also it attains greatest lower bound and least upper bound. It m is the greatest lower bound and M is the least upper bound of $f(7)$ in $[a, b]$ there exists points c and d in $[a, b]$ such -that $f(c)=m$ and $f(d)=M$.
9.) It $f(x)$ is continuous in $[a, b]$ it attains all values between $f(a)$ and $f^{\prime}(b)$
2) It $f(r)$ is continuous in $[a, b]$ and $f(a), f(b)$ are of opposite signs then there exists at cast ore point $c \in(a, b)$ such that $f(c)=0$

Rule's Theorem:
If a function $f:[a, b] \rightarrow R$ is such that
(i) f is continuales on $[a, b]$
(iI) f is derivable on (a, b).
(iii) $f(a)=f(b)$ then there exists $c \in(a, b)$ such that $f^{\prime}(c)=0$.

Geometrical Interpretation ot Rolle's Theorem:
Let $p:[a, b] \rightarrow R$ be a function satistying the three conditions of Rale's theorem, then
(i) The curve $y=f(x)$ is continuous in $[a, b]$ (That is from the. \therefore point $A(a, f(a))$ to the point $B(b, f(b))$.
(ii) At every point $x=c$ where $a<c<b$ at the point $(c,-f(c))$ on the curve $y=f(x)$ there is a unique tangent to the curve.
(iii) $f(a)=f(b)$ i.e the two endpoints of the curve $y=f(x)$ corresponding to $x=a, x=b$ have the same ordinate.

By Rolle's theorem there is atleast one $C \in(a, b)$ such that $f^{\prime}(c)=0$ Therefore there is at least one point $c(c, f(c))$ between A and B on the curve at which the tangent line is parallel to the x-axis.

(1) Verity Rales theorem for $f(x)=\log \left[\frac{x^{2}+a b}{(a+b) x}\right]$ in $[a, b]$

So :: Given that $f(x)=\log \left(\frac{x^{2}+a b}{(a+b) x}\right]$ in $[a, b]$
We know that logarithm function is continuous on R^{+}
(i) $f(x)=\log \frac{x^{2}+a b}{(a+b) x}$ is continuous on $[a, b] \quad\left[\because[a, b] \leq R^{+}\right]$
(ii)

$$
\begin{aligned}
-f(x) & =\log \left(\frac{x^{2}+a b}{(a+b) x}\right] \\
& =\log \left(x^{2}+a b\right)-\log (a+b) x \\
-f(x) & =\log \left(x^{2}+a b\right)-\log (a+b)-\log x
\end{aligned}
$$

Diff w.r.t. x, we get

$$
f^{\prime}(x)=\frac{2 x}{x^{2}+a b}-\frac{1}{x}, f^{\prime}(x) \text { exists on }(a, b)
$$

(ii). $\therefore f$ is derivable on (a, b).
(iii)

$$
\begin{aligned}
& f(x)=\log \left[\frac{x^{2}+a b}{(a+b) x}\right] \\
& f(a)=\log \frac{a^{2}+a b}{(a+b) a}=0 \\
& f(b)=\log \frac{b^{2}+a b}{(a+b) b}=0 \\
& f(a)=f(b)
\end{aligned}
$$

The function f satisties all the conditions of Roles theorem.
\therefore By Rolles thew em
There exists at least one point $c \in(a, b)$ such that $f^{\prime}(c)=0$.

$$
\text { i.e. } \quad \frac{2 c}{c^{2}+a b}-\frac{1}{c}=0
$$

$$
\begin{gathered}
\frac{2 c^{2}-c^{2}-a b}{c\left(c^{2}+a b\right)}=0 \\
c^{2}-a b=0 \\
c^{2}=a b \\
c= \pm \sqrt{a b} \\
c=\sqrt{a b} \in(a, b)
\end{gathered}
$$

$\therefore c=\sqrt{a b}$ such that $f^{\prime}(c)=0$ and $a<c<b$
Hence Rolles Theorem verified
(e) verity Roles theorem tar the function $f(x)=\frac{\sin x}{e^{x}}(0 r) e^{-x} \sin x$ in $\left[\begin{array}{ll}0 & \pi\end{array}\right]$.

Sol:- Given that $f(x)=\frac{\sin x}{e^{x}}$ in $[0, \pi]$.
We know that the function for $\sin x$ is continuous on R.
Then the function sind is continuous on $[0, \pi] \quad(\because[0, \pi] \subseteq R)$
We know that the function e^{x} is continuous on R.
Then the function e^{x} is continuous on $[0, \pi](\because[0, \pi] \subseteq R)$ and $e^{x} \neq 0 \quad \forall x \in[0, \pi]$
(i) $\therefore f(x)=\frac{\sin x}{e^{x}}$ is continuous on $[0, \pi]$.
(ii) $\quad f(x)=\frac{\sin x}{e^{x}}$

Dit. w.r.t ' x ', we get

$$
f^{\prime}(t)=\frac{e^{x} \cos x-\sin x e^{x}}{\left(e^{x}\right)^{2}}=\frac{\cos x-\sin x}{e^{x}}
$$

f is derivable on $(0, \pi)$.
(iii)

$$
\begin{aligned}
& f(x)=\frac{\sin x}{e^{x}} \\
& f(0)=\frac{\sin 0}{e^{c}}=0 \\
& f(\pi)=\frac{\sin \pi}{e^{\pi}}=0 \\
& \therefore f(0)=f(\pi)
\end{aligned}
$$

The function $f(x)=\frac{\sin x}{e^{x}}$ satisfies all three conditions of Roles the sem.
By Boles Theorem
There exists at least one point $c \in(0, \pi)$ such that $f^{\prime}(0)=0$

$$
\text { i.e } \begin{aligned}
& \frac{\cos c-\sin c}{e^{c}}=0 \\
& \cos c-\sin c=0 \\
& \cos c=\sin c \\
& \frac{\sin c}{\cos c}=1 \\
& \tan c=1 \\
& c=\frac{\pi}{4} \\
& c=\frac{\pi}{4} \in(0, \pi)
\end{aligned}
$$

$\therefore c=\frac{\pi}{4} \in(0, \pi)$ such that $f^{\prime}(c)=0$ and $0<c<\pi$
Hence Rales thererem verities.
(3) Vesiby Rolles theorem for the function $f(x)=(x-a)^{m}(x-b)^{n}$ where m, n ave. positive integers, in $[a, b]$.
Sol: Given that $f(x)=(x-a)^{m}(x-b)^{n}$ in $[a, b]$
(i) We know that every polynomial bun is continuous on R

$$
\left.f(x)=(x-a)^{n}(x-b)^{n} \text { is continuous on }[a, b] \quad(\because a, b] \leq p\right)
$$

(ii) $\quad f(x)=(x-a)^{m}(x-b)^{n}$

Diff w.r.t ' x, we get.

$$
\begin{aligned}
f^{\prime}(x) & =m(x-a)^{m-1}(x-b)^{n}+(x-a)^{m} n(x-b)^{n-1} \\
& =(x-a)^{m-1}(x-b)^{n-1}[m(x-b)+n(x-a)] \\
f^{\prime}(x) & =(x-a)^{m-1}(x-b)^{n-1}[(m+n) x-(m b+n a)] .
\end{aligned}
$$

$f^{\prime}(x)$ exists $\forall x \in(a, b)$
$\therefore f$ is derivable on (a, b)
(ii)

$$
\begin{aligned}
f(x) & =(x-a)^{m}(x-b)^{n} \\
f(a) & =(a-a)^{m}(a-b)^{n}=0 \\
f(b) & =(b-a)^{m}(b-b)^{n}=0 . \\
& \therefore f(a)=f(b) .
\end{aligned}
$$

The function $f(x)=(x-a)^{m}(x-b)^{n}$ satisfies all the conditions Rolled's theorem.
There exist By Rolls Theorem.
There exists at least ore point $c \in(a, b)$ such that $f^{\prime}(c)=0$

$$
\begin{gathered}
\text { i.e }(c-a)^{m-1}(c-b)^{n-1}[(m+n) c-(m b+n a)]=0 \\
(m+n) c-(m b+n a)=0 \\
c=\frac{m b+n a}{m+n} \\
c=\frac{m b+n a}{m+n} \in(a, b)
\end{gathered}
$$

$\therefore \quad c=\frac{m b+n a}{m+n} \in(a, b)$ such that $f^{\prime}(c)=0$ and $a<c<b$.
\therefore Hence Roller Theorem verified

It is given that the Rolle's theorem holds for the function $f(x)=x^{3}+b x^{2}+c x$ $1 \leq x \leq 2$ at the point $x=\frac{4}{3}$. Find the values of b and c.
Sol:-
Given that $f(x)=x^{3}+b x^{2}+c x$, in $1 \leq x \leq e$.
(i) We know that Eves y polynomial function is continuous in R. The given function $f(x)=x^{3}+b x^{2}+c x$ is continuous in $[1,2](\because[1,2] \subseteq 2)$
(ii)

$$
f^{\prime}(x)=3 x^{2}+2 b x+c
$$

f is derivable in $(1, e)$
(iii)

$$
f(1)=1+b+c, \quad f(2)=8+4 b+2
$$

We have $f(1)=f(e)$

$$
\begin{gather*}
1+b+c=8+4 b+2 \\
3 b+c+7=0 \tag{1}
\end{gather*}
$$

By Roles theorem. There exists a point $x \in(1,2)$ such that $f^{\prime}(7)=0$

$$
\text { 1.e } \quad 3 x^{2}+2 b x+c=0
$$

We have $x=\frac{4}{3}, \quad 3 \cdot \frac{16}{9}+2 b \cdot \frac{4}{3}+c=0$

$$
\begin{equation*}
8 b+3 c+16=0 \tag{2}
\end{equation*}
$$

Solving equations (1) and (2), we get

$$
b=-5, \quad c=8
$$

(4) verity whether can we apply Rolle's theorem for the function $f(n)=|x|$ in $-1 \leqslant x \leqslant 1$

Sol:- Given that $f(x)=|x|$ in $[-1,1]$.

We know that $f(x)=|x|$

$$
\text { i.e. } \begin{aligned}
-f(x) & =x \quad \text { for } x \geqslant 0 \\
& =-x \quad \text { for } x<0
\end{aligned}
$$

(i) We know that $f(x)=|x|$ is continuous on R.
$\therefore f(x)=|x|$ is continuous on $[-1,1] \quad(\because[-1,1] \subseteq R)$
(ii) $f(x)=|x|$ is not derivable at $x=0$.

We have $f(0)=|0|=0$.

$$
\begin{aligned}
& L \cdot H \cdot D=L f^{\prime}(0)= \\
& \operatorname{Lt}_{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0} \\
& = \\
& =\operatorname{LL}_{x \rightarrow 0^{-}} \frac{|x|-0}{x}=\operatorname{Lt}_{x \rightarrow 0^{-}} \frac{-x}{x}= \\
& \begin{aligned}
L f^{\prime}(0)= & -1-1)=-1 \\
R \cdot H \cdot D=R f^{\prime}(0) & =\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0} \\
& =\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{|x|-0}{x}=\operatorname{Lt}_{x \rightarrow 0^{+}} \frac{x}{x} \\
& =\operatorname{Lt}_{x \rightarrow 0^{+}} 1=1 .
\end{aligned}
\end{aligned}
$$

$$
\text { since } L f^{\prime}(0) \neq R-f^{\prime}(0)
$$

$\therefore f$ is not derivable at $x=0$.
$\therefore f(x)$ is not-desivable in $(-1,1)$ of $x=0$.
Hence Rolle's theorem is not applicable. at $f(x)=|x|$ in $[-1,1]$

Algebraic Interpretation of Rolle's Theorem:-
Let $f(7)$ be a polynomial in x. It $f(7)=0$ satisties all the conditions of Rolle's Theorem and $x=a, x=b$ be the routs of the equation $f(x)=0$ then atheast one root of the equation $f^{\prime}(x)=0$ lies between a and b.

Prove that the equation $2 x^{3}-3 x^{2}-x+1 \Rightarrow 0$ has at least one wot between 1 and 2 .
Sol: - Let $f^{\prime}(x)=2 x^{3}-3 x^{2}-x+1$
Let $f(x)=\int f^{\prime}(x) d x=\frac{x^{4}}{2}-x^{3}-\frac{x^{2}}{2}+x$.

$$
f(x)=\frac{x^{4}}{2}-x^{3}-\frac{x^{2}}{2}+x \text { in }[1,2] .
$$

(i) We know that every polynomial function is continuous on R.

Since $[1,2] \subseteq R$
\therefore The function $f(x)=\frac{x^{4}}{2}-x^{3}-\frac{x^{2}}{2}+x$ is continuous on $[1,2]$.
(ii)

$$
\begin{aligned}
& f(x)=\frac{x^{4}}{2}-x^{3}-\frac{x^{2}}{2}+x . \\
& f^{\prime}(x)=2 x^{3}-3 x^{2}-x+1 \\
& f^{\prime}(x) \text { exists } \quad \forall x \in(1,2)
\end{aligned}
$$

f is derivable on $(1,2)$.
(iii) At $x=1, \quad f(1)=0$

At $x=2 \quad f(2)=0$.

$$
\therefore f(1)=f(2)
$$

$\therefore f(x)$ satisties all the three conditions of Rales theorem.
\therefore By Rolle's theorem, There exists at kastone point $c \in(0,2)$ such that

$$
\begin{gathered}
f^{\prime}(c)=0 \quad i \cdot e \quad 2 c^{3}-3 c^{2}-c+1=0 \\
c=-0.618,1.618,0.5 \\
\therefore \quad c=1618 \in(0,2)
\end{gathered}
$$

This shows that c is the root of the equation $2 x^{3}-3 x^{2}+x+1=0$ which lies between 1 and 2 .

LAGRANGE'S MEAN VALUE THEOREM:-
Theorem: - Let $f:[a, b] \rightarrow R$ be a function such that
(i) it is continuous in $[a, b]$
(ii) it is differentiable in (a, b).

Then there exists at least one point c in (a, b) such that

$$
f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}
$$

Geometric interpretation of Lagrange's mean value Theorem:
(i) The curve $y=f(x)$ is continuous in $[a, b]$.
(ii) At every point $x=c$, where $a<c<b$, at the point $(c, f(c))$ on the curve $y=f(x)$ there is a unique tangent to the curve.
Then Lagrange's mean value theorem says that there is at east one point -on the curve where the tangent to the curve is parallel to the chord joining the end points $A(a, f(a))$ and $B(b, f(b))$ on the curve since the slope at $c, f(c)$ is equal to the slope of the chord $A B=\frac{f(b)-f(a)}{b-a}$.

At ternate form of the Lagrange's Mean value Theorem:-
In Lagrange's mean value theorem put $b=a+h$ so that $h=b-a$
Any point $x=c$ in (a, b) ie in $(a, a+h)$ will be of the form $c=a+o h$ for some o lying between b and 1 .

$$
\begin{aligned}
& \text { Fug the } \frac{-f(b)-f(a)}{h-a}=\frac{f(a+h)-f(a)}{h} \\
& \text { Now } f^{\prime}(c)=\frac{f(b)-f(a)}{b-a} \Rightarrow f^{\prime}(a+0 h)=\frac{f(a+h)-f(a)}{h}
\end{aligned}
$$

This can be rewritten as $f(a+h)=f(a)+h-f^{\prime}(a+o h)$
Lagrange's mean value theorem can be. stated alternately as below.
Let $f(x)$ be (i) continuous in $[a, a+h]$ (ii) differentiable in $(a, a+h)$
Then there exists a positive real number $\theta, 0<\theta<1$. such that

$$
f(a+h)=f(a)+h f^{\prime}(a+0 h)
$$

Note:- (i) In some problems, we may have to find $f(a+h)$ approx-

- mately. For small h; $\theta h(0<\theta<1)$ will fur the be small.

In view of this, we can neglect oh and write $f(a+h)=f(a)+h f^{\prime}(a)$ approximately.
(ii) If $f(x)$ is continuous in $[a, a+h]$ and derivable in $(a, a+h)$ the value of $f(x)$ at the end point $a+h$ can be written in terms of $f(a), h$ and the derivative of $f(x)$ at some point in $(a, a+h)$
Another interpretation of Lagrange's Mean value Theorem:
Let a particular start at time $t=0$ at 0 and move along a straight lire Let it be at A at time $t=a$ and at B at time $t=b$ If P is any point on $O B$ Let $O P=f(t)$.
Let the particle move continuously between $t=a$ and $t=b$ and the velocity $f^{\prime}(t)$ be defined at each t.

Then the particle attains the mean velocity $\frac{f(b)-f(a)}{b-a}$ at least once during the Homes $t=a$ and $t=b$ There exists a time $(a<c<b)$
such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$
Theorem:- It f is derivable on (a, h) and
(i) $f^{\prime}(x) \geqslant 0 \quad \forall x \in(a, b)$, then f is increasing on (a, b)
iii) $f^{\prime}(x) \leqslant 0 \quad \forall x \in(a, b)$ then f is decreasing on (a, b).

Note: - If $f^{\prime}(x)>0 \quad \forall x \in(a, b)$ then f is strictly increasing on (a, b) and if $f^{\prime}(x)<0 \quad \forall x \in(a, b)$ then f is strictly decreasing on (a, b)
(1) Verify Lagrange's mean value theorem frs

$$
f(x)=x^{3}-x^{2}-5 x+3 \text { in }[0,1]
$$

Sol:- Given that $f(x)=x^{3}-x^{2}-5 x+3$ in $\left[0,11^{\circ}\right]$
we know that Every polynomial function is acanthous on P.
The given polynomial function $f(x)=x^{3}-x^{8}-5 x+3$ is continuous on $\left[0,1^{\circ}\right] \subset P$

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}-5 x+3 \\
& f^{\prime}(x)=3 x^{2}-2 x-5
\end{aligned}
$$

$f^{\prime}(x)$ exists in $(0,4)$
$\therefore f$ is derivable in $(0,4)$.
Hence by Lagrange's mean value theorem. there exists a point C

$$
\begin{align*}
\text { In }(0,4) \text { such that } f^{\prime}(c) & =\frac{f(4)-f(0)}{4-0} \\
3 c^{2}-2 c-5 & =\frac{f(4)-f(0)}{4}-(1) \tag{1}\\
f(4) & =4^{3}-4^{2}-5 \cdot 4+3=31 \\
f(0) & =3
\end{align*}
$$

From (1), we have.

$$
\begin{aligned}
& 3 c^{2}-2 c-5=\frac{31-3}{4}=7 \\
& 3 c^{2}-2 c-12=0 \\
& c=\frac{2 \pm \sqrt{4+144}}{6}=\frac{1 \pm \sqrt{37}}{3} \\
& c=\frac{1+\sqrt{37}}{3} \in(0,4) .
\end{aligned}
$$

\therefore Lagranges meanvalue the com veritied.
calculate approximately $\sqrt[5]{245}$ by using Lagranges mean value" Theor em .

Sol: Let $f(x)=\sqrt[5]{x}=x^{1 / 5}$
and. $a=243 \quad b=245$

$$
f^{\prime}(x)=\frac{1}{5} x^{-4 / 5} \quad f^{\prime}(c)=\frac{1}{5} c^{-4 / 5}
$$

\therefore By Lagranges mean value theorem, we have

$$
\begin{align*}
& \frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \\
& \frac{f(245)-f(243)}{245-243}=\frac{1}{5} c^{-415} \\
& f(245)-f(243)=\frac{2}{5} c^{-415} \\
& f(245)=f(243)+\frac{2}{5} c^{-415} \tag{1}
\end{align*}
$$

C is lies between 243 and 245°
Take $c=243$.

Then (1) becomes.

$$
\begin{aligned}
& \sqrt[5]{245}=\sqrt[5]{243}+\frac{2}{5}(243)^{-\frac{4}{5}} \\
& \sqrt[5]{245}=\left(3^{5}\right)^{1 / 5}+\frac{2}{5}\left(3^{5}\right)^{-\frac{4}{8}} \\
& =3+\frac{2}{5} \cdot \frac{1}{81}=3+\frac{2}{405} \\
& \sqrt[5]{245}=3.0049 .
\end{aligned}
$$

If $a<b$, prove that $\frac{b-a}{1+b^{2}}<\tan ^{-1} b-\tan ^{-1} a<\frac{b-a}{1+a^{2}}$ using Lagranges Mean Value theorem.
Deduce the following
(i) $\frac{\pi}{4}+\frac{3}{25}<\tan ^{-1}\left(\frac{4}{3}\right)<\frac{\pi}{4}+\frac{1}{6}$
(ii) $\frac{5 \pi+4}{20}<\tan ^{-1} 2<\frac{\pi+2}{4}$.

Sol:- Let $f(x)=\tan ^{-1} x$ in $[a, b]$ for $0<a<b<1$.
$f(x)=\tan ^{-1} x$ is continuous in $[a, b]$.

$$
f^{\prime}(x)=\frac{d\left(\tan ^{-1} x\right)}{d x}=\frac{1}{1+x^{2}}
$$

f is derivable in (a, b)
$f(x)=\tan ^{-1} x$ satisties all the conditions of Lagrange's Mean value theorem Hence by Lagrange's mean value theorem. There exists a point $c \in(a, b)$ such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

Here $f^{\prime}(x)=\frac{1}{1+x^{2}}$

$$
f^{\prime}(c)=\frac{1}{1+c^{2}}
$$

Thus there exists a point $c, a<c<b$ such that

$$
\begin{equation*}
\frac{1}{1+c^{2}}=\frac{\operatorname{Tan}^{-1} b-\operatorname{Tan}^{-1} a}{b-a} \tag{1}
\end{equation*}
$$

We have $c \in(a, b)$ i.e $a<c<b$.

$$
\begin{gathered}
a^{2}<c^{2}<b^{2} \\
1+a^{2}<1+c^{2}<1+b^{2} \\
\frac{1}{1+a^{2}}>-\frac{1}{1+c^{2}}>\frac{1}{1+b^{2}}
\end{gathered}
$$

$$
\begin{equation*}
\frac{1}{1+b^{2}}<\frac{1}{1+c^{2}}<\frac{1}{1+a^{2}} \tag{2}
\end{equation*}
$$

From (1) and (2), we have.

$$
\begin{aligned}
& \frac{1}{1+b^{2}}<\frac{\tan ^{-1}(b)-\tan ^{-1}(a)}{b-a}<\frac{1}{1+a^{2}} \\
& \frac{b-a}{1+b^{2}}<\tan ^{-1}(b)-\tan ^{-1}(a)<\frac{b-a}{1+a^{2}}
\end{aligned}
$$

Deductions:-
We have $\frac{b-a}{1+b^{2}}<\operatorname{Tan}^{-1}(b)-\operatorname{Tan}^{-1}(a)<\frac{b-a}{1+a^{2}}$
(i) Taking $a=1 \quad b=\frac{4}{3}$ in (3), we get

$$
\begin{aligned}
& \frac{\frac{4}{3}-1}{1+\frac{16}{9}}<\tan ^{-1}\left(\frac{4}{3}\right)-\tan ^{-1}(1)<\frac{\frac{4}{3}-1}{1+1} \\
& \frac{\frac{4-3}{3}}{\frac{9+16}{9}}<\tan ^{-1}\left(\frac{4}{3}\right)-\tan ^{-1}\left(\tan \frac{\pi}{4}\right)<\frac{\frac{4}{3}-3}{2} \\
& \frac{1}{3} \cdot \frac{9}{25}<\tan ^{-1}\left(\frac{4}{3}\right)-\frac{\pi}{4}<\frac{1}{6} \\
& \frac{3}{25}+\frac{\pi}{4}<\tan ^{-1}\left(\frac{4}{3}\right)<\frac{1}{6}+\frac{\pi}{4}
\end{aligned}
$$

(ii) Taking $a=1 \quad b=2$ in (3), we get

$$
\begin{aligned}
\frac{2-1}{1+4} & <\tan ^{-1}(2)-\tan ^{-1}(1)<\frac{2-1}{1+1} \\
\frac{1}{5} & <\tan ^{-1}(2)-\tan ^{-1}\left(\tan \frac{\pi}{4}\right)<\frac{1}{2} \\
\frac{1}{5} & <\tan ^{-1}(2)-\frac{\pi}{4}<\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\pi}{4}+\frac{1}{5} & <\tan ^{-1}(2)<\frac{\pi}{4}+\frac{1}{2} \\
\frac{5 \pi+4}{20} & <\tan ^{-1}(2)<\frac{2 \pi+2}{4} .
\end{aligned}
$$

Cauchy's mean value Theorem:
If $f:[a, b] \longrightarrow R, g:[a, b] \longrightarrow R$ are such that
(i) f, g are continuous on $[c, b]$.
(ii) f, g are differentiable on (a, b) and
(iii) $\quad g(x) \neq 0 \quad \forall x \in(a, b)$.
then these exists a point $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(h)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.
Note:- We can derive Lagrange's mean value Theorem from Cauchy's mean value Therese by taking $g(x)=x$.
11) Find c of cauchy's mean value theorem for $f(7)=\sqrt{x}$ and $g(7)=\frac{1}{\sqrt{x}}$. ir $[a, b]$ where $0<a<b$.
st: Given that $f(\sqrt{x})=\sqrt{x}, g(x)=\frac{1}{\sqrt{x}}$ defined on $[a, b]$.
The given functions $f(x)=\sqrt{x}, g(x)=\frac{1}{\sqrt{x}}$ are continuous on $[a, b] \subset R^{+}$

$$
f^{\prime}(x)=\frac{1}{2 \sqrt{x}} \quad g^{\prime}(x)=\frac{-1}{2 x \sqrt{x}} \text { exists on }(a, b) \text {. }
$$

$\therefore f, g$ are derivable on $(a, b) \subseteq R^{+}$
Also $g^{\prime}(x) \neq 0 \quad+x \in(a, b) \subseteq R^{+}$
\therefore All the conditions of cauchy's mean value theorem are satisfied on (a, b).
\therefore There exists $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

$$
\begin{aligned}
& \frac{\sqrt{b}-\sqrt{a}}{\frac{1}{\sqrt{b}}-\frac{1}{\sqrt{a}}}=\frac{\frac{1}{2 \sqrt{c}}}{\frac{-1}{2 c \sqrt{c}}} \\
& \frac{\sqrt{b}-\sqrt{a}}{\frac{\sqrt{a}-\sqrt{b}}{\sqrt{a b}}}=-c
\end{aligned}
$$

$$
\begin{gathered}
-\sqrt{a b}=-c \\
c=\sqrt{a b}
\end{gathered}
$$

Since $a>0, b>0 \quad \sqrt{a b}$ is their geometric mean and. we have $a<\sqrt{a b}<b$.
$\therefore c \in(a, b)$ Which verities Cauchy's mean value theorem.
(2) Find c of cauchy's mean value Theorem on $[a, b]$ for $f(x)=e^{x}$. and $g(x)=e^{-x} \quad(a, b>0)$.
Sol:- Let $f(x)=e^{x}$ and $g(x)=e^{-x}$ on $[a, b] \subseteq R^{+}$.
We know that $f(x)=e^{x}$ and $g(x)=e^{-x}$ are continuous on $[a, b] \subseteq R^{+}$.

$$
f^{\prime}(x)=e^{x} \quad g^{\prime}(x)=-e^{-x} \text { exists on }(a, b)
$$

f and g are derivable on (a, b).

$$
g^{\prime}(x)=-e^{-x} \neq 0 \quad \forall x \in(a, b)
$$

\therefore All the conditions of cauchy's mean value theorem are satistted.

By Cache's mean value theorem.
These exists $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$

$$
\begin{aligned}
& \frac{e^{b}-e^{a}}{e^{-b}-e^{-a}}=\frac{e^{c}}{-e^{-c}} \\
& \frac{e^{b}-e^{a}}{\frac{1}{e^{b}}-\frac{1}{e^{a}}}=\frac{e^{c}}{\frac{-1}{e^{c}}} \\
& \frac{e^{b}-e^{a}}{e^{a}-e^{b}} \\
& e^{a+b}
\end{aligned}=-e^{2 c} .
$$

$$
\begin{aligned}
&-e^{a+b}=-e^{2 c} \\
& a+b=2 c \\
& c=\frac{a+b}{2} . \\
& \therefore \quad c \in(a, b) .
\end{aligned}
$$

\therefore Cauchy's mean value Theorem verified.
(3) Verity Cauchy's mean value theorem for the functions ' $f(x)$ and $f^{\prime}(x)$ in $(1, e)$ given $f(x)=\log _{e} x$

Sol:- Given $f(x)=\log x, x \in(1, e)$

$$
\begin{aligned}
f^{\prime}(x) & =\frac{1}{x} \\
\text { Let } g(x) & =f^{\prime}(x)=\frac{1}{x} .
\end{aligned}
$$

The functions $f(x)$ and $g(x)$ are continuass on $(1, e)$.
The functions $f(x)$ and $g(x)$ are der vale on $(1, e)$

$$
g^{\prime}(x)=\frac{-1}{x^{2}} \neq 0 \quad \forall x \in(1, e)
$$

\therefore All the conditions of cauchy's mean value theorem are satisfied.
\therefore By Cauchy's mean value Theorem.
There exists $c \in(1, e)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(e)-f(1)}{g(e)-g(1)}$

$$
\begin{aligned}
\frac{\frac{1}{c}}{\frac{-1}{c^{2}}} & =\frac{\log e-\log 1}{\frac{1}{e}-1}=\frac{1-0}{\frac{1-e}{e}} \\
-c & =\frac{-e}{e-1} \\
c & =\frac{e}{e-1} \in(1, e)
\end{aligned}
$$

\therefore Candy's mean value theorem verite.
14) If $f(x)=\log x$ and $g(x)=x^{2}$ in $[a, b]$ with $b>a>1$ using Cauchy's mean value theorem PT $\frac{\log b-\log a}{b-a}=\frac{a+b}{2 c^{2}}$.
sol: Given that $f(x)=\log x \quad g(x)=x^{2}$ in $[a, b]$.
The functions f and g are continuous on $[a, b]$.
The functions f and g are derivable on (a, b).

$$
g^{\prime}(x)=2 x \neq 0 \quad \forall x \in(a, b) \text {. }
$$

\therefore All the conditions of cauchy's mean value theorem are satisfied.
\therefore By Cauchy's mean value theorem
There exists $c \in(a, b)$ such that $\frac{f(b)-f(a)}{g(b)-g(a)}=\frac{f^{\prime}(c)}{g^{\prime}(c)}$.

$$
\begin{aligned}
& \frac{\log b-\log a}{b^{2}-a^{2}}=\frac{\frac{1}{c}}{2 c} \\
& \frac{\log b-\log a}{(b-a)(b+a)}=\frac{1}{2 c^{2}} \\
& \frac{\log b-\log a}{b-a}=\frac{b+a}{2 c^{2}}
\end{aligned}
$$

(5) Discuss the applicability of Cauchy's mean value theorem for the functions $f(x)=\frac{1}{x^{2}} \quad g(x)=\frac{1}{x} \quad$ on $[a, b] . \quad a>0 \quad b>0$.
sol:- Given that $f(x)=\frac{1}{x^{2}} \quad g(x)=\frac{1}{x}$.
The functions f, g are continuous on $[a, b]$.
The functions f, g are derivable on (a, b).

$$
f(x)=\frac{1}{x^{2}} \quad g(x)=\frac{1}{x}
$$

Dit w.r.t " x ", we get

$$
f^{\prime}(x)=-\frac{2}{x^{3}} g^{\prime}(x)=-\frac{1}{x^{2}} \neq 0 \quad \forall x \in(a, b)
$$

\therefore All the conditions of cauchy's mean value Theorem are satisfied
\because By cauchy's mean value theorem
There exists a point $c \in(a, b)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f(b)-f(a)}{g(b)-g(a)}$.

$$
\begin{aligned}
\frac{\frac{-2}{c^{3}}}{\frac{-1}{c^{2}}} & =\frac{\frac{1}{b^{2}}-\frac{1}{a^{2}}}{\frac{1}{b}-\frac{1}{a}} \\
\frac{2}{c} & =\frac{a^{2}-b^{2}}{a^{2} b^{2}} \frac{a b}{a-b} \\
\frac{2}{c} & =\frac{a+b}{a b} \\
c & =\frac{2 a b}{a+b} \in(a, b) .
\end{aligned}
$$

\therefore Cauchy's mean value Theorem verified.
verity Cauchy's Mean value Theorem tor $f(x)=\sin x, g(x)=\cos x$ on $\left[0, \frac{\pi}{8}\right]$.
sol:- Given that $f(x)=\sin x \quad g(x)=\cos x$ on $\left[0, \frac{\pi}{2}\right]$
(i) We know that the functions $\sin x$ and $\cos x$ are continuous on R $\therefore f(x)=\sin x g(x)=\cos x$ are continuous on $\left[0, \frac{\pi}{2}\right]\left(\because\left[0, \frac{\pi}{2}\right] \leq R\right)$
(ii)

$$
f(x)=\sin x \quad g(x)=\cos x
$$

Diff w.r.t ' x ', we gt

$$
f^{\prime}(x)=\cos x \quad g^{\prime}(x)=-\sin x .
$$

$f^{\prime}(x)$ and $g^{\prime}(x)$ exists $\forall x \in\left(0, \frac{\pi}{2}\right)$.
$\therefore f$ and g are derivable on $\left(0, \frac{\pi}{2}\right)$.
(iii) $\quad g^{\prime}(x)=-\sin x \neq 0 \quad \forall x \in\left(0, \frac{\pi}{2}\right)$.

All the conditions of cauchy's mean value Theorem are satisfied.
\therefore By Cauchy's mean value Theorem
There exists a point $c \in\left(0, \frac{\pi}{2}\right)$ such that $\frac{f^{\prime}(c)}{g^{\prime}(c)}=\frac{f\left(\frac{\pi}{2}\right)-f(0)}{g\left(\frac{\pi}{2}\right)-g(0)}$

$$
\text { ie } \begin{aligned}
& \frac{\cos c}{-\sin c}=\frac{\sin \frac{\pi}{2}-\sin 0}{\cos \frac{\pi}{2}-\cos 0} \\
&-\cot c=-1 \\
& \cot c=1 \\
& c=\frac{\pi}{4}
\end{aligned} \in\left(0, \frac{\pi}{2}\right)
$$

\therefore Cauchy's mean value theorem is verified.

Generalised Mean Value Theorems:
Taylor's Theorem:
If $f:[a, b] \longrightarrow R$ is such that
(a) $f(x), f^{\prime}(x), f^{\prime \prime}(x) \cdots f^{(n-1)}(x)$ is continuous on $[a, b]$.
(b) $f(x), f^{\prime}(x), f^{\prime \prime}(x) \ldots f^{(n-1)}(x)$ exists on $(a, b)(o x) f^{(n)}(x)$ exists.
on (a, b) and $p \in z^{+}$then there exists a point $c \in(a, b)$ such that $f(b)=f(a)+\frac{b-a}{1!} f^{\prime}(a)+\frac{(b-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(b-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots$

$$
+\frac{(b-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+R_{n} .
$$

Where $R_{n}=\frac{(b-a)^{p}(b-c)^{n-p} f^{(n)}(c)}{(n-1)!p}$
Note:- (1) schlomich Roche's forms of remainder

$$
R_{n}=\frac{(b-a)^{p}(b-c)^{n-p} f^{(n)}(c)}{(n-1)!p}
$$

(2) Lagranges form of remainders

Putting $P=n$, we get.

$$
R_{n}=\frac{(b-a)^{n} f^{(m)}(c)}{n!}
$$

13) Cauchy's form of remainders

Putting $P=1$, we get

$$
R_{n}=\frac{(b-a)(b-c)^{n-1} f^{(n)}(c)}{(n-1)!}
$$

Another form of Taylor's Theorem:
If $f:[a, a+h] \rightarrow R$ is such that
(i) $f, f^{\prime}(x), f^{\prime \prime}(x) \cdots f^{(n-1)}(x)$ is continuous on $[a, a+h]$.
(ii) $f^{(n)}(x)$ exists on $(a, a+h)$ and $p \in 2 t$ then there exists a real number $0<0<1$ such that

$$
f(a+h)=f(a)+\frac{h}{11} f^{\prime}(a)+\frac{h^{2}}{2!} f^{\prime \prime}(a)+\frac{h^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots+\frac{h^{n}}{(n-1)!} f^{(n-1)}(a)+R_{n} .
$$

Where. $R_{n}=\frac{h^{n}(1-\theta)^{n-p} f^{(n)}(a+\theta h)}{p(n-1)!}$
Note:- (1) Schlomilch. Roches form of remainders

$$
R_{n}=\frac{h^{n}(1-0)^{n-p} f^{(n)}(a+0 h)}{p(n-1)!}
$$

(2) Lagranges form of remainders, Putting $P=n$, weget

$$
R_{n}=\frac{h^{n} f^{(n)}(a+\theta h)}{n!}
$$

(3) Cauchy's from of remainders, putting $p=1$, we get.

$$
R_{n}=\frac{n^{n}(1-\theta)^{n-1} f^{(n)}(a+\theta n)}{(n-1)!}
$$

Note: - (1) Taylor's theorem play an important role in differentiation.
The values of a function and its successive. derivatives at a point help us in finding the value of the function in the neighbour--hood of that point using Taylor's theorem. That is. Taylor's theorem provides expansion of $f(a+h)$ in ascending powers of h and the derivatives of f at a.
(2) Let $f:[a, b] \rightarrow R$ is such that $(a) f^{(n-1)}$ is continuous on $[a, b]$.
(b) $f^{(n-1)}$ is derivable on (a, b) and $p \in z^{+}$then tor each $x \in(a, b)$ $f^{(n-1)}$ is continuous on $[a, x]$ and derivable on (a, x)
\therefore By Taylors theorem, There exists $c \in(a, x)$ such that.

$$
\begin{aligned}
& \therefore \text { By Taylors theorem, There exists } c(-(a, x) \text { such that } \\
& f(x)=f(a)+(x-a)^{-f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\cdots+\frac{(x-a)^{n-1}}{(n-1)!} f^{(n-1)}(a)+\frac{(x-a)^{p}(x-c)^{n-p} f^{p}(n)}{(n-1)!p}}
\end{aligned}
$$

is called Taylor series expansion of $f(x)$ about $x=a$, suppose the remainder after $n^{\text {th }}$ term tends to 0 as $n \longrightarrow \infty$.

Maclaurin's Theorem:-
If $f:[0, x] \longrightarrow R$ is such that
(i) $f^{(n-1)}$ is continuous on $[0, x]$
(ii) $f^{(n-1)}$ is derivable on $(0, x)$ and $p \in z^{+}$then there exists a real number $\theta \in(0,1)$ such that

$$
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\cdots+\frac{x^{n-1}}{(n-1)!} f^{(n-1)}(0)+\frac{x^{n}(1-\theta)^{n-1}}{p(n-1)!} f^{(n)}(\theta 1)
$$

Note:- (1) Schlomich Roche's form of remainder

$$
R_{n}=\frac{x^{n}(1-\theta)^{n-p} f^{(n)}(\theta x)}{p(n-1)!}
$$

(2) Lagrange's form of remainder.

$$
\text { Putting } p=n \text {, we get } R_{n}=\frac{x^{n} f^{(n)}(\theta x)}{n!}
$$

13) Cauchy's form of remainder

Putting $p=1$, we get $R_{n}=\frac{x^{n}(1-\theta)^{n-1} f_{(n)}^{(n)}}{(n-1)!}$
(1) obtain the Maclaurin's series expansion of the functions
(a) e^{x}
(b) $\sin x$
(c) $\sinh x$.

Sol:- (a) Let $f(x)=e^{x}$
The Maclaurin's series expansion of the fun. f is given by

$$
\begin{gathered}
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots \\
f(x)=e^{x} \quad \text { At } x=0 \quad f(0)=e^{0}=1 \\
f^{\prime}(x)=e^{x} \quad \text { At } x=0 \quad f^{\prime}(0)=e^{0}=1 \\
f^{\prime \prime}(x)=e^{x} \quad \text { At } x=0 \quad f^{\prime \prime}(0)=e^{0}=1 \\
f^{\prime \prime \prime}(x)=e^{x} \quad \text { At } x=0 \quad f^{\prime \prime \prime}(0)=e^{0}=1
\end{gathered}
$$

Sub. all the above values in (1), we get

$$
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

(b) Let $f(x)=\sin x$.

The Maclaurin's series expansion of the tun. f is given by

$$
\begin{aligned}
& f(0)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots \\
& f(x)=\sin x \quad \text { At } x=0 \quad f(0)=\sin 0=0 \\
& f^{\prime}(x)=\cos x \quad \text { At } x=0 \quad f^{\prime}(0)=\cos 0=1 \\
& f^{\prime \prime}(x)=-\sin x \quad \text { At } x=0 \quad f^{\prime \prime}(0)=-\sin 0=0 \\
& f^{\prime \prime \prime}(x)=-\cos x \quad \text { At } x=0 \quad f^{\prime \prime \prime}(0)=-\cos 0=-1
\end{aligned}
$$

sub. all the above values in (1), weget.

$$
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

(c) Let $f(x)=\sinh x$

$$
f(x)=\frac{e^{x}+e^{-x}}{2}
$$

The Maclaurin's series of the fun. f is given by

$$
\begin{aligned}
& f(x)= f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots \\
& f(x)=\frac{e^{x}-e^{-x}}{2} \quad \text { At } x=0, f(0)=0 \\
& f^{\prime}(x)=\frac{e^{x}+e^{-x}}{2} \quad \text { At } x=0, f^{\prime}(0)=1 \\
& f^{\prime \prime}(x)=\frac{e^{x}-e^{-x}}{2} \quad \text { At } x=0, f^{\prime \prime}(0)=0 \\
& f^{\prime \prime \prime}(x)=\frac{e^{x}+e^{-x}}{2} \quad \text { At } x=0, f^{\prime \prime \prime}(0)=1 \\
&-
\end{aligned}
$$

Sub. above values in (1), we get

$$
\sinh x=x+\frac{x^{3}}{3!}+\frac{x^{5}}{5!}+\cdots
$$

Note: - The Taylor series expansion of the function f about the ${ }^{20}$ point $x=a$ is given by

$$
f(x)=f(a)+\frac{x-a}{1!} f^{\prime}(a)+\frac{(x-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x-a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots
$$

(1) obtain the Taylor's series expansion of the function e^{x} about $x=-1$ (OR) Obtain the Taylor's series expansion of $f(x)=e^{x}$ in powers of $x+1$.

Sol: Let $f(x)=e^{x}$.

$$
\begin{aligned}
& \text { Put } x+1=t \\
& x=t-1 \\
& f(x)=e^{x}=e^{t-1} \\
& f(x)=e^{-1} e^{t} \\
&=\frac{1}{e}\left[1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\cdots \cdot\right] \\
& e^{x}=\frac{1}{e}\left[1+(x+1)+\frac{(x+1)^{2}}{2!}+\frac{(x+1)^{3}}{3!}+\cdots\right]
\end{aligned}
$$

(OR)

$$
\text { Let } f(x)=e^{x} \text {. }
$$

The Taylor series expansion of the function $f(x)$ in powers of $x+10$ is given by

$$
\begin{aligned}
& \text { given by } \\
& f(x)=f(a)+\frac{x+9}{1!} f^{\prime}(a)+\frac{(x+a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(x+a)^{3}}{3!} f^{\prime \prime \prime}(a)+\cdots
\end{aligned}
$$

Here we have to find expansion of $f(x)=e^{t}$ in powers of $x+1$ Then $f(x)=f(-1)+\frac{x+1}{1!} f^{\prime}(-1)+\frac{(x+1)^{2}}{2!} f^{\prime \prime}(-1)+\frac{(x+1)^{3}}{3!} f^{\prime \prime \prime}(1)+\cdots$

$$
\begin{array}{ll}
f(x)=e^{x} & \text { At } x=-1, f(-1)=e^{-1} \\
f^{\prime}(x)=e^{x} & \text { At } x=-1 \\
f^{\prime}(-1)=e^{-1} \\
f^{\prime \prime}(x)=e^{x} & \text { At } x=-1
\end{array} f^{\prime \prime}(-1)=e^{-1}
$$

sub. all these values in (1), weget

$$
\begin{aligned}
& e^{x}=e^{-1}+(x+1) e^{-1}+\frac{(x+1)^{2}}{2!} e^{-1}+\frac{(x+1)^{3}}{3!} e^{-1}+\cdots \cdot \\
& e^{x}=e^{-1}\left[1+(x+1)+\frac{(x+1)^{2}}{2!}+\frac{(x+1)^{3}}{3!}+\cdots\right]
\end{aligned}
$$

Show that $\log \left(1+e^{x}\right)=\log 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\cdots$ and hence deduce that $\frac{e^{x}}{e^{x}+1}=\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+\cdots$.
sol:- Let $f(x)=\log \left(1+e^{x}\right)$.
The Maclaurin's series of the function is given by

$$
\begin{aligned}
& f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} t^{\prime \prime \prime}(0)+\cdots \cdot \\
& f(x)=\log \left(1+e^{x}\right) \text { At } x=0, f(0)=\log \left(1+e^{0}\right)=\log 2 \\
& f^{\prime}(x)=\frac{e^{x}}{1+e^{x}} \quad \text { At } x=0, f^{\prime}(0)=\frac{1}{2} \\
& f^{\prime \prime}(x)=\frac{\left(1+e^{x}\right) e^{x}-e^{x} \cdot e^{x}}{\left(1+e^{x}\right)^{2}}=\frac{e^{-x}}{\left(1+e^{x}\right)^{2}} \\
& \text { At } x=0, f^{\prime \prime}(0)=\frac{1}{4} \\
& f^{\prime \prime \prime}(x)=\frac{\left(1+e^{x}\right)^{2} e^{x}-e^{x} 2\left(1+e^{x}\right) \cdot e^{x}}{\left(1+e^{x}\right)^{4}}=\frac{\left(1+e^{x}\right)\left[e^{x}+e^{2 x}-2 e^{x x}\right]}{\left(1+e^{x}\right)^{4}} \\
& f^{\prime \prime \prime}(x)=\frac{e^{x}-e^{e x}}{\left(1+e^{x}\right)^{3}} \\
& \text { At } x=0, f^{\prime \prime}(a)=\frac{1-1}{\left(1+e^{3}\right)^{3}}=0 \\
& f^{\text {iv }}(x)=\frac{\left(1+e^{x}\right)^{3}\left(e^{x}-2 e^{2 x}\right)-\left(e^{x}-e^{2 x}\right) 3\left(1+e^{x}\right)^{2} e^{x}}{\left(1+e^{x}\right)^{b}} \\
& f^{i v}(x)=\frac{\left(1+e^{x}\right)\left(e^{x}-2 e^{e x}\right)-\left(e^{x}-e e^{2 x}\right) 3 e^{x}}{\left(1+e^{x}\right)^{4}} \\
& \text { At } x=0, \quad f^{(v)}(0)=\frac{(1+1)(1-2)-(1-1)^{3}}{(1+1)^{4}}=\frac{-1}{8} \text {. }
\end{aligned}
$$

sub. all these values in (i), we get

$$
\begin{align*}
& \log \left(1+e^{x}\right)=\log 2+x \cdot \frac{1}{2}+\frac{x^{2}}{21} \cdot \frac{1}{4}+\frac{x^{3}}{31}(0)+\frac{x^{4}}{4}\left(-\frac{1}{8}\right)+\cdots \\
& \log \left(1+e^{x}\right)=\log 2+\frac{x}{2}+\frac{x^{2}}{8}-\frac{x^{4}}{192}+\cdots \tag{2}
\end{align*}
$$

Deduction:-
Diff (2) w.r.t x, we get.

$$
\frac{e^{1}}{1+e^{x}}=\frac{1}{2}+\frac{x}{4}-\frac{x^{3}}{48}+\cdots
$$

\rightarrow show that $\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}=x+4 \frac{x^{3}}{31}+\cdots \cdot$
So 1: Let $f(x)=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}$
The Maclaurin's series of the function f is given by

$$
\begin{gather*}
f(x)=f(0)+x f^{\prime}(0)+\frac{x^{2}}{2!} f^{\prime \prime}(0)+\frac{x^{3}}{3!} f^{\prime \prime \prime}(0)+\cdots \\
f(x)=\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}, \text { At } x=0, f(0)=0 \\
\sqrt{1-x^{2}} f(x)=\sin ^{-1} x=\text { (1) } \tag{1}
\end{gather*}
$$

Diff (1) w.r.t " x, we get

$$
\begin{align*}
& \sqrt{1-x^{2}} f^{\prime}(x)+f(x) \frac{-2 x}{2 \sqrt{1-x^{2}}}=\frac{1}{\sqrt{1-x^{2}}} \\
& \left(1-x^{2}\right) f^{\prime}(x)-x f(x)=1 \tag{2}
\end{align*}
$$

At $x=0, f^{\prime}(0)=1 \quad(\because$ from (2) $)$
Dift(2) w.x.t " x ', we get

$$
\left(1-x^{2}\right) f^{\prime \prime}(x)-2 x f^{\prime}(x)-f(x)-x f^{\prime}(x)=0 .
$$

$$
\begin{align*}
& \left(1-x^{2}\right) f^{\prime \prime}(x)-3 x f^{\prime}(x)-f(x)=0 \tag{3}\\
& \text { At } x=0, \quad f^{\prime \prime}(0)=f(0)=0 .
\end{align*}
$$

Diff (3) w.r.t x, wegct

$$
\begin{align*}
& \text { Ditf (3) w.r.f } x \text {, } \\
& \left(1-x^{2}\right) f^{\prime \prime \prime}(x)-2 x f^{\prime \prime}(x)-3 f^{\prime}(x)-3 x f^{\prime \prime}(x)-f^{\prime}(x)=0 \tag{-4}\\
& \left(1-x^{2}\right) f^{\prime \prime \prime}(x)-5 x f^{\prime \prime}(x)-4 f^{\prime}(x)=0 \text {-4) }
\end{align*}
$$

At $x=0, f^{\prime \prime \prime}(a)=4 f^{\prime}(0)$

$$
f^{\prime \prime \prime}(0)=4 .
$$

Sub. all these values in maclaurin's series, weget

$$
\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}=x+4 \frac{x^{3}}{31}+\cdots \cdots
$$

\rightarrow Using Taylor's series obtain the value of $\sin 32^{\prime}$ correct to tour decimal places.
sol: Let $f(x)=\sin x$ in $[30,32]$.
We know that the Taylor's series.

$$
f(b)=f(a)+\frac{b-a}{1!} f^{\prime}(a)+\frac{(b-a)^{2}}{2!} f^{\prime \prime}(a)+\frac{(b-a)^{3}}{31} f^{\prime \prime \prime}(a)+\cdots
$$

Here $a=30^{\circ} \quad b=32^{\circ}$

$$
\begin{array}{ll}
b-a=32^{\circ}-30^{\circ}=2^{\circ}=2 \times \frac{\pi}{180}=0.0349 \\
f(x)=\sin x & f(a)=f\left(30^{\circ}\right)=\sin 30^{\circ}=\frac{1}{2} . \\
f^{\prime}(x)=\cos x & f^{\prime}(a)=f^{\prime}\left(30^{\circ}\right)=\cos 30^{\circ}=\frac{\sqrt{3}}{2} \\
f^{\prime \prime}(x)=-\sin x & f^{\prime \prime}(a)=f^{\prime \prime}\left(30^{\circ}\right)=-\sin 30^{\circ}=-\frac{1}{2} . \\
f^{\prime \prime \prime}(x)=-\cos x & f^{\prime \prime \prime}(a)=f^{\prime \prime \prime}\left(30^{\circ}\right)=-\cos 30^{\circ}=-\frac{\sqrt{3}}{2} .
\end{array}
$$

sub. all these values in above taylors series, we get

$$
\begin{aligned}
\sin 32^{\circ} & =\frac{1}{2}+\frac{0.0349}{1!}\left(\frac{\sqrt{3}}{2}\right)+\frac{(0.0349)^{2}}{2!}\left(\frac{-1}{2}\right)+\frac{(0.0349)^{3}}{3!}\left(-\frac{\sqrt{3}}{2}\right) . \\
& =0.5+0.03023-0.0003045-0.0000061356 \\
\sin 32^{\circ} & =0.5299 .
\end{aligned}
$$

*Functions of Several Variable.
Partial differcutiations-

- Let $z=f(x, y)$ be a function of two variables $x_{\& y}$. then $\operatorname{lt}_{\Delta x \rightarrow 0} \frac{f(x+\Delta x), y \text {.) -f(x,y)}}{\Delta x}$ exist is said to be partial derivative or partial differenticial Coaffelisit of z (or) $f(x, y)$ worst x.

It is denoted by $\frac{\partial z}{\partial x}$ or $\frac{\partial f}{\partial x}$ or $f x$
The partial derivative of $z=f(x, y)$ w.r.t' x, keeping y as constant.

Similarly, the partial derivative of $z=f(x, y)$ writ y
keeping x as constant and is defined as lt $\frac{f(x, y+\Delta y)-f(x, y)}{\Delta y}$ and is denoted by $\frac{\partial z}{\partial y}(0 x) \frac{\partial f}{\partial y}$ (or) fy

Higher Order partial derivatives:
In general the first order partial derivatives $\frac{\partial t}{\partial x} f$ $\frac{\partial f}{\partial y}$ are also functions of $x \& y$. and they car be differentiated repeatedly, to get higher order partial derivatives.

$$
\begin{aligned}
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial x}\right) \\
& f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial y}\right)
\end{aligned}
$$

$$
\begin{aligned}
& f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial \cdot f}{\partial y}\right) \\
& f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right) .
\end{aligned}
$$

Q) Find the first and Second order partial derivatives of $f=a x^{2}+2 h \partial y+b y^{2}$ and verify $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$.
30): GT, $f=a x^{2}+a h x y+b y^{2}$
diff wis, " x " partially, we get

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=2 a x+2 h y \\
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=2 a
\end{aligned}
$$

diff writ ' y ' partially, we get

$$
\begin{gathered}
f_{y}=\frac{\partial f}{\partial y}=2 h x+2 b y \\
f_{y y}=\frac{\partial^{2} f}{\partial y^{2}}=2 b \\
f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}(2 h x+2 h y)=2 h \\
f_{y x}=\frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}(2 a x+2 h y)=2 h \\
f_{x y}=f_{y x} .
\end{gathered}
$$

Sot
Q) Find $1^{\text {st }} \& 2^{\text {nd }}$ Order partial douivatues of. $f=x^{3}+y^{3}-3 a x y$ and verify that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \cdot \partial x}$
Sol:

$$
\text { G.T, } f=x^{3}+y^{3}-3 a x y
$$

diff wart' x partially, we get

$$
\begin{aligned}
& \text { diff worth palled } \\
& f_{x}=\frac{\partial f}{\partial x}=3 x^{2}-3 y^{2-\partial y} \\
& f_{x x}=3 a y=3 x^{2}-3 a y
\end{aligned}
$$

diff writ ' y ' partially, we get

$$
\begin{gathered}
f_{y}=3 y^{2}-3 a x \\
f_{y y}=6 y . \\
f_{x y}=\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(3 y^{2}-3 a x\right)=-3 a \\
f_{y x}=\frac{\partial^{2} f}{\partial y \cdot \partial x}=\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(3 x^{2}-3 a y\right)=-3 a \\
\therefore \frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x .}
\end{gathered}
$$

Q) Verify that $f_{x y}=f_{y x}$ for the function $f=\tan ^{-1}\left(\frac{x}{y}\right)$.

Sol: G.T, $f=\tan ^{-1}\left(\frac{x}{y}\right)$
diff writ x, we get.

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial z}=\frac{1}{1+\left(\frac{x}{y}\right)^{2}}\left(\frac{1}{y}\right) \\
& f_{x}=\frac{\partial f}{\partial x}=\frac{y}{y^{2}+x^{2}}
\end{aligned}
$$

$$
\begin{aligned}
f y x=\frac{\partial^{2} f}{\partial y \partial x} & =\frac{\partial}{\partial y}\left(\frac{\partial f}{\partial x}\right)=\frac{\partial}{\partial y}\left(\frac{y}{y^{2}+x^{2}}\right) \\
& =\frac{\left(y^{2}+x^{2}\right) 1-y(2 y)}{\prime}
\end{aligned}
$$

$$
\begin{aligned}
\operatorname{tyx} & =\frac{x-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
f & =\tan ^{-1}\left(\frac{x}{y}\right)
\end{aligned}
$$

diff wire, ' y ' partindly, we git.

$$
\begin{aligned}
f_{y} & =\frac{\partial f}{\partial y}=\frac{1}{1+\left(\frac{x}{y}\right)^{2}}\left(\frac{-x}{y^{2}}\right) \\
f_{y} & =\frac{\partial f}{\partial y}=\frac{-x}{x^{2}+y^{2}} \\
f_{x y}=\frac{\partial^{2} f}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial y}\right)=\frac{\partial}{\partial x}\left(\frac{-x}{x^{2}+y^{2}}\right) \\
& =\frac{\left(x^{2}+y^{2}\right)(-1)-(-x)(2 x)}{\left(x^{2}+y^{2}\right)^{2}} \\
& =\frac{x^{2}-y^{2}}{\left(x^{2}+y^{2}\right)^{2}} \\
f_{x y} & =f_{y x}
\end{aligned}
$$

Q) If $x=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \cdot P_{1} T f_{x x}+f_{y y}+f_{z z}=0$

Sol:

$$
\begin{aligned}
& G, T, f=\frac{1}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& f=\left(x^{2}+y^{2}+z^{2}\right)^{-1 / 2}
\end{aligned}
$$

diff wort x partially.

$$
\begin{gathered}
f_{x}=\frac{\partial^{2} f}{\partial x^{2}}=\frac{-1}{z}\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}(2 x) \\
f_{x}=-x\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}
\end{gathered}
$$

diff wort ' x ', partially, we get

$$
\begin{gathered}
f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=-\left[1\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}+\left(-\frac{3}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{2 / 2}(x, y)\right. \\
f_{x x}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\left[1-3 x^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1}\right]
\end{gathered}
$$

similarly,

$$
\begin{aligned}
& f_{y y}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 4}\left[1-3 y^{2}\left(x^{2}+y+z^{2}\right)^{-1}\right] \\
& f_{z z}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\left[1-3 z^{2}\left(x^{2}+y^{2}+z^{2}\right)^{-1}\right] \\
& f_{x x}+f_{y y}+f_{z z}=-\left(x^{2}+y^{2}+z^{2}\right)^{-3 / 2}\left[3-\left(x^{2}+y^{2}+z^{2}\right)^{-1} 3\left(x^{2}+y^{2}+z^{2}\right)\right] \\
& f_{x x}+f_{y y}+f_{z z}=0 .
\end{aligned}
$$

Q) If $f=\log \left(x^{2}+y^{2}+z^{2}\right)$. P. T $\left(x^{2}+y^{2}+z^{2}\right)\left(f_{x x}+f_{y y}+f_{z z}\right)=2$

Sol: Given, $f=\log \left(x^{2}+y^{2}+z^{2}\right)$
diff w.r.t ' x ' partially, we get.

$$
\begin{aligned}
& f_{x}=\frac{1}{x^{2}+y^{2}+z^{2}}(2 x) \\
& f_{x x}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)-2 x(2 x)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)-4 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
& f_{r x}=\frac{2 y^{2}+2 z^{2}-2 x^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
\end{aligned}
$$

diff + w.r.t ' y ' partially, we get.

$$
\begin{aligned}
& f_{y}=\frac{1}{x^{2}+y^{2}+z^{2}}(2 y) \\
& f_{y y}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)-2 y(2 y)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
& f_{y y}=\frac{2 x^{2}-2 y^{2}+2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}
\end{aligned}
$$

diff ' f ' w.r.t 'z' partially, we get

$$
\begin{aligned}
& f_{z}=\frac{1}{x^{2}+y^{2}+z^{2}}(2 z) \\
& f_{z z}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)-2 z(2 z)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
& f_{z z}=\frac{2 x^{2}+2 y^{2}-2 z^{2}}{\left(x^{2}+y^{2}+z^{2}\right)^{2}} \\
& \therefore f_{x x}+f_{y y}+f_{z z}=\frac{2\left(x^{2}+y^{2}+z^{2}\right)}{\left(x^{2}+y^{2}+z^{2}\right)^{2}}=\frac{2}{x^{2}+y^{2}+z^{2}} \\
& \Rightarrow\left(x^{2}+y^{2}+z^{2}\right)\left(f_{x} x+f_{y y}+f_{z z}\right)=\left(x^{2}+y^{2}+z^{2}\right) \frac{2}{x^{2}+y^{2}+z^{2}} \\
& \quad=2 .
\end{aligned}
$$

Q) Verify that $f_{x x}+f_{y y}=0$ if $x=\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)$

Sol: G.T, $f=\tan ^{-1}\left(\frac{2 x y}{x^{2}-y^{2}}\right)$
diff w. rit ' x ', partially

$$
\begin{aligned}
f_{x} & =\frac{1}{1+\left(\frac{2 x y}{x^{2}-y^{2}}\right)^{2}} \cdot \frac{2 y\left(x^{2}-y^{2}\right)-2 x y(2 x)}{\left(x^{2}-y^{2}\right)^{2}} \\
& =\frac{\left(x^{2}-y^{2}\right)^{2}}{\left(x^{2}-y^{2}\right)^{2}+(2 x y)^{2}} \cdot \frac{2 x^{2} y-2 y^{3}-4 x^{2} y}{\left(x^{2}-y^{2}\right)^{2}} \\
& =\frac{-2 x^{2} y-2 y^{3}}{x^{4}+y^{4}-2 x^{2} y^{2}+4 x^{2} y^{2}}=\frac{-2 y\left(x^{2}+y^{2}\right)}{x^{4}+y^{4}+2 x^{2} y^{2}}=\frac{-2 y\left(x^{2}+y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}
\end{aligned}
$$

$$
f_{x x} \quad f_{x}=\frac{-2 y}{x^{2}+y^{2}}
$$

Scanned with CamScanner

$$
f_{x x}=\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}
$$

diff wort ' y ' partially,

$$
\begin{aligned}
& f_{y}=\frac{1}{1+\left(\frac{2 x y}{x^{2}-y^{2}}\right)^{2}} \frac{2 x\left(x^{2}-y^{2}\right)-2 x y(-2 y)}{\left(x^{2}-y^{2}\right)^{2}} \\
&=\frac{\left(x^{2}-y^{2}\right)^{2}}{x^{4}+y^{4}-2 x^{2} y^{2}+4 x^{2} y^{2}} \cdot \frac{2 x^{3}-2 x y^{2}+4 x y^{2}}{\left(x^{2}-y^{2}\right)^{2}} \\
&=\frac{2 x^{3}+4 x y^{2}}{x^{4}+y^{4}+2 x^{2} y^{2}}=\frac{2 x\left(x^{2}+2 y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=\frac{2 x}{x^{2}+y^{2}} \\
& \Rightarrow f_{x x}+f_{y y} f_{y y}=\frac{-4 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \Rightarrow f_{x x}+f_{y y}=\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}}-\frac{4 x y}{\left(x^{2}+y^{2}\right)^{2}} \\
& \therefore \quad \therefore \quad \therefore \quad \therefore
\end{aligned}
$$

(0): $\operatorname{F}, T, r^{2}=x^{2}+y^{2}+z^{2}$

$$
\begin{aligned}
& f=r^{n} \\
& f=\left(x^{2}+y^{2}+z^{2}\right)^{n / 2}
\end{aligned}
$$

diff partially with ' x '

$$
\begin{equation*}
\frac{\partial f}{r x}=\frac{n}{2}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n}{2}}-1 \tag{2x}
\end{equation*}
$$

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=n x\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-2}{2}} \\
& f_{x x}=\frac{\partial^{2} f}{\partial x^{2}}=n\left[1\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-2}{2}}+x\left(\frac{n-2}{2}\right)\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-2}{2}}\right] . \\
& f_{x x}=n\left[\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-2}{2}}+(n-2)^{x^{2}}\left(x^{2}+y^{2}+z^{2}\right)^{\frac{n-y}{2}}\right] \\
& f_{x x}=n\left[r^{n-2}+(n-2) x^{2} \gamma^{n-4}\right] \quad\left[\because x^{2}+y^{2}+z^{2}=\gamma^{2}\right]
\end{aligned}
$$

Ily $f_{y y}=n\left[\gamma^{n-2}+(n-2) y^{2} \gamma^{n-4}\right]$,

$$
\begin{aligned}
& f_{z z}=n\left[r^{n-2}+(n-2) z^{2} r^{n-4}\right] \\
& f_{x x}+f_{y y}+f_{z z}=n\left[3 r^{n-2}+(n-2) r^{n-4}\left(x^{2}+y^{2}+z^{2}\right)\right] \\
&=n\left[3 r^{n-2}+(n-2) \gamma^{n-4} r^{2}\right] \\
&=n r^{n-2}[3+(n-2)] \\
&=n(n+1) r^{n-2}
\end{aligned}
$$

Q) If $f=e^{x y z}$ S.T. $f_{x y z}=\left(1+3 x y \cdot z+x^{2} y^{2} \cdot y^{2} z^{2}\right) e^{x y z}$,

S01: G.T, $f=e^{x y z}$.
diffe $\omega, r t^{\prime} x$ ' partially..

$$
\begin{aligned}
& \left.f_{x}=\right\}^{x y z}(y z) \\
& f_{x}=y z
\end{aligned}
$$

diff w.r.1 'y' partially'

$$
\begin{aligned}
& \left.f_{y}=e^{x y}\right) z(x z) \\
& f_{y}=x z \psi^{x y z}
\end{aligned}
$$

diff-(1)w,r,t ${ }^{\prime \prime}-2$ pardially.

$$
\begin{aligned}
\frac{\partial f}{\partial z}=f_{z} & =c^{x y z} \cdot(x, y) \\
f_{z} & =x y e^{x y z} .
\end{aligned}
$$

diff (2) w,r,t ' y '. puitially.

$$
\begin{align*}
\frac{\partial^{2} f f}{\partial y \partial z} & =\frac{\partial}{\partial y}\left(x y e^{x y z}\right)=x \frac{\partial}{\partial y}\left(y e^{x y z}\right) \\
& =x\left[e^{x y z}+x y z e^{x y z}\right]=\left(x+x^{2} y z\right) e^{x y z} \tag{3}
\end{align*}
$$

diff (3) w.x.t ' x ' partially

$$
\begin{aligned}
\frac{\partial^{3} f}{\partial x \partial y \partial z} & =\frac{\partial}{\partial x} \cdot\left[\frac{\partial^{2} f}{\partial y \partial z}\right] \\
& =\frac{\partial}{\partial x}\left[\left(x+x^{2}+y z\right) e^{x y}\right] \\
& =(1+2 x y z) e^{x y}+\left(x+x^{2} y z\right) e^{x y z}(y z) \\
& =\left(1+2 x y z+x y z+x^{2} y^{2} z\right) e^{x y z} \\
& =\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}
\end{aligned}
$$

Hence $\frac{\partial^{3}+}{\partial x \partial y \partial z}=f_{x y z}$

$$
=\left(1+3 x y z+x^{2} y^{2} z^{2}\right) e^{x y z}
$$

Q) If $z=f(x+a y)+g(x \div a y) \cdot p / T ; \frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}$

Sol: G,T,

$$
\begin{equation*}
z=f(x+a y)+g(x-a y) \tag{1}
\end{equation*}
$$

diff.(1). wr.t. to ' x ' partinlly.

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=f^{\prime}(x+a y) 1+g^{\prime}(x-a y) 1 \\
& \frac{\partial^{2} z}{\partial x^{2}}=f^{\prime \prime}(x+a y)!+g^{\prime \prime}(x-a y)-1
\end{aligned}
$$

diff (1) w,r,t \dot{y} partially, we get

$$
\begin{aligned}
\frac{\partial z}{\partial y}= & f^{\prime}(x+a y) a+g^{\prime}(x-a y)(-a) \\
\frac{\partial^{2} z}{\partial y^{2}}= & f^{\prime \prime}(x+a y) a^{2}+g^{\prime \prime}(x-a y)(-a)^{2} \\
\frac{\partial^{2} z}{\partial y^{2}}= & a^{2}\left[f^{\prime \prime}(x+a y)+g^{\prime \prime}(x-a y)\right] \\
& \frac{\partial^{2} z}{\partial y^{2}}=a^{2} \frac{\partial^{2} z}{\partial x^{2}}
\end{aligned}
$$

Q) If $z=\log \left(e^{x}+e^{y}\right) \cdot$ S.T, $\quad \gamma t-s^{2}=0$,
where $r=\frac{\partial^{2} z}{\partial x^{2}} \quad, \quad t=\frac{\partial^{2} z}{\partial y^{2}} \quad, S=\frac{\partial^{2} z}{\partial \dot{x} \dot{\partial} y}$
Sol! G.T, $z=\log \left(e^{x}+e^{y}\right)$
diff wirtix' partially

$$
\begin{aligned}
& \frac{\partial z}{\partial x}=\frac{1}{e^{x}+e^{y}}\left(e^{x}\right) \\
& \frac{\partial^{2} z}{\partial x^{2}}=\frac{e^{x}\left(e^{x}+e^{y}\right)-e^{x}\left(e^{x}\right)}{\left(e^{x}+e^{y}\right)^{2}} \\
& \frac{\partial^{2} z}{\partial x^{2}}=\frac{e^{x}+e^{y} e^{x}}{e^{x}+d y}=\frac{e^{x}\left(i+e^{y}\right)}{e^{x}+y}=\frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}}
\end{aligned}
$$

diff writ ' y ' partially.

$$
\begin{align*}
& \frac{\partial g}{\partial y}=\frac{1}{e^{x}+e^{y}} \tag{y}\\
& \frac{\partial^{2} z}{\partial y^{2}}=\frac{e^{y}\left(e^{x}+e^{y}\right)-e^{y}\left(e^{y}\right)}{\left(e^{2}+e^{y}\right)^{2}}=\frac{e^{x y}+e^{y}}{e^{x}+e^{y}}=\frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}} \\
& \frac{\partial^{2} z}{\partial y^{2}}=\frac{e^{y}\left(1+e^{x}\right)}{e^{x y}+e^{y}} \cdot \frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}} \\
& \therefore \gamma=\frac{\partial^{2} z}{\partial x^{2}}=\frac{e^{x}(1+y)}{e^{x}+e^{x}} \frac{e^{x+y}}{\left(e^{x}+y^{y}\right)^{2}} \\
& t=\frac{\partial^{2} z}{\partial y^{2}}=\frac{e^{y}\left(1+e^{x}\right)}{e^{2}+e^{y}} \cdot \frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}} \\
& s=\frac{\partial^{2} z}{\partial x \partial y}=\frac{\partial z}{\partial x} \cdot \frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{e^{y}}{e^{x}+e^{y}}\right)=e^{y}\left[\frac{y}{\left[\left(e^{x}+e^{y}\right)^{2}\right.}\right] \\
& \Rightarrow \gamma t-s^{2}=\frac{e^{x}\left(1+e^{y}\right)}{e^{x}+e^{y}} \cdot \frac{e^{y}\left(1+e^{x}\right)}{e^{(x}+e^{y}}+\left[\frac{-e^{y}}{\left(e^{x}+e^{y}\right)^{2}}\right]^{2} \\
& =\frac{e^{x} \cdot e^{y}\left(1+e^{x}\right)\left(1+e^{y}\right)}{\left(e^{x}+y\right)^{2}}-\frac{e^{2 y}}{\left(e^{x}+e^{y}\right)^{2}} \text {. } \\
& =\frac{e^{x y}\left[1+e^{y}+e^{x}+e^{x y}\right]}{\left(e^{x}+e^{y}\right)^{2}}-\frac{e^{2 y}}{\left(e^{x}+e^{y}\right)^{2}} \\
& s=\frac{\partial}{\partial x}\left(\frac{\partial z}{x y}\right)=\frac{\partial}{\partial x}\left[\frac{e^{y}}{e^{x}+e^{y}}\right]=e^{x} e^{y}\left[\frac{-1}{\left(e^{x}+e^{y}\right)^{2}}\right] \\
& \Rightarrow \gamma t-s^{2}=\frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}} \cdot \frac{e^{x+y}}{\left(e^{x}+e^{y}\right)^{2}}-\left(e^{(x+y}\right)^{2}\left[\frac{1}{\left.\left(e^{x}+e^{y}\right)^{t}\right]}\right.
\end{align*}
$$

$$
\begin{aligned}
& =\frac{\left(e^{x+y}\right)^{2}}{\left(e^{x}+y^{4}\right)^{4}}-\frac{\left(e^{x+y}\right)^{2}}{\left(e^{x}+e^{y}\right)^{4}} \\
& =0 \\
& \therefore \gamma t-s^{2}=0 .
\end{aligned}
$$

Q) If $x^{x} \cdot y^{y} \cdot z^{z}=e$. S.T, at $x=y=z ; \frac{\partial^{2} z}{\partial x \partial y}=-(x \log e x)^{-1}$

Sol:- G.T, $x^{x} \cdot y^{y} \cdot z^{z}=e$
Taking logarithm bis of (1), we get

$$
\begin{align*}
& \log _{e}\left(x^{x} y^{y} z^{z}\right)=\log _{e} e \\
& \log _{e} x^{x}+\log _{e} y^{y}+\log _{e} z=1 \\
& x \log _{e} x+y \log _{e} y+z \log _{z} z=1 \\
& z \log _{e} z=1-x \log _{e} x-y \cdot \log _{y} y \tag{2}
\end{align*}
$$

Diff (2) $10 . \pi, t$ ' x ', partially, we get.

$$
\begin{gather*}
\left(z=\frac{1}{z} \frac{\partial z}{\partial x}+\log z \cdot \frac{\partial z}{\partial x}\right)=-\left(x \cdot \frac{1}{x}+\log x 1\right) \\
\frac{\partial z}{\partial x}(1+\log z)=-(1+\log x) \\
\frac{\partial z}{\partial x}=-\frac{(1+\log x)}{(1+\log z)}-(3) \tag{3}
\end{gather*}
$$

similary, $\frac{\partial z}{\partial y}=\frac{-(1+\log y)}{\left(1+\log ^{\prime} z\right)}$

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial x \partial y} & =\frac{\partial}{\partial x}\left(\frac{\partial z}{\partial y}\right) \\
& =\frac{\partial}{\partial x}\left(\frac{-(1+\log y)}{(1+\log z)}\right) \\
& =-(1+\log y) \frac{\partial}{\partial x}\left[(1+\log z)^{-1}\right] \\
& =-(1+\log y)(-1)(1+\log z)^{-2} \frac{1}{z} \cdot \frac{\partial z}{\partial x} \\
\frac{\partial^{2} z}{\partial x \partial y} & =\frac{1}{z} \frac{(1+\log y)}{(1+\log z)^{2}} \frac{\partial z}{\partial x} \\
& =\frac{1}{z} \cdot \frac{1+\log y}{(1+\log z)^{2}}
\end{aligned}
$$

At $x=y=z$,

$$
\begin{aligned}
\frac{\partial^{2} z}{\partial x \partial y} & =\frac{1}{x} \cdot \frac{1+\log x}{\left(1+\log _{x}\right)^{2}}(-1)^{1} \\
& =-\frac{1}{x} \cdot \frac{1}{(1+\log x)} \\
& =-\frac{1}{x} \cdot \frac{1}{\log _{e} e+\log _{e} x} \\
& =-x^{-1}\left(\log _{e} e+\log _{x} x\right)^{-1} \\
& =-x^{-1}\left(\log _{e} x\right)^{-1} \\
& =1\left(x \log _{e x} x\right)^{-1}
\end{aligned}
$$

So): G,T, $\because z=\frac{x^{2}+y^{2}}{x+y}$
diff w.r.t x partially.

$$
\frac{\partial z}{\partial x}=\frac{2 x(x+y)-\left(x^{2}+y^{2}\right)(1)}{(x+y)^{2}}
$$

$$
\frac{\partial z}{\partial x}=\frac{2 x^{2}+2 x y-x^{2}-y^{2}}{(x+y)^{2}}=\frac{2 x^{2} \cdot(x-y)^{2}}{(x+y)^{2}}
$$

diff 'z' $0, r, t$ ' y ' partially.

$$
\left.\begin{array}{rl}
\frac{\partial z}{\partial y} & =\frac{2 y\left(x^{2}+y^{2}\right)-\left(x^{2}+y^{2}\right)}{(x+y)^{2}} \\
& =\frac{2 x y+2 y^{2}-x^{2}-y^{2}}{(x+y)^{2}}=\frac{2 y^{2}-(x-y)^{2}}{(x+y)^{2}} \\
\cdots & \cdots \\
\left(\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right)^{2} & =\left[\frac{x^{2}-y^{2}+2 x y}{(x+y)^{2}}-\frac{y^{2}-x^{2}+2 x y}{(x+y)^{2}}\right]^{2} \\
& =\frac{4\left[\left(x^{2}-y^{2}\right)^{2}\right]}{(x+y)^{4}}=4\left[\frac{(x+y)^{2}(x-y)^{2}}{(x+y)^{4}}\right] \\
4\left[1-\frac{\partial z}{\partial x}-\frac{\partial z}{\partial y}\right]=4\left[1-\frac{\left(x^{2}-y^{2}+2 x y\right)}{(x+y)^{2}}-\frac{\left(y^{2}-x^{2}+2 x y\right)}{(x+y)^{2}}\right] \\
& =4\left[x^{2}+y^{2}+2 x y-x^{2}+y^{2}-2 x y-y^{2}+x^{2}-2 x y\right] . \\
(x+y)^{2}
\end{array}\right] .\left[\frac{x^{2}+y^{2}-2 x y}{\left.(x+y)^{2}\right]}\right]
$$

$$
\begin{aligned}
& =\frac{4 x y^{2}+4 y^{3}+4 x^{2} y+4 x^{3}}{\left((x+y)^{2}\right]^{2}}-\frac{2\left[x^{2} y^{2}-x^{4}+2 z^{3} y+2 x y^{3}-2 x^{3} y+4 x^{2} y^{2}-y^{4}+x^{2} y^{2}-1\right.}{\left[(x+y)^{2}\right]^{2}} \\
& =\frac{4\left(x^{3}+y^{3}\right)+4 x y(x+y)+2\left(x^{4}+y^{4}\right)-2\left(6 x^{2} y^{2}\right)}{\left[(x+y)^{2}\right]^{2}}
\end{aligned}
$$

4) If $\frac{p}{f}=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$, ST: $\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2}=\frac{-1}{(7)}$

Sol:- G.T, $f=\log \left(x^{3}+y^{3}+z^{3}-3 x y z\right)$,
diff w, rit ' x ' partially.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{3 x^{2}-3 x y}{x^{3}+y^{3}+z^{3}-3 x y z} \\
& \frac{\partial f}{\partial y}=\frac{3 y^{2}-3 x z}{x^{3}+y^{3}+z^{3}-3 x y z} \\
& \frac{\partial f}{\partial z}= \\
&\left(\frac{3 x+3}{x^{3}-3 x y}\right. \\
& \frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}=\frac{3\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}{3} \\
&=\frac{3\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)}{(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)} \\
&=\frac{3}{x+y+z} \\
& \therefore
\end{aligned}
$$

$$
\begin{aligned}
&\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)^{2} f=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) f \\
& \therefore=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right)\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}+\frac{\partial f}{\partial z}\right) \\
&=\left(\frac{\partial}{\partial x}+\frac{\partial}{\partial y}+\frac{\partial}{\partial z}\right) \frac{3}{x+y+z} \\
&=\frac{\partial}{\partial x}\left(\frac{3}{x+y+z}\right)+\frac{\partial}{\partial y}\left(\frac{3}{x+y+z}\right)+\frac{\partial}{\partial z}\left(\frac{3}{x+y+z}\right)
\end{aligned}
$$

Q): If: $f=e^{x^{y}} \cdot \frac{\partial^{2} t}{\partial y, \partial x}$ find $\frac{\partial^{2} p}{\partial y-\partial x}$:

Sol: GiT, $f=e^{x^{y}}$
diff w,r,t ' x ', partially', we get.

$$
\begin{aligned}
\frac{\partial f}{\partial x} & =e^{x^{y}} y x^{y-1} \\
& =x^{-1} e^{x^{y}} y x^{y}
\end{aligned}
$$

diff w.r.t<super>y' partially, beget

$$
\begin{aligned}
\frac{\partial^{2} f}{\partial y \cdot \partial x} & =x^{-1}\left[e^{x^{y}} x^{y}+e^{x^{y}} y x \cdot \log x+y x^{y} e^{x^{y}} x^{y} \log x\right] \\
& =x^{-1} e^{x} x^{y}\left(1+y \log x^{y}+y x^{y} \log x\right) \\
& =e^{x^{y}} x^{y-1}(1+y \log x+y x \log x)
\end{aligned}
$$

Jacobian:
If $u \& v$ are functions of two independent variables $\alpha \& y$ then the determinant.

$$
\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \text { i.e }\left|\begin{array}{ll}
u_{x} & u_{y} \\
v_{x} & v_{y}
\end{array}\right|
$$

$\frac{\partial(u, v)}{\partial(x, y)}$ (or) $J\left(\frac{u, v}{x, y}\right)$ is. Called the Jacobian. of u, v wir,t $x \& y$. It is denoted. By

$$
\frac{\partial(u, v)}{\partial(x, y)}[0 w) J\left(\frac{u, v}{x, y}\right)
$$

If u, v, w, are functions of 3 independent variables x, y, z then the determinant

$$
\begin{aligned}
& \left|\begin{array}{lll}
\frac{\partial u}{\partial z} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial u}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial z}{\partial z}
\end{array}\right| \\
& \text { ie }\left|\begin{array}{ccc}
u_{x} & u_{y} & u_{z} \\
v_{x} & v_{y} & v_{z} \\
\omega_{x} & v_{y} & \omega_{z}
\end{array}\right| \text { I Jacobian of }
\end{aligned}
$$

is Jacobian of u, v, w, w, $, t, x, y, z$. :
S is denoted by $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ (or) $J\left(\frac{u, v, w}{x, y, z}\right)$
Prapoctus :-
i) $J J^{\prime}=1$ i.e $\frac{\partial(u, v)}{\gamma(x, y)} \frac{\partial(x, y)}{\gamma(u, v)}=1$
ii) Dx, v are function of are $r, s \& r, s$ functions of . all x, y then $\frac{\partial(u, v)}{\gamma(x, y)}=\frac{\partial(u, v)}{\partial(r, s)} \cdot \frac{\partial(v, s)}{\partial(x, y)}$

Functionally dependence:
Let: $u \& V$ be two functions of $x \& y$ Suppose these functions connected by the relation $f(u, v)=0$ where f is diffountiable the we Say that u du are functionally dependant,
we shall prove that the Condition per functional dependence is $\frac{\partial(u, v)}{\partial(x, y)} \geq 0$.

* Theorem :

If the functions $u \& v$ are independent variables: $x \& y$ are functionally dependent then the Jacobian $\frac{\partial(u, v)}{\partial(x, y)}$ vanish.
Note: If the Jacobian $\frac{\gamma(u ; v)}{\gamma(x, y)} \neq 0$. then $u \& v$ are said to be functionally independent.
2) Type-(1)

If $x=r \cos \theta, y=r \sin \theta$. Find $\frac{\gamma(x, y)}{\partial(\gamma, \theta)}$ and $\frac{\partial(\gamma, \theta)}{\partial(x, y)}$
Also show that $J J^{\prime}=1$ ie $\frac{\partial(x, y)}{\partial(\gamma, \theta)}=\frac{\partial(\gamma, \theta)}{\partial(x, y)}=1$.

Sol:

$$
\begin{aligned}
& G_{1} T, x=r \cos \theta, y=r \sin \theta \text {. } \\
& \frac{\gamma(\gamma, y)}{\partial(\gamma, 0)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial \gamma} & \frac{\partial x}{\partial \theta} \\
\frac{\partial y}{\partial \gamma} & \frac{\partial y}{\partial \theta^{\prime}}
\end{array}\right| \\
& x=8 \cos \theta \text {. } \\
& \frac{\partial x}{\partial \gamma}=\cos \theta, \frac{\partial x}{\partial \theta_{i}}=-\cdot \gamma \sin \theta \\
& y=r \sin \theta \\
& \frac{\partial y}{\partial \gamma}=\sin \theta, \quad \frac{\partial y^{\prime}}{\partial \theta}=r \cos \theta \text {. } \\
& \frac{\partial(x, y)}{\partial(\gamma, \theta)}=\left|\begin{array}{ll}
\cos \theta & -\gamma \sin \theta \\
\sin \gamma & r \cos \theta
\end{array}\right| \\
& =\gamma\left(\cos ^{2} \theta+\sin ^{2} \theta\right)=\gamma \text {. } \\
& x^{2}=r^{2} \cos ^{2} \theta, y^{2}=r^{2} \sin ^{2} \theta \\
& r^{2}=x^{2}+y^{2} \text {. } \\
& r=\sqrt{x^{2}+y^{2}} \\
& \frac{\dot{y}}{x}=\frac{r \sin \theta}{r \cos \theta} \Rightarrow \tan \theta=\frac{y}{x} \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \gamma=\sqrt{x^{2}+y^{2}} \\
& \frac{\partial y}{\partial x}=\frac{z \cdot x}{z \sqrt{x^{2}+y^{2}}}=\frac{x}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{8 x}{\partial y}=\frac{2 y}{\sqrt{x^{2}+y^{2}}}=\frac{y}{\sqrt{x^{2}+y^{2}}} \\
& \theta=\tan ^{-1}\left(\frac{x}{y}\right) \text {. } \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \cdot\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \\
& \frac{\partial \theta}{\partial y}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \cdot \frac{1}{x}=\frac{x}{x^{2}+y^{2}} \\
& \frac{\gamma(r, \theta)}{\gamma(x, y)}=\left|\begin{array}{cc}
\frac{1}{\sqrt{x^{2}+y^{2}}} & \frac{y}{\sqrt{x^{2}+y^{2}}} \\
\frac{-y}{x^{2}+y^{2}} & \frac{x}{x^{2}+y^{2}}
\end{array}\right| \\
& =\frac{x^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}}=\frac{x^{2}+y^{2}}{\left(x^{2}+y^{2}\right)^{3 / 2}} \\
& =\frac{1}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{1}{\left(\gamma^{2}\right)^{1 / 2}}=\frac{1}{r} \\
& \therefore J J^{\prime}=\frac{\gamma(x, y)}{\partial(r, \theta)} \cdot \frac{\partial(\gamma, \theta)}{\partial(x, y)}=r, \frac{1}{r}=1 \frac{1}{1}
\end{aligned}
$$

Q) P.T $J J^{\prime}=1$ for $x=e^{v} \sec u, \quad y=e^{v} \tan u$

Sol: Qi t $_{1}, x=e^{v} \sec u$

$$
\begin{aligned}
& y=e^{v} \tan u \\
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \\
& \frac{\partial x}{\partial u}=e^{v}|\sec u \cdot \tan u| \\
& \frac{\partial x}{\partial v}=\sec u e^{v}
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial y}{\partial u}=e^{4}\left(\sec ^{2} u\right) \\
& \frac{\partial y}{\partial r}=e^{v} \tan u \text {. } \\
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{cc}
e^{v}(\sec u \cdot \tan u) & e^{v} \sec u \\
e^{v}\left(\sec ^{2} u\right) & e^{v} \tan u
\end{array}\right| \\
& J=\frac{\partial(x, 4)}{\partial(u, v)} \\
& J^{\prime}=\frac{\partial(u, v)}{\partial(x, y)} \\
& J=e^{v} \sec u \tan u e^{v} \tan u-e^{v} \sec u e^{v} \sec ^{2} u \text {. } \\
& =e^{2 v} \sec ^{3} u\left[-\cos ^{2} u\right]=-e^{2 v} \sec u \text {. } \\
& J^{\prime}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \\
& u=\operatorname{cosec}^{-1}\left(\frac{x}{y}\right), \quad v=\frac{1}{2} \log \left(x^{2}-y^{2}\right) \\
& \frac{\partial u}{\partial x}=\frac{-1}{\frac{x}{y} \sqrt{\frac{x^{2}-y^{2}}{y^{2}}}} \times \frac{1}{y}=\frac{-y}{x \sqrt{x^{2}-y^{2}}} \\
& \frac{\partial u}{\partial y}=\frac{1}{\frac{x}{y} \sqrt{\frac{x^{2}-y^{2}}{y^{2}}}} \times \frac{x}{y^{2}}=\frac{1}{\sqrt{x^{2}-y^{2}}} \\
& \frac{\partial v}{\partial x}=\frac{2^{\prime} x}{x^{2}-y^{2}} \cdot \frac{1}{2}=\frac{x}{x^{2}-y^{2}} \\
& \frac{\partial v}{\partial y}=\frac{1}{2}\left(\frac{-2 y}{x^{2}-y^{2}}\right)=\frac{-y}{x^{2}-y^{2}}
\end{aligned}
$$

$$
\begin{aligned}
J^{\prime} & =\left|\begin{array}{lc}
\frac{-y}{x \sqrt{x^{2}-y^{2}}} & \frac{x}{x^{2}-y^{2}} \\
\frac{1}{\sqrt{x^{2}-y^{2}}} & \frac{-y}{\sqrt{x^{2}-y^{2}}}
\end{array}\right| \\
& =\frac{y^{2}}{x\left(x^{2}-y^{2}\right)^{1 / 2}}-\frac{x}{\left(x^{2}-y^{2}\right)^{3 / 2}}=\frac{y^{2}-x^{2}}{x\left(x^{2}-y^{2}\right)^{3}} \\
& =\frac{-1}{x \sqrt{x^{2}-y^{2}}}=\frac{-1}{e^{2} \sec u\left(e^{2}\right)} \\
J^{\prime} & =\frac{-1}{e^{2 v} \sec u} \times e^{-2 v} \sec u
\end{aligned}
$$

Q) PIT $J J^{\prime}=1$ for $x=\frac{u(1-v)}{1}, y=u v_{\text {. }}$

Sol:: G.T, $x=u-4 V$

$$
\begin{aligned}
& y=u v \text {. } \\
& J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \ldots \\
& x=4-u v \quad-y=u v . . \\
& \frac{\partial x}{\partial u}=1-v, \frac{\partial x}{\partial v}=-u \quad \therefore \frac{\partial y}{\partial u}=v, \frac{\partial y}{\partial v}=u \text {. }
\end{aligned}
$$

$$
\begin{aligned}
& J=\left|\begin{array}{cc}
1-v & -u \\
v & u
\end{array}\right| \\
& =u-u v+u v \\
& J=u \\
& J^{\prime}=\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} \quad \frac{\partial v}{\partial y}
\end{array}\right| \\
& x=u-u v, y=u v \\
& u=x+y \\
& \frac{x}{y}=\frac{u-u v}{u v} \\
& \frac{x}{y}=\frac{1}{v}-1 \Rightarrow \frac{1}{v}=1+\frac{x}{y}=\frac{y+x}{y} \\
& u=\frac{v}{x+y} \\
& \frac{\partial u}{\partial x}=1, \frac{\partial u}{\partial y}=1 \\
& v=\frac{y}{x+y} \\
& \frac{\partial v}{\partial y}=\frac{\partial v}{\partial x}=\frac{-y}{(x+y)^{2}} \\
& =\frac{(x+y)}{1-y(1)} \\
& \therefore 1 \\
& \therefore \frac{-y}{(x+y)^{2}}=\frac{x}{(x+y)^{2}} \\
& (x+y)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{x+1 \cdot}{(x+y)^{2}}=\frac{1}{x+y} \\
& J^{\prime}=\frac{1}{4} \\
& J J^{\prime}=4 \frac{1}{4}=1
\end{aligned}
$$

Q) 㝵T $J J^{\prime}=1$, for $x=u v, y=\frac{y}{v}$.

Sol: G.T,

$$
\begin{aligned}
& x=u v \\
& y=\frac{u}{v} .
\end{aligned}
$$

$$
\left.\begin{aligned}
& J=\frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
x=u v .
\end{array}\right| \\
& \frac{\partial u}{\partial u} \\
& \frac{\partial y}{\partial v}
\end{aligned} \right\rvert\,
$$

$$
\frac{\partial x}{\partial u}=v . \quad, \quad \frac{\partial x}{\partial v}=\dot{u}
$$

$$
\left.\begin{gathered}
\dot{y}=\frac{u}{v} \\
\frac{\partial y}{\partial u}=\frac{1}{v}, \frac{\partial y}{\partial v}=\frac{-u}{v^{2}} \\
J=\left|\begin{array}{ll}
v & u \\
\frac{1}{v} & \frac{-u}{v^{2}}
\end{array}\right|=\frac{-u}{v}-\frac{u}{v}=\frac{-2 u}{v} \\
J=\frac{-2 u}{v} \\
J^{\prime}=\frac{\partial(u, v)}{\partial(x, y)}=\left\lvert\, \begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial v}{\partial y} \\
\partial x
\end{array} \frac{\partial v}{\partial y}\right.
\end{gathered} \right\rvert\,
$$

$$
\begin{aligned}
x+y & =u\left[v+\frac{1}{v}\right] \\
u & =\frac{x+y}{v+\frac{1}{v}}=\frac{x+y}{\sqrt{\frac{x}{y}+\sqrt{\frac{y}{x}}}}=\frac{x+y}{\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}} \\
\frac{\partial u}{\partial x} & =\left(\sqrt{\frac{x}{y}}+\sqrt{\frac{y}{x}}\right)-(x+y)\left[\frac{1}{2 \sqrt{x y}}\right. \\
J^{\prime} & =\left(\begin{array}{l}
\frac{\partial u}{\partial x} \quad \frac{\partial v}{\partial x} \\
\frac{\partial u}{\partial y} \quad \frac{\partial v}{\partial y}
\end{array}\right. \\
J^{\prime} & =\left(\begin{array}{l}
\frac{1}{2 \sqrt{x y}} \cdot y \\
\frac{-1}{2 \sqrt{x y}} \cdot x
\end{array} \frac{1}{2 \sqrt{\frac{x}{y}}} \times \frac{1}{y}\right. \\
& =\left(\frac{-1}{4 y}-\frac{1}{4 y}\right) \\
& =\frac{-2}{4 y}=\frac{-1}{2 y} \\
& =-1
\end{aligned}
$$

Type - (2)
Q) S. T the functions $u=x e^{y} \sin z, v=x e^{y} \cos z, w=x^{2-2 y}$ are functionally dependent and hence find the relations b/w them.
Sol: G.T, $u=x e^{y} \sin z$

$$
\begin{aligned}
& V=x e^{y} \cos z \\
& \omega=x^{2} e^{2 y} \text {, } \\
& J=\begin{array}{lll}
\frac{\partial(u, v, w)}{\partial(x, y, z)} & \because\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\vdots & \frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} \\
& \frac{\partial \omega}{\partial z}
\end{array}\right|
\end{array} \\
& \frac{\partial u}{\partial x}=e^{y} \sin z, \frac{\partial u}{\partial y}=x e^{y} \sin z, \frac{\partial u}{\partial y}=x e^{y \cos z} \\
& \frac{\partial v}{\partial x}=e^{y} \cos z, \frac{\partial u}{\partial y}=x e^{y \cos z} ; \frac{\partial v^{\prime}}{\partial z}=-x e^{y \sin z} \\
& \frac{\partial \omega}{\partial x}=2 x e^{q y}, \frac{\partial \omega}{\partial y}=2 x^{2} e^{-y \cdot}, \frac{\partial \omega^{2}}{\partial z}=0 . \\
& J=\left|\begin{array}{ccc}
e^{y} \sin z & x e^{y} \sin z & x e^{y} \cos z \\
e^{y} \cos z & x e^{y} \cos z & -x e^{y} \sin z \\
2 x e^{2 y} & 2 x^{2} e^{2 y} & 0
\end{array}\right| \\
& =1, e^{y} e^{y}(2 x) e^{2 y} \cdot x \cdot x\left|\begin{array}{ccc}
\sin z & \sin z & \cos z \\
\cos z & \cos z & -\sin z \\
1 & 1 & \because
\end{array}\right| \\
& =2 e^{4 y} x^{3}\left[\left(-\sin ^{2} z-\cos ^{2} z\right)-\left(-\sin ^{2} z-\cos ^{2} z\right)\right] \\
& =0 \text {. }
\end{aligned}
$$

Here the Jacobian, $J=0$
$\therefore u, v$ \& w are quectiondily dependent

IVC. Can form a relation bow $4, v \& w$.
(0)

$$
\begin{aligned}
& u^{2}=x^{2} c^{2 y} \sin ^{2} z \\
& \dot{v}^{2}=x^{2} e^{2 y} \cos ^{2} z \\
& w=x^{2} c^{2 y} \\
& u^{2}+v^{2}=x^{2} c^{2 y}\left(\sin ^{2} z+\cos ^{2} z\right) \\
& u^{2}+v^{2}=10
\end{aligned}
$$

which is the fructional: relation b/w $4, v . \& W$.
Q) ST, $u=\sin ^{-1}(x)+\sin ^{-1}(y), \quad v=x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}}$
are functionally dependent, Hence find the relation $b_{w} u \& v$.
Sol: GiT, $u=\sin ^{-1} x+\sin ^{-1} y$.

$$
\left.\begin{array}{rl}
\frac{\partial u}{\partial x} & =\frac{1}{\sqrt{1-x^{2}}}, \frac{\partial u}{\partial y}=\frac{1}{\sqrt{1-y^{2}}}, \\
\frac{\partial v}{\partial x}=\sqrt{1-y^{2}}+\frac{y(-2 x)}{\partial \sqrt{1-x^{2}}}+y \sqrt{1-x^{2}},
\end{array}\right] \left.\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y}=\frac{x(-2 y)}{2 \sqrt{1-y^{2}}}+\sqrt{1-} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array} \right\rvert\,
$$

$$
J=\left(\frac{-x y}{\sqrt{1-y^{2}} \sqrt{1-x^{2}}}+1\right)-\left(1-\frac{x y}{\sqrt{1-x^{2}} \sqrt{1-y^{2}}}\right)=0
$$

u, v are functionally dependent.
we car form relation b/w u\&V.

$$
\begin{aligned}
\sin u= & \sin \left(\sin ^{-1} x+\sin ^{-1} y\right) \\
= & {\left[\sin \left(\sin ^{-1} x\right) \cos \left(\sin ^{-1} x\right)+\cos \left(\sin ^{-1} x\right) \sin \left(\sin ^{-1} y\right)\right] } \\
\sin u= & x \cos \left(\sin ^{-1} y\right)+y \cos \left(\sin ^{-1} x\right) \\
\sin u & =x \sqrt{1-y^{2}}+y \sqrt{1-x^{2}} \\
& \sin u=v \\
\therefore u & =\sin ^{-1} v
\end{aligned}
$$

(B) Check whether the functions $u=\frac{x+y}{1-x y}, v=\tan ^{-1}(x)_{1}$ are functionally. dependent if so fund the relation b/w them ,
So): GOT, $u=\frac{x+y}{1-x y}, v=\tan ^{-1} x+\tan ^{-1} y$.

$$
\begin{gathered}
\frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \\
\frac{\partial u}{\partial x}=\frac{(1-x y) 1^{1}-(x+y)(-y)}{(1-x y)^{2}}=\frac{1+y^{2}}{(1-x y)^{2}} \\
\frac{\partial u}{\partial y}=\frac{(1-x y) 1-(x+y)(-x)}{(1-x y)^{2}}=\frac{1+x^{2}}{(1-x y)^{2}} \\
\frac{\partial v}{\partial x}=\frac{1}{1+x^{2}}, \frac{\partial v}{\partial y}=\frac{1}{1+y^{2}} \\
J=\frac{\partial(u, v)}{\partial(x, y)}=\left|\frac{1+y^{2}}{(1-x y)^{2}} \frac{1+x^{2}}{(1-x y)^{2}}\right| \\
\left.\frac{1}{1+x^{2}} \quad \frac{1}{1+y^{2}} \right\rvert\,
\end{gathered}
$$

Here the Jacobian $J=0$
$\therefore u \& v$ are functionally dependent.

$$
\begin{aligned}
& V=\tan ^{-1} x+\tan ^{-1} y \\
& \left.V=\tan ^{-1} \frac{(x+y}{1-x y^{\prime}}\right) \\
& V=\tan ^{-1}(u)
\end{aligned}
$$

Q) $P, T, \quad u=\frac{x+y}{x-y}, \quad v=\frac{x y}{(x-y)^{2}}$ are fre"cilionilly dependent. Hevice füd thic relition b/w them.
Sol: G.T, $u=\frac{x+y}{x-y}, v=\frac{x y}{(x-y)^{2}}$

$$
\begin{aligned}
& \frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y}
\end{array}\right| \\
& \frac{\partial 4}{\partial x}=\frac{(x-y)(1)-(x+y)(1)}{(x-y)^{2}}=\frac{x-y-x-y}{(x-y)^{2}}=\frac{-2 y}{(x-y)^{2}} . \\
& \frac{\partial u}{\partial y}=\frac{(x-y)(1)-(x+y)(-1)}{(x-y)^{2}}=\frac{x-y+x+y}{x-y)^{2}}=\frac{2 x}{(x-y)^{2}} \\
& \frac{\partial v}{\partial x}=\frac{(x-y)^{2} y-(x y)(2(x-y))}{(x-y) 4}=\frac{y x^{2}+y^{3}-2 y^{2} x-2 x^{2} y+2 x y^{2}}{(x-y) 4} \\
& =\frac{y^{3}+y x^{2}-2 x^{2} y}{(x-y)^{4}} \\
& \frac{\partial v}{\partial y}=\frac{(x-y)^{2}(x)-(x y)(2(x-y)(-1))}{\because(x-y)^{4},}=\frac{x^{3}+y^{3} x-2 x y^{2}}{(x-y)^{4}} \text { : } \\
& J=\left|\begin{array}{lc}
\frac{-2 y}{(x-y)^{2}} & \frac{2 x}{(x-y)^{2}} \\
\frac{y^{3}+y x^{2}-2 x^{2} y}{(x-y)^{4}} & \frac{x^{3}+y^{3} x-2 x y^{2}}{(x-y) 4}
\end{array}\right| \\
& =\left(\frac{-2 y x^{3}-2 y^{3} x+4 x y^{3}}{(x-y)^{6}}\right)-\left(\frac{2 x y^{3}+2 x^{3} y-4 x^{3} y}{(x-y)^{6}}\right) . \\
& =\frac{-2 y x^{3}+2 y^{3} x-2 x y^{3}+2 x^{3} y}{(x-y)^{6}}=0
\end{aligned}
$$

Q). P.T, $u=x y+y z+z x, v=x^{2}+y^{2}+z^{2}, \omega=x+y+z$. are functionally dependent. Hence find the relation b/w them.

Sol:- G.T, $u=x y+y z+z x$.

$$
\begin{gathered}
v=x^{2}+y^{2}+z^{2} \\
w=x+y+z, \\
\frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial z v}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right| . \\
\frac{\partial w}{\partial x}=1, \frac{\partial w}{\partial y}=1, \frac{\partial w}{\partial z}=1, \\
\frac{\partial v}{\partial x}=2 x, \frac{\partial v}{\partial y}=2 y, \frac{\partial v}{\partial z}=2 z . \\
u=x y+y z+z x \\
\frac{\partial u}{\partial x}=y+z,
\end{gathered}, \frac{\partial u}{\partial y}=x+z, \frac{\partial u}{\partial z}=x+y .
$$

$$
\begin{aligned}
\frac{\partial(u, v, w)}{\partial(x, y, z)} & =\left|\begin{array}{ccc}
y+z & z+x & x+y \\
2 x & 2 y & 2 z \\
1 & 1 & 1
\end{array}\right| \\
c_{2} \rightarrow c &
\end{aligned}
$$

$$
c_{2} \rightarrow c_{2}-c_{1} \quad c_{3} \rightarrow c_{3}-c_{1}
$$

$$
=\left|\begin{array}{ccc}
y+z & x-y & x-2 \\
2 x & 2(y-x) & i(2-x) \\
1 & 0 & 0
\end{array}\right|
$$

$$
=2(x-y)(x-z)\left|\begin{array}{ccc}
y+z & 1 & 1 \\
x & -1 & -1 \\
1 & 0 & 0
\end{array}\right|
$$

Here the Jacobian $Z=0$.
$\therefore u, v \& \omega$ are functionally dependent.

$$
\begin{aligned}
& \omega^{2}=(x+y+z)^{2} \\
& \omega^{2}=x^{2}+y^{2}+z^{2}+2(x y+y z+z x) \\
& \omega^{2}=v+2 u .
\end{aligned}
$$

Q) If $u=x+y+z, v=x^{2}+y^{2}+z^{2}, w=x^{3}+y^{3}+z^{3}-3 x y$ then P.T. Jacobian $J=0$. Hence find the relation b/w u, v, w.

Sol: G.T , $u=x+y+z$.

$$
\begin{aligned}
& N=x^{2}+y^{2}+z^{2} \\
& \omega=x^{3}+y^{3}+z^{3}-3 x y z \text {. } \\
& \frac{\partial(u, v, w)}{\partial(x, y, z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial \omega}{\partial x} & \frac{\partial \omega}{\partial y} & \frac{\partial \omega}{\partial \omega}
\end{array}\right| \\
& \frac{\partial u}{\partial x}=1, \quad \frac{\partial u}{\partial y}=1, \quad \frac{\partial u}{\partial z}=1 \\
& \frac{\partial v}{\partial x}=2 x, \quad \frac{\partial v}{\partial y}=2 y, \quad \frac{\partial v}{\partial z}=2 z \\
& \frac{\partial \omega}{\partial x}=3 x^{2}-3 y z, ; \frac{\partial \omega}{\partial y}=3 y^{2}-3 x z, \frac{\partial \omega}{\partial z}=3 z^{2}-3 x y \\
& =\left|\begin{array}{cccc}
1 & 1 & 1 & 2 \\
2 x & 2 y & 2 z & 1 \\
3 x^{2}-y z & 3 y^{2}-2 x & 3 z^{2}-y x^{2}
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& 2 x^{3}\left[6 y\left(z^{2}-a y\right)-6 z\left(y^{2}-z x\right)\right]-1\left[6 x\left(z^{2}-y x\right)-6 z\left(x^{2}-y z\right)\right] \\
& +1\left[6 x\left(y^{2}-x z\right)-6 y\left(x^{2}-y z\right)\right] \\
= & 6\left[z^{2} y-x y^{2}-y^{2} z+x z^{2}-x z^{2}+x^{2} y+x^{2} z-z^{2} y+y^{2} x-x^{2} z+y^{2} z-x_{1}\right.
\end{aligned}
$$

$=0$

$$
\dot{\psi}
$$

Type - (3)
Q.) If $x=u+u v$

1 $y=v+u$ find $\frac{\partial(u, v)}{\partial(x, y)}$
Sol. G.T, $x=u+u v, y=v+u v$.
Here $x \& y$ fictions of $u \& v$. we have to find $\frac{\partial(u, v)}{r(x, y)}$:

It is difficult to express $4 \& v$ interns of $x \& y$. So we find $\frac{\partial(x, y)}{\partial(u, v)}$.

$$
\begin{aligned}
& \frac{\partial(x, y)}{\partial(u, v)}=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right| \\
& \frac{\partial x}{\partial u}=1+v . \quad, \frac{\partial x}{\partial v}=u \\
& \frac{\partial y}{\partial u}=u \\
& \left.\begin{array}{ll}
\frac{\partial(x, y)}{\partial(u, v)}= & , \frac{\partial y}{\partial v}=1+u \\
v & 1+u
\end{array} \right\rvert\, \\
& =(1+\dot{u})(1+v)-u v=1+u+v .
\end{aligned}
$$

w,k.T, $J J^{\prime}=1$. i.e, $\frac{\partial(u, v)}{\partial(x, y)} \cdot \frac{\partial(x, y)}{\partial(u, v)}=1$

$$
\frac{\partial(u, v)}{\partial(x, y)}=\frac{1}{\frac{\partial(x, y)}{\partial(u, v}}=\frac{1}{1+u+v .}
$$

Q) If $x=u v, y=\frac{u+v}{u-v}$, Find $\frac{\partial u, u)}{\partial(x, y)}$

Sol: G.T, $x=u v$

$$
\begin{aligned}
& y=v i u v . \\
& \frac{\partial(u, v)}{\partial(x, y)}=\left|\begin{array}{cc}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\
\frac{\partial v}{\partial x}, & \frac{\partial v}{\partial y}
\end{array}\right| \cdots \\
& \frac{\partial x}{\partial u}=v, \quad \frac{\partial x}{\partial v}=u \\
& \frac{\partial y}{\partial u}=\frac{(u-v) 1-(u+v)(1)}{(u-v)^{2}} \quad \because \frac{-2 v}{(u-v)^{2}} \\
& \frac{\partial y}{\partial v}=\frac{(u-v)(1)-(u+v)(-1)}{(u-v)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{?(x, y)}{\partial(u, v)} & =\left|\begin{array}{cc}
v & u \\
\frac{-2 v}{(u-v)^{2}} & \frac{2 u}{(u-v)^{2}}
\end{array}\right| \\
& =\frac{2 u v}{(u-v)^{2}}+\frac{2 u v}{(-v)^{2}} \\
& =\frac{4 u v}{(u-v)^{2}} \\
\frac{\partial(u, v)}{\partial(x, y)} & =\frac{(u-v)^{2}}{4 u v}
\end{aligned}
$$

Type -4:
Q) If $x+y+z=u, y+z=u v, z=u v v$. Then eloluxit $\frac{3(x, y, z)}{\partial(u, v, w)}$.

Sol: G.T, $x+y+z=u \quad, y+z=u v$.

$$
u v w=z
$$

we have to lind $\frac{\partial(x, y, z)}{\partial(u, v, w)}$.

$$
\begin{array}{cc}
z=u v \omega, & y=u v-z \\
y=u v-u v w \\
& x=u-y-z) \\
x=u-(u v-u v \omega)-u v \omega \\
& x=u-u v . \\
\frac{\partial(x, y, z)}{\partial(u, v, w)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} & \frac{\partial x}{\partial w} \\
\frac{\partial u}{\partial u} & \frac{\partial u}{\partial v} & \frac{\partial u}{\partial w} \\
\frac{\gamma s}{\partial u} & \frac{\partial z}{\partial v} & \frac{\partial z}{\partial w}
\end{array}\right|
\end{array}
$$

$$
\begin{aligned}
& \frac{\partial x}{\partial u}=1-v \quad \frac{\partial y}{\partial u}=v-v \omega \quad \frac{\partial z}{\partial u}=v \omega \\
& \frac{\partial x}{\partial v}=-u \quad \frac{\partial y}{\partial v}=u-u w . \quad \frac{\partial z}{\partial v}=u \omega \\
& \frac{\partial x}{\partial \omega}=0 \\
& \frac{\partial z}{\partial w}=-u v \quad \frac{\partial z}{\partial w}=u v . \\
& =\left|\begin{array}{ccc}
1-v & -u & 0 \\
v-v \omega & u-u w & -u v \\
v \omega & u w & u v
\end{array}\right| \\
& =u_{1} u v \left\lvert\, \begin{array}{lll}
1-v & -1 & 0 \\
v-v \omega & 1-\omega & -1 \\
v \omega & \omega & 1
\end{array} ._{R_{2} \rightarrow R_{2}+R_{3}} \quad \therefore\right. \\
& =u^{2} v\left|\begin{array}{ccc}
1-v & -1 & 0 \\
v & 1 & 0 \\
v w & w & 1
\end{array}\right|=u^{2} v
\end{aligned}
$$

8) If $u=x+2 y^{2}-z^{3}, N=2 x^{2} y z, w=2 z^{2}-x y$. (Ans: 10) Find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$ at the point $(1,-1,0)$
61: GIT, $u=x+2 y^{2}-z^{3}$

$$
\begin{gathered}
v=2 x^{2} y z \\
w=2 z^{2}-x y . \\
\frac{\partial(u, v, w)}{x(x, y, z)}=\left|\begin{array}{lll}
\frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} & \frac{\partial u}{\partial z} \\
\frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} & \frac{\partial v}{\partial z} \\
\frac{\partial w}{\partial x} & \frac{\partial w}{\partial y} & \frac{\partial w}{\partial z}
\end{array}\right|: \\
\frac{\partial u}{\partial x}=1 \quad, \frac{\partial u}{\partial y}=4 y, \frac{\partial u}{\partial z}=-3 z^{2} \\
\frac{\partial v}{\partial x}=4 x y z \quad, \frac{\partial v}{\partial y}=2 x^{2} z, \frac{\partial v}{\partial z}=2 x^{2} y . \\
\frac{\partial z}{\partial x}=-y \quad, \quad \frac{\partial z}{\partial y}=-x, \frac{\partial z}{\partial z}=4 z .
\end{gathered}
$$

$$
\begin{aligned}
\frac{\partial(u, v, \omega)}{\partial(x, y, z)} & =\left|\begin{array}{ccc}
1 & 4 y & -3 z^{2} \\
4 x y z & 2 x^{2} z & 2 x^{2} y \\
-y & -x & 4 z
\end{array}\right| \\
& =\left|\begin{array}{ccc}
1 & -4 & 0 \\
0 & 0 & -2 \\
1 & -1 & 0
\end{array}\right| \\
& =1(-2)+4(2) \\
& =8-2=6 .
\end{aligned}
$$

Q)

$$
\begin{aligned}
& \text { If } x=r \cos \theta, y=r \sin \theta, z=z \text {, Find } \frac{\partial(x, y, z)}{r(u, r), y)} \\
& \frac{\partial(x, y, z)}{\partial(r, \theta, z)} \text {. }
\end{aligned}
$$

Sol: $G, T, x=r \cos \theta$ \square

$$
\frac{\partial(x, y, z)}{\partial(x, \theta, z)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial r} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial z} \\
\frac{\partial y}{\partial \gamma} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial z} \\
\frac{\partial z}{\partial r} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial z}
\end{array}\right|
$$

$$
\begin{array}{lll}
\frac{\partial x}{\partial r}=\cos \theta, & \frac{\partial \bar{y}}{\partial r}=\sin \theta & \frac{\partial z}{\partial r}=0 \\
\frac{\partial x}{\partial \theta}=-r \sin \theta . & \frac{\partial y}{\partial \theta}=r \cos \theta & \frac{\partial z}{\partial \theta}=0 \\
\frac{\partial x}{\partial z}=0 . & \frac{\partial y}{\partial z}=0 & \cdots \frac{\partial z}{\partial z}=1
\end{array}
$$

$$
=\left|\begin{array}{ccc}
\cos \theta & -r \sin \theta & 0 \\
\sin \theta & r \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right|=r .
$$

Q) If $x=r \sin \theta \cos \phi, y=r \sin \theta \sin \phi, z=r \cos \theta$. Find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$
So): GIT, $x=r \sin \theta \cos \phi ., y=r \sin \theta \sin \phi, z=r \cos \theta$.

$$
\begin{aligned}
& \frac{\partial(x, y, z)}{\gamma(\gamma, \theta, \phi)}=\left|\begin{array}{lll}
\frac{\partial x}{\partial \gamma} & \frac{\partial x}{\partial \theta} & \frac{\partial x}{\partial \phi} \\
\frac{\partial y}{\partial \gamma} & \frac{\partial y}{\partial \theta} & \frac{\partial y}{\partial \phi} \\
\frac{\partial z}{\partial \gamma} & \frac{\partial z}{\partial \theta} & \frac{\partial z}{\partial \phi}
\end{array}\right| . \\
& \frac{\partial x}{\partial r}=\sin \theta \cos \phi, \frac{\partial x}{\partial \theta}=r \cos \theta \cos \phi, \frac{\partial x}{\partial \phi}=r \sin \theta(-\sin \phi) \\
& \frac{\partial y}{\partial r}=\sin \theta \sin \phi, \frac{\partial y}{\partial \theta}=r \cos \theta \sin \phi, \frac{\partial y}{\partial \phi}=r \sin \theta \cos \phi \\
& \frac{\partial z}{\partial r}=\cos \theta, \frac{\partial z}{\partial \theta}=\gamma(-\sin \theta), \frac{\partial z}{\partial \phi}=0 . \\
& \frac{\gamma(x, y, z)}{\partial(r, \theta, \phi)}=\left|\begin{array}{cccc}
\sin \theta \cos \phi & r \cos \theta \cos \phi & -r \sin \theta \sin \phi \\
\sin \theta \sin \phi & r \cos \theta \sin \phi & r \sin \theta \cos \beta \\
\cos \theta & -r \sin \theta & \therefore & 0
\end{array}\right| \\
& =\sin \theta \cos \phi\left(r^{2} \sin ^{2} \theta \cos \phi\right)-r \cos \theta \cos \phi(-r \sin \theta \cos \theta \cos \phi): \\
& -r \sin \theta \cos \phi\left(-r \sin ^{2} \theta \sin \phi-r \cos ^{2} \theta-\sin \phi\right) .
\end{aligned}
$$

Q) If $u=x^{2}-y^{2}, v=2 x y$ where $x=r \cos \theta, y=r \sin _{0}$. Find $\frac{\partial(u, v)}{\partial(\alpha, \theta)}$.

Sol: $x=r \cos \theta, y=r \sin \theta$
G.T, $u=x^{2}-y^{2}, \quad v=2 x y$

$$
\begin{aligned}
& u=r^{2} \cos ^{2} \theta-r^{2} \sin ^{2} \theta=r^{2}\left(\cos ^{2} \theta-\sin ^{2} \theta\right)=r^{2} \cos 2 \theta \text {. } \\
& V=2 x y=2 r \cos \theta \cdot r \sin \theta,=r^{2} \sin 2 \theta \text {. } \\
& \frac{\partial(u, v)}{\partial(r, 0)}=\left|\begin{array}{ll}
\frac{\partial u}{\partial r} & \frac{\partial u}{\partial \theta} \\
\frac{\partial v}{\partial r} & \frac{\partial v}{\partial \theta}
\end{array}\right| \\
& \frac{\partial u}{\partial r}=2 r \cos 2 \theta, \quad \frac{\partial u}{\partial \theta}=2 r^{2}(-\sin 2 \theta) \text {. } \\
& \frac{\partial V}{\partial r}=2 r \sin 2 \theta, \frac{\partial v}{\partial \theta}=2 r^{2} \cos 2 \theta \text {. } \\
& =\left|\begin{array}{cc}
2 r \cos 2 \theta & 2 r^{2}(-\sin 20) \\
2 r \sin ^{2} 2 \theta & 2 r^{2} \cos 2 \theta
\end{array}\right| \\
& =4 r^{3} \cos ^{2} 2 \theta+4 r^{3} \sin ^{2} 2 \theta \\
& =4 \gamma^{3},
\end{aligned}
$$

The chain rule of partial differentiation.
If $z=f(x, y)$, where $x=\phi(t), y=\psi(t)$.
then z is called a composite function of a variable ' t '.
If $z=f(x, y)$ where $x=\phi(u, v), y=v(u, v)$ then z is called a composite function of tiro variables $u l v$.

1) If. $f(u)$ is a differentiable function of a variable u and $u=u(x)$ is also a differentiable function. Then we have the chain : rule ::

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x^{\prime}}
$$

ii) Let $f(u, v)$ be a differentiable function of two independent variables $u \& v$. Let u, v be differentiable functions of the independent variable x.

$$
\text { i.e, } \quad u=u(x), \quad v=v(x) \text {. }
$$

- Then we have the chain rule

$$
\frac{\partial f}{\partial x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \frac{\partial v}{\partial x}=
$$

iii) If $f(u, v)$ is a differentiable function of $u \& v$. , $u k v$ are also differentiable functions of two independent variables $x \& y$, then the partial derivatives of if writ $x \& y$ are given by the Chain rule.

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \\
& \frac{\partial f}{\partial y}=\frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y}+\frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y}
\end{aligned}
$$

Torial difforeninit corflimens:
Let $z \ldots f(x, y)$ where $x=\psi(t), i y=y(1)$; Substinailuing $x \& y$ ine z, z betomed a fuxatiors. of . Ciaghe vasiaili, then the olcuivative of z wirt ' f ' ine $\frac{d t}{f t}$ is chll 1 tolal differential coefficient (trr) total denivatiive of $\%$,

$$
\frac{\partial t}{\partial t}=\frac{\partial z}{\partial x} \frac{\partial x}{\partial t}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial t} .
$$

It can be written as $\frac{\partial z}{\partial x} d x+\frac{\partial z}{\partial y} d y$.
Q) If $u=f(x-y, y-z, z-x), P, T \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial y}{\partial y}=0$.

Sol: GIT, $u=f(x-y, y-z, z-x)$.
Let $\gamma=x-y$

$$
\begin{aligned}
& S=y-z \\
& t=z-x .
\end{aligned}
$$

Then ' u ' becomes $u=f(\gamma, s, t)$

$$
\begin{aligned}
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial \gamma} \cdot \frac{\partial r}{\partial x}+\frac{\partial u}{\partial 3} \frac{\partial s}{\partial x}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial x} \\
& \frac{\partial r}{\partial x}=1, \quad \frac{\partial u}{\partial x}= \\
& \frac{\partial s}{\partial x}=0 \\
& \frac{\partial t}{\partial x}=-1 \\
& \left.\frac{\partial u}{\partial x}=\frac{\partial u}{\partial x}-\frac{\partial u}{\partial t}-1\right) \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial r} \cdot \frac{\partial x}{\partial y}+\frac{\partial u}{\partial s} \cdot \frac{\partial s}{\partial y}+\frac{\partial u}{\partial t} \cdot \frac{\partial t}{\partial y} . \\
& \frac{\partial r}{\partial y}=-1 \quad, \frac{\partial s}{\partial y}=1, \frac{\partial t}{\partial y}=0 .
\end{aligned}
$$

$$
\begin{align*}
& \frac{\partial u}{\partial y}=\frac{-\partial u}{\partial r}+\frac{\partial u}{\partial s}=\frac{\partial u}{\partial s}-\frac{\partial u}{\partial \gamma} \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial r} \frac{\partial r}{\partial z}+\frac{\partial u}{\partial s} \frac{\partial s}{\partial z}+\frac{\partial u}{\partial t} \frac{\partial t}{\partial z} . \\
& \frac{\partial r}{\partial z}=0 \quad, \frac{\partial s}{\partial z}=-1, \frac{\partial t}{\partial z}=1 \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial t}-\frac{\partial u}{\partial s} \quad-(3) \tag{-3}\\
& \frac{\partial}{\partial z}+(2)+(3) \\
& \frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=\frac{\partial u}{\partial x}-\frac{\partial u}{\partial t}+\frac{\partial u}{\partial s}-\frac{\partial u}{\partial r}+\frac{\partial u}{\partial t}-\frac{\partial u}{\partial s}=0 .
\end{align*}
$$

Q) If $z=f(x, y)$ where $x=e^{u}+e^{-v}, y=e^{-u}-e^{v}$.

SIT $\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=\frac{x}{\partial z}-y \cdot \frac{\partial z}{\partial y}$.
Sol: G.T, $z=f(x, y)$
Let $\quad c e=x \quad x=e^{4}+e^{-v}$

$$
y=y \quad \quad y=e^{-u}-e^{v}
$$

Then z^{\prime} 'pecomes

$$
\begin{gather*}
\frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+ \\
z=f(x, y) \\
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v}=x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y} \\
\frac{\partial z}{\partial u}=e^{u} \frac{\partial z}{\partial x}-e^{-u} \frac{\partial z}{\partial y}-\text { (1) } \tag{1}\\
\frac{\partial z}{\partial v}=\frac{\partial z}{\partial x}, \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y}, \frac{\partial y}{\partial v} \\
\frac{\partial z}{\partial v}=-e^{-u} \frac{\partial z}{\partial x}-e^{v} \frac{\partial z}{\partial y}-1 \tag{2}
\end{gather*}
$$

from (1) -(2).

$$
\begin{aligned}
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v} & =e^{u} \frac{\partial z}{\partial x}-e^{-u} \frac{\partial z}{\partial y}+e^{4 v} \frac{\partial z}{\partial x}-e^{f v} \frac{\partial z}{\partial y} \\
& =\frac{\partial z}{\partial x}\left(e^{u}+e^{-v}\right)-\frac{\partial z}{\partial y}\left(e^{-u}-e^{v}\right) \\
\frac{\partial z}{\partial u}-\frac{\partial z}{\partial v} & =x \frac{\partial z}{\partial x}-y \frac{\partial z}{\partial y}
\end{aligned}
$$

Q) If $u=f(r)$ and $x=r \cos \theta ; y=r \operatorname{Sin} \theta$, P.T

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(\gamma)+\frac{1}{r} f^{\prime}(\gamma) \text {. }
$$

Sol: G.T, $u=f(r), x=r \cos \theta, \ddot{y}=r \sin \dot{\theta}$.

$$
\begin{aligned}
x^{2}+y^{2} & =r^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}} \\
u & =f^{\prime}(r)
\end{aligned}
$$

diff wint ${ }^{\prime}$, "lieget:

$$
\frac{\partial u}{\partial x}=f^{\prime}(r) \frac{\partial r}{\partial x}
$$

diff corr,t ' x ' , we gel

$$
\frac{\partial^{2} \tilde{u}}{\partial x^{2}}=f^{\prime \prime}(\gamma)\left(\frac{\partial r}{\partial x}\right)^{2}+f^{\prime}(\gamma) \frac{\partial^{2} \gamma}{\partial x^{2}}
$$

lly $\frac{\partial^{2} u}{\partial y^{2}}=f^{\prime \prime}(r)\left(\frac{\partial r}{\partial y}\right)^{2}+f^{\prime}(r) \frac{\partial^{2} r}{\partial y^{2}}$

$$
\begin{gathered}
\frac{\partial^{2} y}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}=f^{\prime \prime \prime}(r)\left(\frac{\partial \gamma}{\partial z}\right)^{2}+f^{\prime}(\gamma) \frac{\partial^{2} y}{\partial z^{2}} \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} y}{\partial y^{2}}=f^{\prime \prime}(\gamma)\left[\left(\frac{\partial r}{\partial x}\right)^{2}+\left(\frac{\partial r}{\partial y}\right)^{2}\right]+f^{\prime}(r)\left[\frac{\partial^{2} r}{\partial x^{2}}+\frac{\partial^{2} r}{\partial y^{2}}\right] \\
r^{2}=x^{2}+y^{2}
\end{gathered}
$$

$$
\text { er. } \frac{\partial r}{\partial x}=2 x \Rightarrow \frac{\partial r}{\partial x}=\frac{x}{r}
$$

$$
\begin{aligned}
\frac{\partial^{2} \frac{\gamma}{\partial}}{\partial x^{2}} & =\frac{r \cdot 1-x \frac{\partial r}{\partial x}}{r^{2}} \\
& =\frac{r-\frac{x^{2}}{r}}{r^{2}} \Rightarrow \frac{r^{2}-x^{2}}{r^{3}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial^{2} \gamma}{\partial x^{2}} & =\frac{y^{2}}{\gamma^{3}} \\
\| y \frac{\partial^{2} r}{\partial y^{2}} & =\frac{x^{2}}{\gamma^{3}} \\
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\gamma^{2} u}{\partial y^{2}} & =f^{\prime \prime}(x)\left[\left(\frac{x}{r}\right)^{2}+\left(\frac{y}{r}\right)^{2}\right]+f^{\prime}(\gamma)\left[\frac{y^{2}}{\gamma^{3}}+\frac{\gamma^{2}}{\gamma^{3}}\right] \\
& =f^{\prime \prime}(x)+\frac{1}{\gamma} f^{\prime}(\gamma)
\end{aligned}
$$

Q) $x=r \cos \theta, y=r \sin \theta$, $\operatorname{S.T} \frac{\partial r}{\partial x}=\frac{\partial x}{\partial \partial} \& \frac{1}{r} \frac{\partial x}{\partial \theta}=\frac{\gamma \partial \theta}{\partial x}$

Sol: $\quad A 1 T_{1}, \frac{\lambda}{\partial \gamma} \frac{\partial x}{\partial \theta}=x \frac{7^{\prime} \theta}{\partial x}$

$$
\begin{gathered}
x=r \cos \theta, \quad y=r \sin \theta \\
\therefore \quad x^{2}+y^{2}=r^{2} \Rightarrow r=\sqrt{x^{2}+y^{2}} \\
\therefore \frac{y}{x}=\frac{r \sin \theta}{r \cos \theta} \\
\tan \theta=\frac{y}{x} \\
\theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
\frac{\partial r}{\partial x}=\frac{1}{2 \sqrt{x^{2}+y^{2}}}(2 x)=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\frac{\partial x}{\partial r}=\frac{\cos \theta}{}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
\therefore \frac{\partial r}{\partial x}=\frac{\partial x}{\partial r}
\end{gathered}
$$

$$
\begin{aligned}
& x=\gamma \cos \theta \\
& \frac{\partial x}{\partial \theta}=-\gamma \sin \theta=-\gamma\left(\frac{y}{\sqrt{x^{2}+y^{2}}}\right) \\
& \theta=\tan ^{-1}\left(\frac{y}{x}\right) \\
& \frac{\partial \theta}{\partial x}=\frac{1}{1+\left(\frac{y}{x}\right)^{2}} \frac{-y}{x^{2}}=\frac{x^{2}}{x^{2}+y^{2}}\left(\frac{-y}{x^{2}}\right)=\frac{-y}{x^{2}+y^{2}} \\
& \Rightarrow \frac{1}{\gamma} \frac{\partial x}{\partial \theta}=\gamma \frac{\partial \theta}{\partial x} \\
& \frac{1}{\gamma}\left(\frac{-\gamma y}{\sqrt{x^{2}+y^{2}}}\right)=\frac{-\gamma y}{x^{2}+y^{2}}=\frac{-\sqrt{x^{2}+y^{2}} y^{\prime}}{x^{2}+y^{2}} \\
& \quad \frac{-y}{\sqrt{x^{2}+y^{2}}}=\frac{-y}{\sqrt{x^{2}+y^{2}}} \\
& \therefore \frac{1}{\gamma} \frac{\partial x}{\partial \theta}=\gamma \frac{\partial \theta}{\partial x}
\end{aligned}
$$

Q) If $u=x \log x y$ where $x^{3}+y^{3}+3 x y=1$ Find $\frac{\text { dy y }}{\text { Dx }}$.

Sols G,T, $u=x \log x y$.

$$
\begin{array}{r}
x^{3}+y^{3}+3 x y=1 \text { (we treat } y \text { is a function of } \\
\text { Single variall. }
\end{array}
$$

$$
\begin{gathered}
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial x} 1+\frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial x} \\
x^{3}+y^{3}+3 x y=1
\end{gathered}
$$

$$
\text { diff corr ' } x \text { ', we get. }
$$

$$
3 x^{2}+3 y^{2} \cdot y^{\prime}+3 y+3 x y^{\prime}=0 . ;
$$

$$
x^{2}+y^{\prime}\left(y^{2}+x\right)+y=0
$$

$$
y^{\prime}=\frac{-\left(y+x^{2}\right)}{y^{2}+x}
$$

$$
\begin{aligned}
& u=x \log x y \\
& \frac{\partial u}{\partial x}=x \cdot \frac{1}{x y}(y)+\log x y .1 \\
& \frac{\partial u}{\partial x}=1+\log x y \\
& \frac{\partial u}{\partial y}=x\left(\frac{1}{x y}\right) x=\frac{x}{y} \\
& \frac{d u}{d x}=(1+\log x y)+\frac{x}{y}\left(\frac{-\left(x^{2}+y\right)}{y^{2}+x}\right) \\
& \vdots \frac{d u}{d x}=1+\log x y-\frac{x\left(y^{2}+x^{2}\right)}{y\left(y^{2}+x\right)}
\end{aligned}
$$

Q) If $u=f\left(\frac{\dot{x}}{y}, \frac{y}{z}, \frac{z}{x}\right)_{i}$, PiT $\quad x \frac{\partial u}{\partial x}+y \cdot \frac{\partial u_{1}}{\partial y}+z \cdot \frac{\partial u}{\partial z}=0$:
by: Let $\frac{x}{y}=l, \frac{y}{z}=m, \frac{z}{x}=n$.

$$
\begin{aligned}
& \frac{\partial}{\partial x}=\frac{1}{y} \quad, \frac{\partial m}{\partial x}=0, \quad, \quad \frac{\partial n}{\partial x}=\frac{-b}{x^{2}}, \\
& \frac{\partial k}{\partial y}=\frac{-x}{y^{2}}, \quad \frac{\partial m}{\partial y}=\frac{1}{z} \quad, \quad \frac{\partial n}{\partial y}=0 \\
& \frac{\partial l}{\partial z}=0 \quad \frac{\partial m}{\partial z}=\frac{-y}{z^{2}} ; \quad \frac{\partial \eta}{\partial z}=\frac{1}{x} . \\
& \frac{\partial u}{\partial x}=\frac{\partial u}{\partial l} \cdot \frac{\partial L}{\partial x}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial x}+\frac{\partial u}{\partial r} \cdot \frac{\partial n}{\partial x} \cdot 0 \cdot \therefore \\
& =\frac{\partial u}{\partial L} \cdot \frac{1}{y}+\frac{\partial u}{\partial m} \cdot 0+\frac{\partial u}{\partial n}\left(\frac{-z}{x^{2}}\right): \therefore \\
& \begin{array}{l}
x \frac{\partial u}{\partial x}=\frac{x}{y}, \frac{\partial u}{\partial l}-\frac{z}{x} \cdot \frac{\partial u}{\partial n}-1 . \\
\frac{\partial u}{\partial y}=\frac{\partial u}{\partial L} \cdot \frac{\partial l}{\partial y}+\frac{\partial u}{\partial m} \frac{\partial m}{\partial y}+\frac{\partial u}{\partial n} \cdot\left(\frac{\partial n}{\partial y},\right.
\end{array} \\
& =\frac{\partial u}{\partial l}\left(\frac{-x}{y^{2}}\right)+\frac{\partial u}{\partial m} \cdot \frac{1}{z}+\frac{\partial u}{\partial n} \cdot 0 \\
& y \frac{\partial u}{\partial y}=\frac{-x}{y} \cdot \frac{\partial u}{\partial l}+\frac{1 y}{z} \cdot \frac{\partial u^{\prime}}{\partial m} \text {-(2). } \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial z}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial z}+\frac{\partial u}{\partial n} \cdot \frac{\partial n}{\partial z} \\
& =\frac{\partial u}{\partial l} \cdot 0+\frac{\partial u}{\partial m}\left(\frac{-y}{z^{2}}\right)+\frac{\partial u}{\partial n} \cdot \frac{1}{x}
\end{aligned}
$$

$z \frac{\partial u}{\partial z}=\frac{-y}{z} \cdot \frac{\partial u}{\partial m}+\frac{z}{x} \cdot \frac{\partial u}{\partial m}$-(3).
Alding 0, (2) \& (1).
$x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+z \frac{\partial u}{\partial z}=0$.
Q) of $u=f\left(e^{y-z}, e^{z-x}, e^{x-y}\right)$ sit $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0$
) $\quad l=e^{y-z} \quad m=e^{z-x} \quad n=e^{x-y}$

$$
\begin{array}{lll}
\frac{\partial l}{\partial x}=0 & \frac{\partial m}{\partial x}=e^{z-x}=-m \\
\frac{\partial l}{\partial y}=e^{y-z}=l & \frac{\partial \dot{m}}{\partial y}=0 & \frac{\partial n}{\partial x}=e^{x-y}=n \\
& \frac{\partial n}{}=n-y
\end{array}
$$

$$
\begin{aligned}
& u=f\left(e^{y-z}, e^{z-x}, e^{x-y}\right)=f(l, m, n) \\
& \underline{u}=\partial u, \partial l
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial u}{\partial x} & =\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial x}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial x}+\frac{\partial u}{\partial m} ; \frac{\partial n}{\partial x} \\
& =\partial u
\end{aligned}
$$

$$
\begin{aligned}
& =\frac{\partial u}{\partial l} \cdot 0+\frac{\partial u}{\partial m}(-m)+\frac{\partial u}{\partial n} \cdot n=-\frac{\partial}{\partial m}+n \frac{\partial u}{\partial m}-0 \\
& \frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial u}+\frac{\partial u}{\partial}, \frac{\partial m}{n}+\frac{\partial u}{\partial n}:
\end{aligned}
$$

$$
\begin{aligned}
\frac{\partial u}{\partial y} & =\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial y}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial y}+\frac{\partial u}{\partial n} \cdot \frac{\partial n}{\partial y} \\
& =\partial u
\end{aligned}
$$

$$
\frac{\partial u}{\partial z}=\frac{\partial u}{\partial} \because \frac{\partial l}{\partial z}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial z}+\frac{\partial y}{\partial n} \frac{\partial n}{\partial x} n \frac{\partial u}{\partial n}-
$$

$$
=\frac{\partial x}{\partial l}(l)+\partial u
$$

Adding: eq (1), (2) \& (3)

$$
\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}=0
$$

Q) If $x=e^{4} \operatorname{cosec} v, y=e^{4} \cot v \quad \because \quad$

$$
\begin{gathered}
\left(\frac{\partial z}{\partial x}\right)^{2}=\left(\frac{\partial z}{\partial y}\right)^{2}=e^{-2 y}\left[\left(\frac{\partial z}{\partial u}\right)^{2}-\sin ^{2} v\left(\frac{\partial z}{\partial v}\right)^{2}\right] \\
\therefore
\end{gathered}
$$

40) : $z=f(x, y), \quad x=e^{4} \operatorname{cosec} v, y=e^{4} \cot v$.

$$
\begin{aligned}
& \frac{\partial z}{\partial u}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial u}+\frac{\partial z}{\partial y}, \frac{\partial y}{\partial u}=\frac{\partial z}{\partial x} \cdot e^{u} \operatorname{cosec} v+\frac{\partial z}{\partial y} e^{u} \cot v \\
& \frac{\partial z}{\partial v}=\frac{\partial z}{\partial x} \cdot \frac{\partial x}{\partial v}+\frac{\partial z}{\partial y} \cdot \frac{\partial y}{\partial v} \\
&=\frac{\partial z}{\partial x}\left(-e^{u} \operatorname{cosec} v \cdot \cot v\right)+\frac{\partial z}{\partial y}\left(-e^{4} \operatorname{cosec}^{2} v\right) \\
& e^{-2 u}\left[\left(\frac{\partial z}{\partial u}\right)^{2}-\sin ^{2} v\left(\frac{\partial z}{\partial v}\right)^{2}\right]=e^{-2 u}\left[\left(\frac{\partial z}{\partial x}\right)^{2} e^{2 u} \operatorname{cosec}^{2} v+\left(\frac{\partial z}{\partial y}\right)^{2} e^{2 u} \cot ^{2} v\right. \\
&+2 \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} \cdot e^{2 u} \operatorname{cosec} v \cot v \frac{y}{4} \\
&+\left(-\sin ^{2} v\right)\left(\frac{\partial z}{\partial x}\right)^{2}\left(e^{2 u} \operatorname{cosec} c^{2} v \cot ^{2} v i\right)+\left(-\sin ^{2} v\right)\left(\frac{\partial z}{\partial y}\right)^{2 u} e^{2 u} \operatorname{cosec}^{4} x \\
&\left.+\left(-\sin ^{2} v\right) 2 \cdot \frac{\partial z}{\partial x} \cdot \frac{\partial z}{\partial y} e^{2 u} \operatorname{cosec}^{3} v \cot ^{2} v\right] \\
&=\left(\frac{\partial z}{\partial x}\right)^{2}\left(\operatorname{cosec}^{2} v-\cot ^{2} v\right)+\left(\frac{\partial z}{\partial y}\right)^{2}\left(\cot ^{2} v-\operatorname{cosec}^{2} v\right) \\
&=\left(\frac{\partial z}{\partial x}\right)^{2}-\left(\frac{\partial z}{\partial y}\right)^{2} .
\end{aligned}
$$

Q)

Sol:

$$
\begin{array}{ll}
l=\frac{y-x}{x y}=\frac{1}{x}-\frac{1}{y}, & m=\frac{z-x}{x z}=\frac{1}{x}-\frac{1}{z} . \\
\frac{\partial l}{\partial x}=\frac{1}{x^{2}} & \frac{\partial m}{\partial x}=\frac{-1}{x^{2}} \\
\frac{\partial l}{\partial y}=\frac{1}{y^{2}} & \frac{\partial m}{\partial y}=0 . \\
\frac{\partial l}{\partial z}=0 & \frac{\partial m}{\partial z}=\frac{1}{z^{2}} \\
u=f\left(\frac{y-x}{x y}, \frac{z-x}{x z}\right)=f(l, m) \\
\frac{\partial u}{\partial x}=\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial x}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial x}=\frac{\partial u}{\partial l}\left(\frac{-1}{x^{2}}\right)+\frac{\partial u}{\partial m}\left(\frac{-1}{x^{2}}\right)
\end{array}
$$

$$
\begin{aligned}
& x^{2} \frac{\partial u}{\partial x}=-\left(\frac{\partial u}{\partial l}+\frac{\partial u}{\partial m}\right)-(1) . \\
& \frac{\partial u}{\partial y}=\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial y}+\frac{\partial y}{\partial m}, \frac{\partial m}{\partial y} \\
&=\frac{\partial u}{\partial l}\left(\frac{1}{y^{2}}\right)+\frac{\partial u}{\partial m} \cdot 0 . \\
& y^{2} \frac{\partial u}{\partial y}=\frac{\partial u}{\partial l} \\
& \frac{\partial u}{\partial z}=\frac{\partial u}{\partial l} \cdot \frac{\partial l}{\partial z}+\frac{\partial u}{\partial m} \cdot \frac{\partial m}{\partial z} \\
&= \frac{\partial u}{\partial l} \cdot 0+\frac{\partial u}{\partial m}\left(\frac{1}{z^{2}}\right) \\
& z^{2} \frac{\partial u}{\partial z}=\frac{\partial u}{\partial m} \text { (3). }
\end{aligned}
$$

Adding (1), (2) \& (3)

$$
x^{2} \frac{\partial u}{\partial x}+y^{2} \frac{\partial u}{\partial y}+z^{2} \frac{\partial u}{\partial z}=-\left(\frac{\partial u}{\partial l}+\frac{\partial u}{\partial m}\right)+\frac{\partial u}{\partial l}+\frac{\partial u}{\partial m}=0
$$

Maxima and Minima function of two variables:
Let $f(x, y)$ be a function of tho variables be $x \& y$.
LAt $x=a, y=b, f(x, y)$ is said to have maximum or minimum value if $f(a, b)>f(a+h, b+k)$ or $f(a, b)<f(a+h, b+k)$ respective where $h \& k$ are small values.
Extreme value:
$f(a, b)$ is said to be an extreme value of f if it is a maximum or minimum value.
i) Necessary Conditions: $\mathrm{f} \boldsymbol{\mathrm { C }} \mathrm{f}(x, y)$

The necessary Conditions for $f(x, y)$ to have max or min value. at a, b are

$$
f_{x}(a, b)=0, f_{y}(a, b)=0
$$

ii) Sufficient conditions:
suppose that $f_{x}(a, b)=0, f_{y}(a, b)=0$ and
Let $\frac{\partial^{2} f}{\partial x^{2}}(a, b)=\gamma$

$$
\begin{aligned}
& \frac{\partial^{2} \rho_{-}}{\partial x \partial y}(a, b)=s \\
& \frac{\partial^{2} f}{\partial y^{2}}(a, b)=t
\end{aligned}
$$

then i) $f(a, b)$ is a max value if $r t-\delta^{2}>0$ and r<0
ii) $f(a, b)$ is a min value if $\gamma t-s^{2}>0$ and $\gamma>0$.
iii) $f(a, b)$ is not an extienc value if $r t-s^{2}<0$
iv) If $r t-s^{2}=0$ then $f(x, y)$ fails to have maximum or minimum value and it needs
fetter investigation.
Stationary value :-
$f(a, b)$ is Said to be a Stationary value of $f(x, y)$ if $f_{x}(a, b)=0, f_{y}(a, b)=0$. Thus every crane value is a stationary value. But the converse may not be true:

Sndalle point:-
A point (a, b) is said to be saddle point of $f(x, y)$ if $r t-s^{2}<0$ or if $f(x, y)$ is not an extreme value.
working procedure:-
Let $f(x, y)$ be a function of "two variables $x \& y$
skp-1 $:$ differentiate $f(x, y)$ whir. t \& \& y partially, we get

$$
f_{x}(o r) \frac{\partial x}{-\partial x}, f_{y}(o n) \frac{\partial f}{\partial y}
$$

Sxep-2: Equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ to zero, we get

$$
\frac{\partial f}{\partial x}=0 \text {-(1) }, \quad \frac{\partial f}{\partial y}=0
$$

Stp-3: Solving eq (1) \& (2), we get the stationary points... $\left(a_{1}, b_{1}\right) \cdot\left(a_{2}, b_{2}\right)$ \qquad
S余-4: Find r, s, t_{i}, \ldots

$$
\gamma=\frac{\partial^{2} f}{\partial x^{2}} ; \quad s=\frac{\partial^{2} f}{\partial x \partial y}, t=\frac{\partial^{2} f}{\partial y^{2}} .
$$

AP -5: Case -i.
at the point $\left(a_{1}, b_{1}\right)$

Find the values of r, s \&t at the point $a_{1}, b_{\text {, }}$ i) If $r t-s^{2}>0$ \& $r<0$ then f is maximum at $\left(a_{1, b}\right)$ and the maximum value is $+\left(a_{1}, \dot{b}_{1}\right)$.
ii) If $r t-s^{2}>0$ \& $r>0$ then f is minimum at $(a, r b$, and the minimum value is $f\left(a_{1}, b_{1}\right)$.
iii) of $r t-s^{2}<0$ then f is neither maximum nor mixing at $\left(a_{1}, b_{1}\right)$
iv) If $r t-s^{2}=0$. no conclusion can drawn.

Case-in:
At the point $\left(a_{2}, b_{2}\right)$
we proceed lite case (1)
Q) Find an: extreme values of the function: $f=x^{3}+y^{3}-63 x-63 y+12 x y$.
Sol: G.T, $f=x^{3}+y^{3}-63 x-63 y+12 x y$
Step-(1) diff (1) wort $x \& y$ partially, we get

$$
\begin{align*}
& f_{x}^{\prime}=\frac{\partial f}{\partial x}=3 x^{2}-63+12 y \tag{1}\\
& f_{y}=\frac{\partial f}{\partial y}=3 y^{2}-63+12 x
\end{align*}
$$

Step-(2) Equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}:$ to. zero, we get.

$$
f_{x}=0 \text { i.e } \quad 3 x^{2}-63+12 y=0
$$

$$
\begin{align*}
f_{y}=0 \quad \text { i.e } \quad x^{2}-21+4 y & =0 \tag{2}\\
3 y^{2}-63+12 x & =0 \\
y^{2}-21+4 x & =0 \tag{3}
\end{align*}
$$

step -(2) Solving iq (1) \&(3).
(2)-(3) gives, $x^{2}-y^{2}+4 y-4 x=0$.

$$
\begin{gather*}
(x-y)(x+y)+4(y-x)=0 \\
(x-y)(x+y-4)=0 \\
x-y=0 \tag{5}
\end{gather*}
$$

stop. Solving (9) \& (4), we get

$$
\begin{gathered}
y^{2}+4 y-21=0 \\
y=-7,3
\end{gathered}
$$

when $y=-7, x=-7 \quad[\because$ from (4) $]$
when $y=3, x=3$
from (2) \& (5)., we get

$$
\begin{gathered}
x^{2}+4(4-x)-21=0 \\
x^{2}-4 x-5=0 \\
x=5,-1
\end{gathered}
$$

when $x=5, y=-1$
when $x=-1, y=5 \quad[\because$ from (5) $]$
\therefore The stationary points are

$$
\begin{aligned}
& p_{1}(-7,-7) \quad p_{2}(3,3) p_{3}(5,-1)^{1} p_{4}(-1,5) . \\
& \gamma=\frac{\partial^{2} f}{\partial x^{2}}=6 x . \\
& S=\frac{\partial^{2} f}{\partial x \partial y}=12 . \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=6 y .
\end{aligned}
$$

Case (1): At the point $p_{1}(-7,-7)$

$$
\begin{gathered}
\gamma=6 x=-42<0 \\
s=12 \\
t=6 y=-42 .
\end{gathered}
$$

$$
r t-s^{2}=(-4.2)(-4.2)-12^{2}=1764-144=1620
$$

Here, $\gamma<0$ and $\gamma t-s^{2}>0$
$\therefore f$ is maximum at the point $(-7,-7)$.

$$
f_{\text {max }}=(-7)^{3}+(-7)^{3}-63(-7)^{-63}(-7)+12(-7)(-7)=-754
$$

Case-(2) : At the point $P_{2}(3,3)$

$$
\begin{aligned}
& \gamma=6 x=18>0 \\
& S=12 \\
& t=6 y=18 \\
& \gamma t-s^{2}=18^{2}-12^{2}=180>0
\end{aligned}
$$

Here $r>0$ \& $r t-s^{2}>0$.
$\therefore f$ is minimum at the point $(3,3)$.

$$
f_{\text {min }}=(3)^{3}+(3)^{3}-63(3)-63(3)+12(3)(3)=-216
$$

Case-(3): At the point : $p_{3}(5,-i)$.

$$
\begin{aligned}
& r=6 x=30 \\
& s=12 \\
& t=6 y=-6 \\
& r t-s^{2}=-180-144=-324<0 \\
& (1-) \\
& \text { ere } r t-s^{2}<0,
\end{aligned}
$$

Here $r t-s^{2}<0$, $x>0$.
$\therefore f$ is neither max nor min at the paint $(5,-1)$.
Case -(4): At the point $P_{4}(-1,+5)$

$$
\begin{aligned}
r & =6 x \\
s & =-6 . \\
s & =6 y \\
t & =6 y \\
\gamma t-s^{2} & =-180-144=2
\end{aligned}
$$

Here $\gamma t-s^{2}<0$
$\therefore f$ is neither max nor min at "tiv point $(-1,5)$.
\therefore Maximum Value of f at the point $(-7,-7)$ is 784 \therefore Minimum Value of f at the paint $(3,3)$ is -216
Q) Find the $\max \&$ min values of the function

$$
f=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4
$$

60): G.T, $f=x^{3}+3 x y^{2}-3 x^{2}-3 y^{2}+4$.
step -(1) : diff (1) w.r.t $x \& y$ partially.

$$
\begin{aligned}
& f_{x}=\frac{d f}{\partial x}=3 x^{2}+3 y^{2}-6 x \\
& f_{y}=\frac{\partial f}{\partial y}=6 x y-6 y
\end{aligned}
$$

Step-(2): Equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ to zero!

$$
\begin{array}{ll}
f_{x}=0 . \text { i.e } \quad & 3 x^{2}+3 y^{2}-6 x=0 \\
& x^{2}+y^{2}-2 x=0 \tag{2}
\end{array}
$$

$f_{y}=0$ i.e $\quad 6 a y-6 y=0$

$$
\begin{equation*}
x y-y=0 \tag{3}
\end{equation*}
$$

Step-(3):' Solving eq (2) \& (3)..., we get

$$
\begin{aligned}
x & =0,1,2 \\
y & =0, \pm 1 \\
r=\frac{\partial^{2} f}{\partial x^{2}} & =6 x-6 \\
S=\frac{\partial^{2} f}{\partial x \partial y} & =6 y \\
t=\frac{\partial^{2} f}{\partial y^{2}} & =6 \dot{x}-6 .
\end{aligned}
$$

Case -(1)

$$
\begin{aligned}
& \text { at } P_{1}(0,0) \\
& r=-6 \\
& s=0 \\
& t=-6 \\
& r t-s^{2}=36>0
\end{aligned}
$$

Here $\gamma<0$, int :-s $s^{2}>0$
$\therefore f$ is max at $p_{1}(0,0)$.

$$
f_{\max }=4
$$

Case -(2)

$$
\begin{aligned}
& \text { At } P_{2}(2,0) \\
& r=6 \\
& s=0 \\
& t=6 \\
& r t-s^{2}=36>0
\end{aligned}
$$

Here $r>0, r t-j>0: 1 \cdot$
$\therefore f$ is min at $P_{2}(2,0) ? \quad \because \quad$ and

$$
f_{\min }=8-12+4=0
$$

Case-(3) At $(1, \pm 1)$

$$
\begin{aligned}
\gamma & =0 \\
s & = \pm 6 \\
t & =0 . \\
r t-s^{2} & =-36<0
\end{aligned}
$$

$\therefore f$ is not an extreme value.
a) Find the extremum values of the function Sin x $\sin y, \sin (x+y)$ where $0<x<\pi, 0<y<\pi$,外, GT, $f=\sin x, \sin y, \sin (x+y)$

Step -1? diff (1) writ x \& y partially.
Here $f_{x}=\frac{\partial f}{\partial x}=\sin y[\cos \dot{x} \sin (x+y)+\sin x(\cos (x+y)]$

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=\sin y \sin (2 x+y) \\
& f_{y}=\frac{\partial f}{\partial y}=\sin x[\cos y \sin (x+y)+\sin y \cos (x+y)]
\end{aligned}
$$

$$
\frac{\partial f}{\partial y}=\operatorname{Sin} \dot{x} \sin (x+2 y)
$$

step-(2): Equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ to zero, we -get

$$
f_{x}=0 \text { i.e } \sin y \sin (2 x+y)=0 \text {. }
$$

$\sin y \neq 0$ for $0<y<\pi$.

$$
\begin{array}{rr}
\sin (2 x+y)=0 & \because 2 x+y \neq 0 \\
2 x+y=0 & \text { for } 0<x<\pi \\
f_{y}=0 \quad \text { i.e } \sin x \sin (x+2 y)=0 & 0<y<\pi
\end{array}
$$

$\sin x \neq 0$ for $0<y<\pi$

$$
\begin{aligned}
& \sin (x+2 y)=0 . \\
& x+2 y=\pi
\end{aligned}
$$

St x_{p}-(3): Solving (2) \& (3), weget.

$$
x=\frac{\pi}{3}, y=\frac{\pi}{3}
$$

\therefore The slationary point is $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$.
step-(4):

$$
\begin{aligned}
& r=\frac{\partial^{2} f}{\partial x^{2}}=2 \sin y(\cos (2 x+y)) \\
& s=\frac{\partial^{2} f}{\partial x \partial y}=\cos x \sin (x+2 y)+\sin \cos (x+2 y) \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=2 \sin x \cos (x+2 x+2 y) .
\end{aligned}
$$

Step-6):
Case-i) At the point $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$

$$
\begin{align*}
& \gamma=2 \sin \frac{\pi}{3} * \cos \left(\frac{2 \pi}{3}+\frac{\pi \pi}{3}\right)=\frac{1}{2} \tag{3}\\
& s=\sin \left(\frac{2 \pi}{3}+\frac{2 \pi}{3}\right)=-\frac{\sqrt{3}}{2} \\
& t=2 \sin \frac{\pi}{3} \cos \left(\frac{\pi}{3}+\frac{2 \pi}{3}\right)=-\sqrt{3}
\end{align*}
$$

$$
\gamma t-s^{2}=3-\frac{3}{4}=\frac{9}{4}>0
$$

Here $\gamma<0 \& \gamma t-s^{2}>0$.
CIf is maximum at the point $\left(\frac{\pi}{3}, \frac{\pi}{3}\right)$

$$
\therefore f_{\max }=\sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}\right) \sin \left(\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{3}{4}\left(\frac{1}{2}\right)=\frac{3}{8}
$$

Q) Find the extremum : valuies of the fuinction

$$
\begin{equation*}
f=\sin x+\sin y+\sin (x+y) \tag{1}
\end{equation*}
$$

501: Giver that, $f(x, y)=\sin x+\sin y+\sin (x+y)$
If Step -(1): diff (1) w.rt x \& y partially.

$$
\begin{align*}
f_{x}=\frac{\partial f}{\partial x} & =\cos x+[\cos y \sin x+\cos x \sin y] \\
& =\cos x+[\cos x \cos y+\sin x \sin y] \\
& =\cos x+\cos (x+y) \tag{2}\\
f_{y}=\frac{\partial f}{\partial y} & =\cos y+\cos (x+y) \tag{3}
\end{align*}
$$

conde Step-(2): Equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ to 0 , we get $\cos x=\cos y$ $x=y$

$$
\begin{aligned}
& f_{x}=0 \quad \text { i.e } \cos x+\cos (x+y)=0 \\
& =\left(2 \cos \frac{3 x}{2} \cos \frac{x}{2}=0\right. \\
& \quad \cos x+\cos 2 x=0 \\
\Rightarrow & \left.\frac{3 x}{2}= \pm \frac{\pi}{2} \quad \operatorname{cov}\right) \\
\Rightarrow & x= \pm \frac{\pi}{3}= \pm \frac{\pi}{2} \text { (or) } \quad x= \pm \pi \\
\therefore & x= \pm \frac{\pi}{3} \quad, \quad y= \pm \frac{\pi}{3} \quad \text { i.e. }\left(\pm \frac{\pi}{3}, \pm \frac{\pi}{3}\right)
\end{aligned}
$$

and $x= \pm \pi, y= \pm \pi$ i.e $(\pm \pi, \pm \pi)$.

Step-(4):

$$
\begin{aligned}
& r=\frac{\partial^{2} f}{\partial x^{2}}=-\sin x-\sin (x+y) \\
& s=\frac{\partial^{2} f}{\partial x \partial y}=-\sin (x+y) \\
& t=\frac{\partial^{2} f}{\partial y^{2}}=-\sin y-\sin (x+y)
\end{aligned}
$$

Step -(5):

$$
\begin{aligned}
& \quad \text { At }\left(\frac{\pi}{3}, \frac{\pi}{3}\right), \\
& l=-\sqrt{3}, m=-\frac{\sqrt{3}}{2} \text { and } n=-\sqrt{3} \\
& \therefore \quad r t-s^{2}=\frac{9}{4}>0, \text { and } r<0 .
\end{aligned}
$$

f. is maximum at $\left[\frac{\pi}{3}, \frac{\pi}{3}\right]$

At $\left(\frac{\pi}{3}, \frac{\pi}{3}\right), \quad f=\frac{3 \sqrt{3}}{2}$
\therefore Maximum value of $t=\frac{3 \sqrt{3}}{2}$. r is positwe at $\left(\frac{-\pi}{3}, \cdots \frac{-\pi}{3}\right)$.
$\therefore f$ hos a minimum at $\left(\frac{-\pi}{3}, \frac{-\pi}{3}\right)$ Minimum value of $v=\frac{-3 \sqrt{3}}{2}$.

At $(\pm \pi, \pm \pi), r t-5=0$
There is a need for investigation
Q) A rectangular box opened at the top is to have volume of 32 Cubic units. Find the dimensions of the box least material for its Conslutution:

Sol:. Let $x, y \& z$ be the length, breadth \& height of the rectangular box.
area of the bottom of rectangular box is $x y$

Area of the two Sides (left. \& right) is $y z+y z=2 y z$ Area of the two sides (front \& back) is $x_{3}+x_{3}=2 x_{3}$. Total surface area of the "opened rectangular box is $S=x y+2 y z+2 z x$.

We have volume $V=x y z$.
Giver that, Nolume $v=32$
i.e, $x_{y z}=32$.

$$
\begin{equation*}
z=\frac{32}{x y} \tag{2}
\end{equation*}
$$

From (1) \& (1).

$$
\begin{equation*}
S=x y+\frac{64}{y}+\frac{64}{x} \tag{3}
\end{equation*}
$$

Let $f=x y+\frac{64}{x}+\frac{64}{y}$
Step-(1): diff (3) wirit x \&y partially, we get.

$$
\begin{aligned}
& f_{x}=y-\frac{64}{x^{2}} \\
& f_{y}=x-\frac{64}{y^{2}}
\end{aligned}
$$

Step-(2): Equate $\frac{\partial f}{\partial x} \cdot \& \frac{\partial f}{\partial y}$ to zero, we get.

$$
\begin{align*}
& f_{x}=0 \text { i.e. } y-\frac{64}{x^{2}}=0 \\
& \vdots \tag{2}\\
& y=\frac{64}{x^{2}}
\end{align*}
$$

$$
f_{y}=0 \text { i.e }, x-\frac{64}{y^{2}}=0
$$

$$
x=\frac{64}{y^{2}}
$$

Step-(3): Solving (4) \& (5), we get.

$$
\begin{gathered}
y=\frac{64}{x^{2}} \\
y=\frac{64}{\left(\frac{64}{y^{2}}\right)^{2}}=\frac{64 y^{4}}{64,64} \\
y^{4}-64 y=0 \\
y\left(y^{3}-64\right)=0 \\
y=0, y=4 \\
x
\end{gathered}
$$

We neglect $y=0$ because breadth cmot be zero.
phon $y=4$

$$
x=\frac{64}{4^{2}}=4 \quad \because \text { from (s). }
$$

\therefore The stationary point is $(4,4)$
stop -(4):-

$$
\begin{aligned}
& r=f_{x x}=\frac{128}{x^{3}} \\
& \dot{S}=f_{x y}=1 \\
& t=f_{y y}=\frac{128}{y^{3}}
\end{aligned}
$$

step -(5):-
Case-is At the point $(4,4)$

$$
\begin{gathered}
r=\frac{128}{x^{3}}=2>0 . \\
s=1 \\
t=\frac{128}{y^{3}}=2 \\
\gamma t-s^{2}=4-1=3>0 .
\end{gathered}
$$

Here $r>0, r t-s^{2}>0$
$\therefore f$ is minimum at the point $(4,4)$.
we have $z=\frac{32}{x y}$

$$
z=\frac{32}{4(4)}=2
$$

\therefore dimensions of the box least mativial for its Consbuvtion is $l=4, b=4 \& h=2$
Q) A rectangular bone opened at the top is 'to have volume of 120 cubic units. Find. the dimensions of the box least material for its construction,:
Sol: Let x, y, z be the $l, b \& h$ of rectangular box, Area of the bottom of rectangular box is $x y$,

Area of the two sides (left \& right)
is $y_{z}+y z=2 y z$
shea of the tor sides (front \& back) is $x_{3}-1 x_{3}=2 x_{3}$,
Total Surface area of the opened rectangular box
is $S=x y+2 y z+23 x$
we have volume $V=x_{y} z$
GIT, $\quad V=120$
i.e $x y z=120$

$$
\begin{equation*}
z=\frac{120}{x y} \tag{2}
\end{equation*}
$$

From (1) \&(2)

$$
\begin{align*}
& S=x y+\frac{240}{y}+\frac{240}{x} \\
& \text { Let } f=x y+\frac{120}{x}+\frac{120}{y} \tag{ఆ}
\end{align*}
$$

Step -(1): diff (3) wirnt $x \& y$ partially:

Stop -(2): equate $\frac{\partial f}{\partial x} \& \frac{\partial f}{\partial y}$ to zero.

$$
\begin{aligned}
& f_{x}=y-\frac{120}{x^{2}} \\
& f_{y}=x-\frac{120}{y^{2}}
\end{aligned}
$$

$$
\begin{equation*}
f_{x}=0 \text { ire } \quad y-\frac{120}{x^{2}}=0 \Rightarrow y=\frac{120}{x^{2}} \tag{4}
\end{equation*}
$$

Scanned with CamScanner Scanned with CamScanner
$f_{y}=0$ i.e,$x-\frac{120}{y^{2}}=0 \Rightarrow x=\frac{120}{y^{2}}$
staf-(3): Solving (4) \& (5), we get

$$
\begin{aligned}
& y=\frac{120}{x^{2}} \\
& y=\frac{180}{\left(\frac{120}{y^{2}}\right)^{2}}=\frac{120 y^{4}}{120 \cdot 120} \\
& y^{4}-120 y=0 . \\
& y\left(y^{3}-120\right)=0 \\
& y=0, \quad y=\sqrt[3]{120}=2 \sqrt{30}
\end{aligned}
$$

we neglect $y=0$ because breadth cannot be zero.
when $y=2 \sqrt{30}$

$$
x=\frac{12 \phi}{4(3 \phi)}=1
$$

\therefore T. The stationary point is $(1,2 \sqrt{30})$
Slap -(4):

$$
\therefore \quad \because n=f_{x y}=1
$$

$$
\begin{aligned}
& r=f_{x x}=120\left(\frac{2}{x^{3}}\right)=\frac{240}{x^{3}}: \\
& s=f_{x y}=1 \\
& t=f_{y y}=\frac{240}{y^{3}}
\end{aligned}
$$

stog-(5): Case -i? ot point $(1,2 \sqrt{3} 0)$.

$$
\begin{aligned}
& r= \frac{240}{x^{3}}=\frac{240}{1}>0 \\
& s=1 \\
& t=\frac{240}{y^{3}}:=\frac{240}{240 \sqrt{3}}=\frac{1}{\sqrt{3}}>0 \\
& \text { rt }-s^{2}=\frac{240}{\sqrt{3}}>0 \\
& \text { Here, } \gamma>0, \gamma t-s^{2}>0
\end{aligned}
$$

$\therefore f$ is minimum at point $(1,2 \sqrt{30})$
we have $z=\frac{120}{x y}=\frac{120}{2 \sqrt{30}}=\frac{60}{\sqrt{80}}$.
\therefore. dimensions of the box least material. for its construction, is $l=1, b=2 \sqrt{30}, h=2 s_{30}$.
Q) Find the point on the Surface $z^{2}=x y+1$, nearest to the origins.
Sol: Let $O(0,0,0)$ be the origin:
$P^{\prime}(x, y, z)$ be an arbitary point on surface $z^{2}=x y+1$

$$
\begin{aligned}
& O P=\sqrt{x^{2}+y^{2}+z^{2}} \\
& O P^{2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

G.T, eq. of the surface is : $z^{2}=x_{j j}+1$-(1).

$$
\begin{equation*}
O P^{2}=x^{2}+y^{2}+x y+1 \text { (for (1)]. } \tag{3}
\end{equation*}
$$

- let $f=x^{2}+y+x y+1$
we have to minimize the' function if "satisfying the Condition (1)

Stop -(1): diff (3) war, ' $x^{\prime} \&^{\prime} y^{\prime}$ partially, we get

$$
f_{x}=2 x+y
$$

$$
f_{y}=2 y+x
$$

ski-8s Equate $f_{x} \& f_{y}$ to zero.
$f_{x}=0$ i.e $2 x+y=0$
$f_{y}=0$. .e $2 y+x=0$:
Stap-(3): Solving (4) \& (5), we get

$$
x=0, y=0 .
$$

\therefore The stationary point is $(0,0)$.
step -(4) $=$

$$
\begin{aligned}
& r=f_{x x}=2 \\
& s=f_{x y}=1 \\
& t=f_{y y}=2
\end{aligned}
$$

Step-(5), lase -is
oft the point $(0,0)$

$$
\begin{aligned}
\gamma & =2>0 \\
\rho & =1 \\
t & =2 \\
\gamma t-s^{2} & =4-1=3>0
\end{aligned}
$$

Here of is $\gamma>0$ \& $\gamma t-s^{2}>0$.
$\therefore f$ is minimum at the point $(0,0)$.
We have $z^{2}=x y+1$

$$
\begin{aligned}
& z^{2}=1 \\
& z= \pm 1
\end{aligned}
$$

\therefore points on the Surface nearest to the origin is $(0,0,1) \&(0,0,-1)$
Q) Find the point on the surface $x y z^{2}=2$ nearest to the Origin.
Sol: Let $C(0,0,0)$ be the origin..
Let $P(x, y, z)$ be any point on arbistary on the Surface

$$
\begin{gathered}
x y z^{2}=2 . \\
O P=\sqrt{x^{2}+y^{2}+z^{2}} \\
O P^{2}=x^{2}+y^{2}+z^{2}
\end{gathered}
$$

G.T, eq of the Surface is $z^{2}=\frac{2}{x y}$-(1)

Let $f=x^{2}+y^{2}+\frac{2}{x y}$
we have to minimize the function of Satisfofing the condition (1)
Step-Q: diff (3) writ $x \& y$ partially.

$$
\begin{aligned}
& f_{x}=2 x+\frac{2}{y}\left(\frac{-1}{x^{2}}\right) \\
& f_{y}=2 y-\frac{2}{x y^{2}}
\end{aligned}
$$

step-(3):
equate $f_{x} \& f_{y}$ to: zero:

$$
\begin{align*}
& 2 x-\frac{2}{x^{2} y}=0 \tag{4}\\
& 2 y-\frac{2}{x y^{2}}=0
\end{align*}
$$

Step -(3): Solving (4) L (5).

$$
\begin{aligned}
f_{x}= & \frac{2 x^{3} y-2}{y x^{2}=0} \quad, \quad f_{y}=\frac{y^{3} x-1}{x y y}=0 . \\
& x^{3} y=1 \\
& x^{3} y=y^{3} x . \\
& x^{3} y-y^{3} x=0 . \\
& x y\left(x^{2}-y^{2}\right)=0 \\
x^{2}-y^{2}=0 \Rightarrow & x^{2}=y^{2} \\
& x= \pm 4
\end{aligned} \quad(\because x \neq 0, y \neq 0)
$$

Scanned with CamScanner Scanned with CamScanner

1. The stationary points are $\rho_{1}(1,1) \quad \rho_{2}(1,-1)$

$$
\begin{gathered}
f_{1 x}=2+\frac{4}{x^{3} y}, \quad f_{y y}=2+\frac{4}{y^{3} x}, f_{x y}=\frac{2}{x^{2} y^{2}} \\
r=6>0 \\
s=f_{x y}=2 \\
t=f_{y y}=6 \\
\gamma t-s^{2}=6(6)-2=36-2=32>0
\end{gathered}
$$

Now $z^{2}=\frac{2}{x y} \Rightarrow 2=2$

$$
\therefore \quad \therefore z=\sqrt{2}
$$

\therefore The points on the Surface-nearest to the origin

$$
\begin{aligned}
& \text { is }(1,1, \sqrt{2})=\sqrt{1+1+2}=2 . \\
&(1,1,-\sqrt{2})
\end{aligned}
$$

Lagrange's method of undetermined multipliers:
Suppose $f(x, y, z)$ is a function of 3 variables $x \& y \& z$, which are connected by the relation

$$
\phi(x, y ; z)=0 \text { (2): }
$$

z value from: (2) Can be solved \& "Siubstituteil in (1), the max or min of f cain' be found by $\frac{\partial f}{\partial x}=0, \frac{\partial f}{\partial y}=0$ \& testing $i r>0$ \& $\quad r t-s^{2}>0$ (or) $r<0$ But in all cases int is not possible. We com use lagranges method.

Working Procedure:
Suppose it is required to find the extremum for the function ' $f(x, y, z)$ Subject to the condition $\phi(x, y, z)=0$
Step-(1): Form the lagrangish function.

$$
F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z)-(2)
$$

where λ is called the lagrange multiplier which is. determined by the following conditeris.
Step -(2): Diff (2) whir, x, y \& z partially. \& equate tozero,

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0 \text { in } \frac{\partial f}{\partial x}+\lambda \frac{\partial \phi}{\partial x}=0 \tag{3}\\
& \frac{\partial F}{\partial y}=0 \quad \text { i.e } \frac{\partial f}{\partial y}+\lambda \frac{\partial \phi}{\partial y}=0 \\
& \frac{\partial F}{\partial z}=0 \text { i.e } \frac{\partial f}{\partial z}+\frac{\lambda \partial \phi}{\partial z}=0 . \tag{5}
\end{align*}
$$

Step (3): Solve the eq (1), (3), (4) \& (5) the values of $\therefore x, y: 1, z$, so obtained will give sis the slationain: point of $f(x, y, z)$.
Note:
To find the max or \min for a function, $f(x, y ; z)$: Subject to the condition, $\phi_{1}(x, y, z)=0 \phi_{2}(x, y, z)=0$ Form the lagraingiath function as.

$$
F(x, y, z)=: f(x, y, z)+\lambda \phi_{1}(x, y, z)+\lambda_{2} \phi_{2}(x, y, z)
$$

where $\lambda_{1} \& \lambda_{2}$ are lagrange multipliers.
Q) Divide 2.4 into 3 points such, that continued product of the first, square of the second, \&, Cube of third is maximum.

Sol: G.T, the number is 2.4.
Let x, y, z be the 3 parts of 24 .
So , $x+y+z=24$
G.T, the Continued product of the first, square of He second \& cube of the third i.e $x y^{2} z^{3}$.

Let $f=x y^{2} z^{3}$

$$
\begin{equation*}
\phi=x+y+z-24=0 \tag{1}
\end{equation*}
$$

- We have to maximize the function f and Satisfies the condition (1).
Form the lagrangian function,

$$
\begin{align*}
& F(x, y, z)=+(x, y, z)+\lambda \phi(x, y,-t) \\
& F=x y^{2} z^{3}+\lambda(x+y+z-24):(2) . \tag{2}
\end{align*}
$$

diff (2) ki, r, x, y, z partially

$$
\begin{align*}
& \frac{\partial F}{\partial x}=y^{2} z^{3}+\lambda \\
& \frac{\partial F}{\partial y}=2 x y z^{3}+\lambda \\
& \frac{\partial F}{\partial z}=3 x y^{2} z^{2}+\lambda \tag{5}
\end{align*}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \& \frac{\partial F}{\partial z}$. to zero.

$$
\begin{equation*}
\frac{\partial F}{\partial x}=0 \quad \text { i.e } \quad y^{2} z^{3}+\lambda=0 . \Rightarrow y^{2} z^{3}=\lambda . \tag{3}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial F}{\partial y}=0 \text { i.e } 2 x y^{2} z^{3}+\frac{\partial}{0}=0 \Rightarrow 2 x y z^{3}=-\lambda- \tag{4}\\
& \frac{\partial F}{\partial z}=0 \text { i.e } 3 x y^{2} z^{3}+\lambda=0 \Rightarrow 3 x y^{2} z^{3}=-\lambda \tag{5}\\
& y^{2} z^{3}=2 x y z^{3}=3 x y^{2} z^{2}=-\lambda
\end{align*}
$$

Taking $1^{\text {st }}$ tho members, we get

$$
\begin{align*}
& y^{2} z^{3} \\
&=2 x y-z^{3} \\
& \Rightarrow y=2 x
\end{align*}
$$

Taking. $2^{\text {nd }} \& 3^{\text {rd }}$ members, we get

$$
\begin{align*}
2 x y z^{3} & =3 x y^{2} z^{2} \\
z & =\frac{3}{2} y \tag{7}
\end{align*}
$$

we have $x+y+z=24$

$$
\begin{gathered}
x+2 x+\frac{3}{2} y=24 \\
3 x+\frac{3}{2}(2 x)=24 \\
x=4 \\
y=2(x) \\
y=2(4)=8 \\
x+y+z=24 \\
y+8+z=24 \\
z=24-12 \\
z=12
\end{gathered}
$$

$$
y=2(x)
$$

$$
x+y+z=24
$$

\therefore The slatoinary. point is $(4, r, 12)$.

$$
\begin{aligned}
f_{\max }=x y^{2} z^{3} & =4,8^{2} \cdot 12^{3} \\
& =442365
\end{aligned}
$$

Q) Sum of 3 numbers is constant :P,T their product is max when they are equal.
sol: G.T, the sum of 3 numbers is constant.
Let, $\quad x+y+z=k$.
Let $f=x y z$.

$$
\phi=x+y+z-k=0
$$

we have to minimize the function f and satisfies the condition (1)-

From lagrangian function.

$$
\begin{align*}
& F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z) \\
& F=x y z+\lambda(x+y+z-24) \tag{2}
\end{align*}
$$

diff (2) w,r,t x, y, z partially.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=y z+\lambda \\
& \frac{\partial F}{\partial y}=x z+\lambda \\
& \frac{\partial F}{\partial z}=x y+\lambda
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ to, zero:.

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0 \text { i.e } y z+\lambda=0 \Rightarrow y z=-\lambda \tag{3}\\
& \frac{\partial F}{\partial y}=0 \text { i.e } x z+\lambda=0 \Rightarrow x z=-\lambda \tag{4}\\
& \frac{\partial F}{\partial z}=0 \quad \text { i.e } \quad x y+\lambda=0 \Rightarrow x y=-\lambda \tag{5}
\end{align*}
$$

$$
x y=y z=z x=-\lambda
$$

Taking $1^{\text {st }}$ two members, we get

$$
\begin{aligned}
& y z=z x \\
& x=y-(6)
\end{aligned}
$$

Taking $2^{\text {nd }} \& 3^{\text {rd }}$ members, we get

$$
\begin{gather*}
z x=x y \\
y=z .
\end{gather*}
$$

we have $x+y+z=k$

$$
\begin{gathered}
y+y+y=k \\
3 y=k \\
y=\frac{k}{3} \\
\therefore \quad y=z \quad \vdots \\
z=\frac{k}{3} \\
x=y \\
x=\frac{k}{3} \\
x+y+z=k \\
\frac{k}{3}+\frac{k}{3}+\frac{k}{3}=k
\end{gathered}
$$

\therefore The stationary points is $\left(\frac{k}{3}, \frac{k}{3} ; \frac{k}{3}\right)$

$$
f_{\max }=x y z=\frac{k^{3}}{3}
$$

Q) Find a point on the plane $3 x+2 y+z=12$ which is nearest to the origin.
Le): Let $O(0,0,0)$ be the origin.
Let $P(x, y, z)$ be any point on the place.

$$
\begin{aligned}
& O P=\sqrt{x^{2}+y^{2}+z^{2}} \\
& O P^{2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Let $f=x^{2}+y^{2}+z^{2}$
GIT, the eq of the plane $3 x+2 y+z=12$
Let $\phi=3 x+2 y+z-12=0$;
We have to minimize the function f and subject to the Condition (1) $\phi(x, y, z)=0$
form the lagrangian function.

$$
\begin{align*}
& F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z) \\
& F=\left(x^{2}+y^{2}+z^{2}\right)+\lambda(3 x+2 y+z-12) \tag{2}
\end{align*}
$$

diff (2) w,r,t x, y, z partially.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x+3 \lambda \\
& \frac{\partial F}{\partial y}=2 y+2 y \\
& \frac{\partial F}{\partial z}=2 z+\lambda
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \& \frac{\partial F}{\partial z}$ to zero.

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0 \text { i.e } 2 x+3 \lambda=0 \Rightarrow \frac{2 x}{3}=-\lambda . \tag{3}\\
& \frac{\partial F}{\partial y}=0 \text { i.e. } y+\lambda=0, \tag{4}\\
& \frac{\partial f}{\partial z}=0 \text { i.e } 2 z+\lambda=0=-\lambda= \tag{ㄷ}
\end{align*}
$$

From (3), (4) 8 (6) we cam write

$$
\frac{2 x}{3}=y=2 z=-\lambda
$$

we have $3 x+2 y+z=12$

$$
\begin{gathered}
3 x+2\left(\frac{2 x}{3}\right)+\frac{x}{3}=12 \\
x=\frac{18}{7} \\
\left.y=\frac{2 x}{3}=\frac{2}{3} \times \frac{18}{7}=\frac{12}{7}, \quad \begin{array}{l}
2 z=\frac{2 x}{3} \\
z=\frac{x}{3}
\end{array}\right] \\
z=\frac{18}{21}=\frac{6}{7}
\end{gathered}
$$

\therefore The stationary posit is $\left(\frac{18}{7}, \frac{12}{7}, \frac{6}{7}\right)$
Hence $\left(\frac{18}{7}, \frac{12}{7}, \frac{6}{7}\right)$ is the point on the plaice nearest to the origin.
Minimum value of $O \rho=\sqrt{\left(\frac{18}{7}\right)^{2}+\left(\frac{12}{7}\right)^{2}+\left(\frac{6}{7}\right)^{2}}$

$$
=
$$

Q) Find the point on the plane $x+2 y+3 z=4$: that is closest to the origin.
Sol: Let $O(0,0,0)$ be the Origin,
Let $P(x, y, z)$ be any point on the plane.

$$
\begin{aligned}
& O P=\sqrt{x^{2}+y^{2}+z^{2}} \\
& O P^{2}=x^{2}+y^{2}+z^{2}
\end{aligned}
$$

Let $f=x^{2}+y^{2}+z^{2}$.
G.T ; the eq of plane $x+2 y+3 \dot{3}=4$.

Let $\phi=x+2 y+3 z-4=0$

We have to minimize the function f \& Subject to the condition (1) $\phi(x, y, z)=0$.
focorn the lagrangian function.

$$
\begin{align*}
& -F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z) \\
& \quad F=\left(x^{2}+y^{2}+z^{2}\right)+\lambda(x+2 y+3 z-4) \tag{2}
\end{align*}
$$

diff (1) br xt $x_{1} y: z$ partially,

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x+\lambda \\
& \frac{\partial F}{\partial y}=2 y+2 \lambda \\
& \frac{\partial F}{\partial t}=2 z+3 \lambda
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ to zero.

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0, \text { i, } e, 2 x+\lambda \Rightarrow 2 x=-\lambda-\mathbb{3} \tag{3}\\
& \frac{\partial F}{\partial y}=0 \text { i le } 2 y+2 \lambda \Rightarrow y \Rightarrow \lambda=-\lambda \tag{4}\\
& \frac{\partial F}{\partial z}=0 \text { ire } 2 z+3 \lambda \Rightarrow \frac{2 z}{3}=-\lambda
\end{align*}
$$

From (3), (4) \&(5) we can write

$$
\alpha x=y=\frac{2 z}{3}=-\lambda
$$

we have $x+2 y+3 z=4$

$$
\begin{gathered}
2 x+4 x+3 x=4 \\
9 x=4 \\
\because \quad x=\frac{4}{9} \\
y=2 x=2\left(\frac{4}{9}\right)=\frac{8}{9} \\
z=3 x=3\left(\frac{8}{9}\right)=\frac{8}{3}
\end{gathered}
$$

\therefore The Stationary point is $\left(\frac{4}{9}, \frac{8}{9}, \frac{4}{3}\right)$
Hence $\left(\frac{4}{9}, \frac{8}{9}, \frac{4}{3}\right)$ is the point on the plane nearest to the origin:"
Minimum value of $O P=\sqrt{\frac{16}{81}+\frac{64}{81}+\frac{16}{9}}$

Q) Find the volume. of the greatest ricitangilar parallelopiped that can be inscribed. in the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$.

Sol: G.T, $\quad \frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$
—(11) is the eq of ellipsoid
Let $2 x, 2 y, 2 z$ be the length, breadlt \& height of the rectangular parallelopiped. that lain be inscribed in the ellipsoid.
Then the centroid of parallelopiped : Coincides lith center $D(0,0,0)$ of thin, z ellipsoid \& the comers of the pariallilopiped lie on the Surface of the ellipsoid (1).

If (x, y, z) is any corned of the paralleicpiped then, it satisfies condition (1).
Let ' y ' be the volume of parallelepiped $v=$ ie $2 x, 2 y, 2 z=5 x y z$
Let $f=$ fry
we have to find the max value of ' v ' ie ' f '. Subject to the Condition (1):
Consider, tutu lagrangian function $F(x, y, z)=$

$$
\begin{align*}
& f(x, y, z)+\lambda \phi(x, y, z) \\
& F=8 x y z+\lambda\left(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}-1\right) \tag{2}
\end{align*}
$$

diff (2) w,r.t x, y, z partially.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=8 y z+\lambda\left(\frac{2 x}{a^{2}}\right) \\
& \frac{\partial f}{\partial y}=8 x z+\lambda\left(\frac{2 y}{b^{2}}\right) \\
& \frac{\partial f}{\partial z}=8 x y+\lambda\left(\frac{2 z}{c^{2}}\right)
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ to L_{0}^{\prime}.

$$
\begin{array}{r}
E=0 \text { i.e } 8 y z+\frac{2 x}{a^{2}} \lambda=0 . \\
\frac{a^{2} y z}{x}=\frac{-\lambda}{4}-\left(3 x z+\frac{2 y \lambda}{b^{2}}=0\right. \\
\frac{\partial F}{\partial y}=0 \quad \text { i.e } \quad 8 x \\
\frac{b^{2} x z}{y}=\frac{-\lambda}{4} \\
\frac{\partial F}{\partial z=0} \text { i.e } 8 x y+\frac{2 z \lambda}{c^{2}}=0 \\
\frac{c^{2} x y}{z}=\frac{-\lambda}{4} \tag{5}
\end{array}
$$

From (3), (4), \&(5) we write.

$$
\frac{a^{2} y z}{x}=\frac{b^{2} x z}{y}=\frac{e^{2} x y}{z}=\frac{-\lambda^{\prime}}{4}
$$

Taking $1^{\text {st }}$ two members, we get

$$
\begin{equation*}
\frac{a^{2} y z}{x}=\frac{b^{2} x z}{y} \Rightarrow \frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}} \tag{6}
\end{equation*}
$$

Taking, $2^{\text {nd }} \& a^{\text {rd }}$ members, we get

$$
\frac{b^{2} x z}{y}=\frac{c^{2} x y^{1}}{z} \Rightarrow \frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

From (6) \& © , we get :

$$
\frac{x^{2}}{a^{2}}=\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}} .
$$

we have $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$

$$
\begin{array}{ll}
\frac{x^{2}}{a^{2}}+\frac{x^{2}}{a^{2}}+\frac{x^{2}}{a^{2}}=1 & \{ \\
\frac{3 x^{2}}{a^{2}}=1 & \{ \\
x= \pm \frac{a}{\sqrt{3}} &
\end{array}
$$

Similarly, $y= \pm \frac{b}{\sqrt{3}}$

$$
z= \pm \frac{c}{\sqrt{3}} .
$$

The stationary point is $\left(\pm \frac{a}{\sqrt{3}}, \pm \frac{b}{\sqrt{3}}, \pm \frac{c}{\sqrt{3}}\right)$.
Maximum volume $N=8 x y z=8 \frac{a}{\sqrt{3}} \cdot \frac{b}{\sqrt{3}} \cdot \frac{c}{\sqrt{3}}$

$$
\therefore=\frac{8 a b c}{\sqrt[3]{3}}
$$

A) Find the volume of the greatest rectangular. parallelopiped that combe inscribed in the sphere. $x^{2}+y^{2}+z^{2}=a^{2}$

361: GT, $\quad x^{2}+y^{2}+z^{2}=a^{2}$ is the eq of sphere.' Let $2 x, 2 y, 2 z$ be the $l, b \& h$ of rectangular parallelopiped. that C_{n} be inscribed in "sphere, Then the centroid of pariallelopiped cembides with center $O(0,0,0)$ of the Sphere: and corners of parallelopiped lie on the Swifface of sphere (i).
If (x, y, z) is any Corner of parallelopiped then it Satisfies condition. (1).
Let ' v ' be the volume of parallulopiped

$$
\text { Let } f=8 x y z
$$

we have to find 'the max value of ' v ' ice ' f '. Subject to Condition (1):
Consider the lagrangian, function $F(x, y, z)=$

$$
\begin{array}{r}
\quad f(x, y, z)+\lambda \phi(x, y, z) . \\
F=8 x y z+\lambda\left(x^{2}+y^{2}+z^{2}-a^{2}\right) \tag{2}
\end{array}
$$

diff(2) w, r, t x, y, z partially: $:$

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=8 y z+\lambda(2 x) \\
& \frac{\partial F}{\partial y}=8 x z+\lambda(2 y)
\end{aligned}
$$

$$
\frac{\partial f}{i z}=8 x y+\lambda(2 \cdot i z)
$$

Erase $\frac{D E}{B x}$, $\frac{D E}{D g}, \frac{D E}{D t}-D_{0}$ zero,

$$
\frac{\partial F}{\partial x}=0 \quad \text { Pic } \quad \text { syz:1 } 2 \lambda x=0 \text {. }
$$

$$
\begin{equation*}
\frac{4 y z}{x}=-\lambda . \tag{1}
\end{equation*}
$$

$\frac{\partial F}{\partial y}=0$ i, $8,8 x z+12 \lambda y=0$

$$
\begin{array}{ll}
& \frac{4 x z}{y}=-i \\
\frac{\partial F}{\partial z}=0 & \text { ire } \\
\frac{4 x y}{z}=-\lambda
\end{array}
$$

From (3) (4) \& (5) we get .

$$
\frac{4 y z}{x}=\frac{4 x z}{y}=\frac{4 x y}{z}=-\lambda
$$

Taking $1^{\text {st }}$ two members', we get

$$
\frac{4 y \neq}{x}=\frac{4 x \neq}{y} \Rightarrow \frac{y}{x}=\frac{x}{y}
$$

Taking $2^{\text {nd }} \& 3^{\text {rd }}$ members, we get.

$$
\begin{equation*}
\therefore \frac{4 x z}{y}=\frac{4 x y}{z} \Rightarrow \frac{z}{y}=\frac{y}{z} \tag{2}
\end{equation*}
$$

From (1) \& (9)

$$
x^{2}=z^{2}-(B)
$$

we have $x^{2}+y^{2}+z^{2}=a^{2}$.

$$
\begin{gathered}
x^{2}+x^{2}+x^{2}=a^{2} \\
3 x^{2}=a^{2} \\
x^{2}=\frac{a^{2}}{3}
\end{gathered}
$$

$$
\begin{aligned}
x & = \pm \frac{a}{\sqrt{3}} \\
\| y, \quad y & = \pm \frac{a}{\sqrt{3}} \\
z & = \pm \frac{a}{\sqrt{3}}
\end{aligned}
$$

The Stationary point is $\left(\pm \frac{9}{\sqrt{3}}, \pm \frac{a}{\sqrt{3}}, \pm \frac{a}{\sqrt{3}}\right)$
Max volume $V=8 x y z=8\left(\frac{a}{\sqrt{3}} \cdot \frac{a}{\sqrt{3}}, \frac{a}{\sqrt{3}}\right)$

$$
=\frac{8 a^{3}}{3 \sqrt{3}}
$$

Q) Find extremum value of $x+y+z$ subject to $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

So): This is a constrained extreme problem whom the function $f(x, y, z)=x+y+z$ subjected to the Constraint $\cdot \frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1$

So, consider the auxiliary function '

$$
F(x, y, z)=x+y+z+\lambda\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-1\right)
$$

Diff (1) war, x, y, z partially \& equate to ' 0 '.

$$
\begin{equation*}
\frac{\partial F}{\partial x}=1-\frac{\lambda}{x^{2}}=0 \tag{2}
\end{equation*}
$$

$$
\begin{align*}
& \frac{\partial F}{\partial y}=1-\frac{\lambda}{y^{2}}=0 \tag{3}\\
& \frac{\partial F}{\partial z^{2}}=1-\frac{\lambda}{z^{2}}=0 \tag{4}
\end{align*}
$$

Solve (1), (3), (4) for x, y, z we get

$$
\begin{aligned}
& x= \pm \sqrt{\lambda} \\
& y= \pm \sqrt{\lambda} \\
& z= \pm \sqrt{\lambda}
\end{aligned}
$$

Sub these values of x, y, z. in given constraint,

$$
\begin{gathered}
\frac{1}{\sqrt{\lambda}}+\frac{1}{\sqrt{\lambda}}+\frac{1}{\sqrt{\lambda}}=1 \\
3=\sqrt{\lambda} \\
\lambda=9
\end{gathered}
$$

using this λ we get $x= \pm 3, y= \pm 3, z= \pm 3$
Thee the $\max \& \min$ values are $9 \&-9$.
Q) Find the max value of $x^{m} y^{n}-z^{p}$ when $x+y+z=a$.

Sol: G.T, $f=x^{m} y^{n} z^{p}$.
f subject to the conotition $x+y+z=a$
Consider the lagranges function

$$
\begin{align*}
& F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z) \\
& F=x^{m} y^{n} z^{p}+\lambda(x+y+z-a) \tag{2}
\end{align*}
$$

diff (2) w, x,t x, y, μ, z partially

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=m x^{m-1} y^{n} z^{p}+\lambda \\
& \frac{\partial F}{\partial y}=n y^{n-1} x^{m} z^{p}+\lambda \\
& \frac{\partial F}{\partial z}=p z^{p-1} x^{m} y^{n}+\lambda
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}, \frac{\partial F}{\partial z}$ to ${ }^{\prime} 0$ '.

$$
\begin{align*}
& m x^{m-1} y^{n} z^{p}+\lambda=0 \\
& m x^{m-1} y^{n} z^{p}=-\lambda \tag{-3}\\
& n y^{n-1} x^{m} z^{p}=-\lambda \\
& \therefore \quad p z^{p-1} x^{m} y^{n}=-\lambda \tag{5}
\end{align*}
$$

from": above eqn's.

$$
m x^{m-1} y^{n} z^{p}=n y^{n-1} x^{m} z^{p}=p z^{p-1} x^{m} y^{n}=-\lambda .
$$

Taking. $1^{\text {st }}$ two members, we get.

$$
\begin{aligned}
m x^{m-1} y^{n} z^{y} & =n y^{n-1} x^{m} z^{y} \\
m y & =n x-6 . \\
\frac{x}{m} & =\frac{y}{n}
\end{aligned}
$$

Taking $2^{\text {nd }} \& 3^{r d}$ members, we get.

$$
\begin{gather*}
n y^{n-1} x^{m} z^{p}=p z^{p-1} x^{m} y^{n} \\
n z=y p-(9) \tag{一}
\end{gather*}
$$

From (6) \& (7)

$$
p_{x}=z m .-6 \Rightarrow \frac{x}{m}=\frac{z}{p .}
$$

we have $x+y+z=a$

$$
\begin{gathered}
x+\frac{b x}{m}+\frac{p x}{m}=a \\
m x+n x+p x=a m \\
x(m+n+p)=a m \\
x=\frac{a m}{m+n+\rho} \\
y=\frac{n x}{m}=\frac{n}{p n}\left(\frac{a p p}{m+n+p}\right) \\
z=\frac{p x}{m}=\frac{p}{p n}\left(\frac{a p p}{m+n+\rho}\right)
\end{gathered}
$$

The stationary point is $\left(\frac{a m}{m+n+p}, \frac{n a}{m(m+n+p)} \frac{p a}{(m+n+p)}\right)$

$$
\text { The max value } \begin{aligned}
q x^{m} y^{n} z^{p} & =\left(\frac{a m}{m+n+p}\right)^{m}\left(\frac{n a}{n(m+n+p)}\right)^{n}\left(\frac{p a}{m(m+n+p}\right)^{p} \\
& =\frac{a^{m+n+p} \cdot n^{n} \cdot p^{p} \cdot m^{m}}{(m+n+p)^{m+n+\rho}}
\end{aligned}
$$

Limit of a function of two Variables:-
Let a function $f(x, y)$ we define in a region p, pe function $f(x, y)$ is said tends to limit ' ℓ ' as $x \rightarrow a, y \rightarrow b$. If given $\varepsilon>0 \quad \exists \delta>0$ such that: $|f(x, y)-l|<\varepsilon$.
when ever, $|x-a|<\delta_{i},|y-b|<\delta$.
Note?. The limit exist if the value obtain is same along any path from: (x, y) to (a, b) in $x-y$-plane. lie. It as $x \rightarrow a$ and then $y \rightarrow b$ is equal to limit as $y \rightarrow b$ and then $x \rightarrow a$.

Continuity of a function of two Noriables:A function $f(x, y)$ is said to be continuous at (a, b) if i) et $\underset{(x, y) \rightarrow(a, b)}{ } f(x, y)$ exists
ii) lt

$$
\begin{aligned}
& \text { it } \\
& (x, y) \rightarrow(a, b) \\
& f(x, y)=f(a, b) \\
& \therefore 1
\end{aligned}
$$

9) Examine for continuity at origin of the function defined by $f(x, y)= \begin{cases}\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} & \text { for }(x, y)=1(0,0) \\ & \text { for }(x, y)=(0,0)\end{cases}$
Redefined the function to make it continuous.

Sol:: The value of $f(x, y)$ for $x=0 \& y=0$ is not güew in the problem:.

Contincivity of a function at the point $(0,0)$
Case-(1): As $x \rightarrow 0$ first and then $y \rightarrow 0$.

$$
\begin{aligned}
& \operatorname{lt}_{(x, y) \rightarrow(0,0)}^{\text {lt }} f(x, y)=\operatorname{lt}_{\substack{x \rightarrow 0 \\
y \rightarrow 0}} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}}=\operatorname{lt}_{y \rightarrow 0}\left[\operatorname{lt}_{x \rightarrow 0} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}}\right]=0 \text {. }
\end{aligned}
$$

Case-(2): IAs $y \rightarrow 0$ first and then $x \rightarrow 0$.

$$
(x, y) \rightarrow(0,0){ }^{\text {lt }} f(x, y)=\operatorname{lt}_{\substack{g_{x \rightarrow 0}}} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}}=\operatorname{lt}_{x \rightarrow 0}\left[\operatorname{lt}_{y \rightarrow 0} \frac{x^{2}}{\sqrt{x^{2}+y^{2}}}\right]=d t=x=0 .
$$

case -(3): Along the line $y=m x$

$$
\begin{aligned}
& \text { lt }_{(x, y) \rightarrow(0,0)} f(x, y)=\operatorname{lt}_{\substack{y=m x \\
x \rightarrow 0}} \frac{\dot{x}^{2}}{\sqrt{x^{2}+y^{2}}}=\operatorname{lt}_{x \rightarrow 0} \frac{x^{2}}{\sqrt{x^{2}+m^{2} x^{2}}} \\
& \therefore \quad \therefore \quad \\
& \quad \therefore \quad \operatorname{lt}_{x \rightarrow 0} \frac{x}{\sqrt{1+m^{2}}}=0 .
\end{aligned}
$$

Hence the function ? (\dot{x}, \dot{y}) is Continuous at the evian $(0,0)$. If $f(x, y)=0$ for $x=0, y=0$ otherdoise $f(x, y)$ is not contiullous at the origin.
The modified function is (for continuous)

$$
f(x ; y)=\left\{\begin{array}{cc}
\frac{x^{2}}{\sqrt{x^{2}+y^{2}}} & \text { for }(x, y) \neq(0,0) \\
0 & \text { for }(x, y)=(0,0) \\
\cdots & \therefore
\end{array}\right.
$$

ARris
$?$

Scanned with CamScanner

Divide 120 into three parts so that the sum of their products taken 62 two at a time shall be maximum.
Sol: Let x, y, z be three parts of 120 .

$$
\begin{align*}
& x+y+z=120 . \\
& f=x y+y z+2 x . \\
& f=x y+y(120-x-y)+x(120-x-y) . \\
& f=x y+120 y-x^{2} y-y^{2}+120 x-x^{2}-y^{2} x \\
& f=120 x+120 y-x^{2}-y^{2}-x y=\text { (1). } \tag{1}
\end{align*}
$$

Diff (1) w.rt ' x ', y partially, we get

$$
\begin{aligned}
& \frac{\partial f}{\partial x}=120-2 x-y \\
& \frac{\partial f}{\partial y}=120-2 y-x
\end{aligned}
$$

Equate $\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}$ to zero, we get

$$
\begin{align*}
& \text { rate } \frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \text { to zero, } 120-2 x-y=0 \text {, } \frac{\partial f}{\partial y}=0 \text { i.e } 120-2 y-x=0 \text {. (3) } \tag{3}\\
& \frac{\partial f}{\partial x}=0 \text { i.e } 120 \text { weget }
\end{align*}
$$

Solving (2) and (3), we get

$$
x=40, y=40
$$

The stationary point is $(40,40)$

$$
\begin{aligned}
& \text { The stationary point is }(40,40) \\
& l=\frac{\partial^{2} f}{\partial x^{2}}=-2, \quad m=\frac{\frac{\partial}{f} f}{\partial x \partial y}=-1, \quad n=\frac{\partial^{2} f}{\partial y^{2}}=-2
\end{aligned}
$$

At the point $(40,40)$

$$
\begin{gathered}
\ln -m^{2}=4-1=3>0 . \\
l=-2<0 .
\end{gathered}
$$

$\therefore \quad f$ is maximum at $(40,40)$

$$
\therefore \quad f_{\text {max }}=40.40+40.40+40.40
$$

$$
f_{\max }=3.40 .40
$$

$$
f_{\text {max }}=4800
$$

Find the shortest distance from the point $(1,0)$ to the parabola $y^{2}=4 x$.

So:- Given that the equation of the parabola $y^{2}=4 x$
Let (x, y) be any point on the parabola $y^{2}=4 x$.
The distance from $(1,0)$ to any point (x, y) on $y^{2}=4 x$ is

$$
\begin{equation*}
p^{2}=(x-1)^{2}+y^{2} \tag{1}
\end{equation*}
$$

Let $f(x, y)=(x-1)^{2}+y^{2}$

$$
\begin{equation*}
\phi(x, y)=y^{2}-4 x \tag{2}
\end{equation*}
$$

Consider the Lagrangian function.

$$
\begin{align*}
& F=f(x, y)+\lambda \phi(x, y) \\
& F=(x-1)^{2}+y^{2}+\lambda\left(y^{2}-4 x\right) \tag{3}
\end{align*}
$$

Diff (3) w.r.t x and y partially, we get.

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2(x-1)-4 \lambda \\
& \frac{\partial F}{\partial y}=2 y+2 \lambda y
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ to zero, we get

$$
\begin{array}{lll}
\frac{\partial F}{\partial x}=0 & \text { i.e } & 2(x-1)-4 \lambda=0 \\
\frac{\partial F}{\partial y}=0 & \text { i.e } & 2 y+2 \lambda y=0
\end{array}
$$

From (5). $y=0$ co $\lambda=-1$.
If $\lambda=-1$, we get $x-1=-2 \quad[\because$ from (4) $]$

$$
x=-1 \text {. }
$$

$\therefore(-1,0)$ does not satisfy (2)
If $y=0, x=0$ from (2).

$$
\therefore f(0,0)=1
$$

\therefore shortest distance is 1 .

As the dimensions of a triangle $A B C$ are varied, show that the maximum, values of $\cos A \cos B \cos C$ is obtained when the triangle is equilateral. 61
sol. Let $f(A, B, C)=\cos A \cos B \cos C$.
In a triangle $A B C, \quad A+B+C=180^{\circ}$

$$
\varphi^{\prime}(A, B, C)=A+B+C-180^{\circ}
$$

Consider the Lagrangean function $F^{\prime}=f(A, B, C)+\lambda \varphi(A, B, C)$

$$
\begin{equation*}
F=\cos A \cos B \cos C+\lambda\left(A+B+C-180^{\circ}\right) \tag{i}
\end{equation*}
$$

Diff (1) w.rt A, B, C, partially, weger

$$
\begin{aligned}
& \frac{\partial F}{\partial A}=-\sin A \cos B \cos C+\lambda \\
& \frac{\partial F}{\partial B}=-\cos A \sin B \cos C+\lambda \\
& \frac{\partial F}{\partial C}=-\cos A \cos B \sin C+\lambda
\end{aligned}
$$

Equate. $\frac{\partial F}{\partial A}, \frac{\partial F}{\partial B}$ and $\frac{\partial F}{\partial C}$ to zero, weight

$$
\begin{align*}
& E q u a t e . \frac{\partial F}{\partial A}, \quad i \cdot e-\sin A \cos B \cos C+\lambda=0 \Rightarrow \lambda=\sin A \cos B \cos C \tag{-2}\\
& \frac{\partial F}{\partial A}=0 \tag{3}\\
& \frac{\partial F}{\partial B}=0 \quad i \cdot e-\cos A \sin B \cos C+\lambda=\lambda=\cos A \sin B \cos C- \tag{4}\\
& \frac{\partial F}{\partial C}=0 \quad i \cdot e-\cos A \cos B \sin C+\lambda=0 \Rightarrow \lambda=\cos A \cos B \sin C .
\end{align*}
$$

From equations (2) (3) and (4)

$$
\sin A \cos B \cos C=\cos A \sin B \operatorname{soc} C=\cos A \cos B \sin C \text {. }
$$

Dividing by: $\cos A \cos \beta \cos C$.

$$
\begin{gathered}
\tan A=\tan B=\tan C \\
A=B=C
\end{gathered}
$$

\therefore Hence, the triangle $A B C$ Is equilateral.

Find the minimum value of $x^{2}+y^{2}+z^{2}$ with the constraint $x y+y z+z y=3 a^{2}$.
So:: Let $f=x^{2}+y^{2}+z^{2}, \quad \phi=x y+y z+z x-3 a^{2}$.
Consider the Lagrangean function $F=f(x, y, z)+\lambda \varphi(y, y, z)$

$$
\begin{equation*}
F=\left(x^{2}+y^{2}+z^{2}\right)+\lambda\left(x y+y z+z x-3 a^{2}\right) \tag{1}
\end{equation*}
$$

Diff (1) w.r.t x, y and z partially, we get

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=2 x+\lambda(y+z) \\
& \frac{\partial F}{\partial y}=2 y+\lambda(x+z) \\
& \frac{\partial F}{\partial z}=2 z+\lambda(x+y)
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}, \frac{\partial F}{\partial y}$ and $\frac{\partial F}{\partial z}$ to zero, weget.

$$
\begin{align*}
& \text { Equate } \frac{\partial F}{\partial x}, \frac{\partial F}{\partial y} \text { a } 2 x+\lambda(y+z)=0 \Rightarrow-\lambda=\frac{2 x}{y+z} \text { ie } \frac{-1}{\lambda}=\frac{y+z}{2 x} \text {. } \tag{2}\\
& \frac{\partial F}{\partial x}=0 \text { i.e } 2 x+\lambda=\frac{2 y}{x+z} \text { ie } \frac{-1}{\lambda}=\frac{x+z}{2 y .} \\
& \frac{\partial F}{\partial y}=0 \text { ie } 2 y+\lambda(x+z)=0 \Rightarrow-\lambda=\frac{2 z}{x+y} \text { ie } \frac{-1}{\lambda}=\frac{x+y}{2 z} . \tag{4}\\
& \frac{\partial F}{\partial z}=0 \text { ie } 2 z+\lambda(x+y)=0 \Rightarrow \text { (4). }
\end{align*}
$$

From equations (2), (3) and (4), we get.

$$
\begin{aligned}
& \frac{y+z}{2 x}=\frac{x+z}{2 y}=\frac{x+y}{2 z}=\frac{y+z+x+z+x+y}{2 x+2 y+2 z}=1 . \\
& \frac{y+z}{2 x}=1 \Rightarrow-7+2 y-z=0 . \\
& \frac{x+z}{2 y}=1 \Rightarrow-x-y-2 z=0 . \\
& \frac{x+y}{2 z}=1 \Rightarrow \text { equations, weget } x=y=z .
\end{aligned}
$$

solving these equations, weget $x=y=z$.
sub. $y=z=x$ in $x y+y z+z x=3 a^{2}$, we get

$$
\begin{gathered}
3 x^{2}=3 a^{2} \Rightarrow x= \pm a . \\
x=y=z= \pm a .
\end{gathered}
$$

\therefore Minimum value of $f=x^{2}+y^{2}+z^{2}$ is $3 a^{2}$.

Show that if the perimeter of a triangle is a constant, the triangle has maximum area when it is equilateral.
sol:- Let x, y and z be the sides of the triangle.
Perimetce of the triangle $s=\frac{x+y+z}{2}$
Area of the triangle $A=\sqrt{s(s-x)(s-y)(s-z)}$

$$
\text { Let } \begin{align*}
f(x, y, z)= & A^{2}=s(s-x)(s-y)(s-z) \tag{1}\\
& x+y+z=2 s . \tag{2}
\end{align*}
$$

Let $\phi(x ; y, z)=x+y+z-2 s$.
Consider the Lagrangian function $F(x, y, z)=f(x, y, z)+\lambda \phi(x, y, z)$

$$
\begin{equation*}
F(x, y, z)=s(s-x)(s-y)(s-z)+\lambda(x+y+z-z s) \tag{3}
\end{equation*}
$$

Diff (3) w.r.t. x, y and z partially, we get and equate to zero,

$$
\begin{array}{r}
\frac{\partial F}{\partial x}=0 \quad i \cdot e
\end{array} \begin{array}{r}
-s(s-y)(s-z)+\lambda=0 \\
\lambda=s(s-y)(s-z) \\
\frac{\partial F}{\partial y}=0 \\
\text { ie }
\end{array}
$$

From equ's (4), (5) and (6), we get

$$
s(s-y)(s-z)=s(s-x)(s-z)=s(s-x)(s-y)
$$

Taking $1^{\text {st }}$ two members, we get

$$
\begin{align*}
s(s-y)(s-z) & =s(s-x)(s-z) \\
s-y & =s-x \\
x & =y \tag{1}
\end{align*}
$$

Taking $2^{\text {nd }}$ and $3^{\text {rd }}$ members, we get

$$
\begin{align*}
s(s-x)(s-z) & =s(s-x)(s-y) \\
s-z & =s-y \\
y & =z \tag{8}
\end{align*}
$$

From (5) and (8), we get

$$
x=y=2
$$

\therefore The triangle is equilateral:
A wire of length b is cut into two parts which are bent in the form of a square and circle respectively. Find the least value of the sum of the areas so found.
Sol:- Given that the length of the wire is b.
Let x and y be the two parts (pieces) of wire. $(x+y=b)$
Let the piece of length x be bent in the form of a square so that each side is $\frac{x}{4}$:
The area of the square. $A_{1}=\frac{x}{4} \cdot \frac{x}{4}=\frac{x^{2}}{16}$.
suppose a piece of length y. is bent in the form of a circle of radius So perimeter of the circle is y.

$$
\begin{array}{r}
2 \pi \gamma=y \\
\gamma=\frac{y}{2 \pi}
\end{array}
$$

The area of the circle $A_{2}=\pi\left(\frac{y}{2 \pi}\right)^{2}=\frac{y^{2}}{4 \pi}$
Let sum of the areas be given as

$$
\begin{align*}
& f(x, y)=A_{1}+A_{2} \\
& f(x, y)=\frac{x^{2}}{16}+\frac{y^{2}}{4 \pi} \tag{1}
\end{align*}
$$

Also $\quad x+y=b$.
Let $\phi(x, y)=a+y-b$.

Consider the Lagrangian function $F(x, y, x)=f(x, y)+\lambda \phi(x, y)$

$$
\begin{equation*}
F(x, y)=\left(\frac{x^{2}}{16}+\frac{y^{2}}{4 \pi}\right)+\lambda(x+y-b) \tag{3}
\end{equation*}
$$

Diff (3) w.r.t x and y partially, we get

$$
\begin{aligned}
& \frac{\partial F}{\partial x}=\frac{x}{8}+\lambda \\
& \frac{\partial F}{\partial y}=\frac{y}{2 \pi}+\lambda
\end{aligned}
$$

Equate $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$ to zero, we get

$$
\begin{align*}
& \frac{\partial F}{\partial x}=0 \text { ie } \frac{x}{8}+\lambda=0 \Rightarrow \frac{x}{8}=-\lambda- \tag{4}\\
& \frac{\partial F}{\partial y}=0 \text { ie } \frac{y}{2 \pi}+\lambda=0 \Rightarrow \frac{y}{2 \pi}=-\lambda \tag{5}
\end{align*}
$$

From (4) and (3), we get

$$
\begin{aligned}
& \frac{x}{8}=\frac{y}{2 \pi} \\
& x=\frac{4}{\pi} y
\end{aligned}
$$

We have $x+y=b$

$$
\begin{gathered}
\Rightarrow \frac{4}{\pi} y+y=b \\
y=\frac{b \pi}{4+\pi} \\
x=b-y=b-\frac{b \pi}{4+\pi} \\
x=\frac{4 b}{4+\pi}
\end{gathered}
$$

\therefore The stationary pt is $\left(\frac{4 b}{4+\pi}, \frac{b \pi}{4+\pi}\right)$
\therefore The least value of the sum of the areas is

$$
\begin{aligned}
& f=\frac{x^{2}}{16}+\frac{y^{2}}{4 \pi}=\frac{1}{16}\left(\frac{4 b}{4+\pi}\right)^{2}+\frac{1}{4 \pi}\left(\frac{\pi b}{4+\pi}\right)^{2} \\
& f=\frac{b^{2}}{4(4+\pi)}
\end{aligned}
$$

Taylor's series for a function of two variables:-
If $f(x, y)$ possess continuous partial derivatives of $n^{\text {th }}$ order in any neighbourhood of a point (x, y) and it $(x+h, y+k)$ is any point of this neighbourhood, then.

$$
\begin{aligned}
& \text { neighbourhood, then. } \\
& \begin{aligned}
f(x+h, y+k)= & f(x, y)+\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right) f(x, y)+\frac{1}{2!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{2} f(x, y) \\
& +\frac{1}{3!}\left(h \frac{\partial}{\partial x}+k \frac{\partial}{\partial y}\right)^{3} f(x, y)+\cdots
\end{aligned}
\end{aligned}
$$

Note (i):- $f(a+h, b+k)=f(a, b)+\left[h f_{x}(a, b)+k f_{y}(a, b)\right]+$

$$
\begin{aligned}
& f(a+h, b+k)=f(a, b)+[h+x \\
& {\left[\frac{h^{2}}{2,} f_{x x}(a, b)+h k f_{x y}(a, b)+\frac{k^{2}}{2-1,} f_{y y}(a, b)\right]+}
\end{aligned}
$$

(ii) Put $a+h=x \Rightarrow h=x-a$ and $b+k=y \Rightarrow k=y-b$.

From Note (i)

$$
\begin{aligned}
& \text { rom Note (i) } \\
& \begin{aligned}
f(x, y) & =f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)+ \\
& \frac{1}{2}\left[(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)+(y-b)^{2} f_{y y}(a, b)\right]+\cdots
\end{aligned}
\end{aligned}
$$

(iii) Put $a=b=0, h=x, k=y$ in the above.

$$
\begin{aligned}
& \text { Put } a=b=0, \quad h=x, k=y \text { in the above. } \\
& f(x, y)=f(0,0)+\left[x f_{x}(0,0)+y f_{y}(0,0)\right]+\frac{1}{2 l}\left[x^{2} f_{x x}(0,0)+2 x y f_{x y}(0,0)+\right. \\
& \left.\quad f_{y y}(0,0)\right]+\ldots
\end{aligned}
$$

This is known as Maclaurin's series tor two variables.
\rightarrow Expand $e^{x y}$ in the neighbourhood of $(1,1)$.
soli- Let $f(x, y)=e^{x y}$
We have to expand $f(x, y)$ in the neighbourhood of $(1,1)$.
The Taylor's series expansion of $f(x, y)$ about (a, b) is given by.

$$
\begin{aligned}
& f(x, y)=f(a, b)+(x-a) f_{x}(a, b)+(y-b) f_{y}(a, b)+ \\
& \frac{1}{2!!}\left[(x-a)^{2} f_{x x}(a, b)+2(x-a)(y-b) f_{x y}(a, b)+(y-b)^{2} f_{y y}(a, b)\right]+\cdots
\end{aligned}
$$

Here $a=1, b=1$.

$$
\begin{gathered}
\text { Here } a=1, b=1 . \\
f(x, y)=f(1,1)+(x-1) f_{x}(1,1)+(y-1) f_{y}(1,1)+ \\
\frac{1}{2!}\left[(x-1)^{2} f_{x x}(1,1)+2(x-1)(y-1) f_{x y}(1,1)+(y-1)^{2} f_{y y}(1,1)\right]+\cdots \\
f(x, y)=e^{x y} \quad f(1,1)=e . \\
f_{x}(x, y)=y e^{x y} \quad f_{x y}(1,1)=e . \\
f_{x x}(x, y)=y^{2} e^{x y} \quad f_{x y}(1,1)=e . \\
f_{y}(x, y)=x e^{x y} \quad \quad f_{y}(1,1)=e . \\
f_{y y}(x, y)=x^{2} e^{x y} \quad \quad f_{y y}(1,1)=e . \\
f_{x y}(x, y)=x y e^{x y}+e^{x y} \quad f_{x y}(1,1)=2 e .
\end{gathered}
$$

Sub. all these in (0), we get

$$
\begin{aligned}
& e^{x y}=e+e(x-1)+e(y-1)+\frac{1}{2!}\left[e(x-1)^{2}+4 e(x-1)(y-1)+e(y-1)^{2}\right]+\cdots \\
& e^{x y}=e\left[1+(x-1)+(y-1)+\frac{(x-1)^{2}}{2!}+2(x-1)(y-1)+\frac{(y-1)^{2}}{2!}+\cdots\right]
\end{aligned}
$$

